1. Let $f : X \to Y$ be a continuous closed surjection such that $f^{-1}(y)$ is compact for all $y \in Y$. Suppose that X is Hausdorff. Prove that Y is Hausdorff.

2. Let X be the set of real 2×2 matrices with determinant $= 3$ considered as a subspace of \mathbb{R}^4. Is X a manifold? Prove that your answer is correct.

3. Let X be the space obtained by attaching a Moebius strip M to a torus $T = S^1 \times S^1$ by a homeomorphism of the boundary circle of M to the circle $S^1 \times \{(1, 0)\}$ in T (where $(1, 0)$ denotes a point of the standard S^1 in \mathbb{R}^2). Calculate all the homology groups of X.

4. Let the topological space X_n be obtained from S^n by identifying three distinct points, i.e. $X_n = S^n / \{p, q, r\}$. Find the fundamental group of X_n.

5. Let $q : X \to Y$ be a quotient map of X onto a connected space Y. Assume that $q^{-1}(y)$ is connected for each $y \in Y$.

a. Show that X must be connected.
 b. Is X necessarily connected if the map q is only assumed to be continuous and onto and again assuming that $q^{-1}(y)$ is connected for each $y \in Y$? Explain.
1. (a) Show that a connected locally path connected space is path connected.

(b) Show that there are connected spaces which are not path connected.

2. a. Let \(f : S^2 \to \mathbb{R}^3 \) be a smooth embedding. Prove that there exist distinct points \(x, y \in S^2 \) such that the tangent planes to \(f(S^2) \) at \(f(x) \) and \(f(y) \) are parallel.

b. Exhibit a smooth proper embedding \(g : \mathbb{R}^2 \to \mathbb{R}^3 \) such that if \(x \) and \(y \) are any two distinct points in \(\mathbb{R}^2 \) then the tangent planes to \(g(\mathbb{R}^2) \) at \(g(x) \) and \(g(y) \) are not parallel. (A continuous map is proper if the pre-image of any compact set is compact.)

3. Let \(A \) and \(B \) be two round circles in \(\mathbb{R}^3 \) which intersect in a single point. Compute all the homology groups of \(\mathbb{R}^3 - (A \cup B) \).

4. Show that every continuous map \(f : \mathbb{RP}^2 \to \mathbb{RP}^2 \) has a fixed point.

5. Define \(f : \mathbb{R}^1 \to S^1 \) by \(f(x) = e^{i(x - \sqrt{2}\sin(x/\sqrt{2}))} \). Find all the regular points, all the regular values, all the critical points and all the critical values of \(f \).