UNIVERSITY OF MICHIGAN
DEPARTMENT OF MATHEMATICS

Solutions to May 2008 Algebra QR Exams
MORNING

Problem 1. For each point x in X, the subgroup fixing x has index 1 when x is fixed, and otherwise a positive power of p, and this index is the number of points in the orbit of x. Writing X as a disjoint union of the orbits, a) follows. For b), apply a) to the action of G on itself by conjugation.

Problem 2. Given $a ∈ E$, consider the map $α_a$. This is k-linear, and it is injective since E is a domain. Since E has finite-dimension as a k-vector space, it follows that $α_a$ is, in fact, bijective. In particular, we can find an element a^{-1} such that $aa^{-1} = 1 = a^{-1}a$ (by commutativity). Hence E is a field.

For ii), since $α_a$ is invertible, it follows that $\det(α_a) ≠ 0$. As the determinant of a k-linear map, it lies in k, hence $N(a) ∈ k^∗$. Since we have $α_a ∘ α_b = α_{ab}$, we see by taking determinants that $N(ab) = N(a) ∙ N(b)$, that is, N is multiplicative.

Suppose now that a is purely inseparable over k, and let $f = T^p^e − r$ be its minimal polynomial. Note that f is also the minimal polynomial of $α_a$. We have $[k(a): k] = p^e$, and let $m = [E: k]/p^e = [E: k(a)]$. Since $α_a$ is $k(a)$-linear, we see that $E ∼ k(a)^{⊕ m}$, such that $α_a$ is identified with $(α_a|_{k(a)}, \ldots, α_a|_{k(a)})$. On the other hand, the minimal polynomial of $α_a|_{k(a)}$ has degree equal to $\dim_k k(a) = p^e$. This implies that if $λ$ is a p^e-root of r in the algebraic closure of k, then the Jordan matrix of $α_a$ consists of m Jordan blocks of size p^e, having $λ$ on the diagonal.

Problem 3. Define first $ψ: V^p × V → ∧^{p+1}V$ by $ψ_p(u_1 \ldots u_p, v) = u_1 ∧ \ldots ∧ u_p ∧ v$. Since $ψ$ is multilinear and alternating in the first p variables, it induces a map $∧^p V × V → ∧^{p+1}V$. This in turn is bilinear, hence it induces $φ: ∧^p V ⊗ V → ∧^{p+1}V$, such that $φ((u_1 ∧ \ldots ∧ u_p) ⊗ v) = u_1 ∧ \ldots ∧ u_p ∧ v$.

This is clearly surjective, since every element in $∧^{p+1}V$ can be written as a sum of elements of the form $u_1 ∧ \ldots ∧ u_{p+1}$, with $u_i ∈ V$. In particular, since $∧^{p+1}V ≠ 0$ (recall that $p ≤ n−1$), we see that $φ$ is nonzero. On the other hand, the map is never injective: simply take linearly independent elements $e_1, \ldots, e_p ∈ V$, and note that $(e_1 ∧ \ldots ∧ e_p) ⊗ e_1 ≠ 0$, but its image by $φ$ is zero.

If $φ(u ⊗ v) = 0$ for every $v ∈ V$, choose a basis e_1, \ldots, e_n for V. We may assume $p ≤ n$, and write $u = \sum_I a_I e_I$, where the sum is over the subsets $I ⊆ \{1, \ldots, n\}$ with p elements, and if $i_1 < \ldots < i_p$, then $e_I := e_{i_1} ∧ \ldots ∧ e_{i_p}$. Note that the e_I form a basis of $∧^p V$. Since $φ(u ⊗ e_I) = 0$, we deduce that $a_I = 0$ whenever j is not in I (note that $e_I ∧ e_j = 0$ if $j \notin I$, and $\{e_I ∧ e_j \mid j \notin I\}$ are linearly independent in $∧^{p+1}V$). Since this happens for every j, and since $p ≤ n−1$, it follows that $a_I = 0$ for every I.

1
Problem 4. For a), L is the result of twice adjoining a p^{th} root of an indeterminant, and, for a indeterminant z, the polynomial $X^p - z$ is irreducible, say by Eisenstein. For any polynomial $f \in F[x, y]$, f^p is in $F[x^p, y^p]$. Therefore, for any u in L, u^p is in K, so u satisfies a polynomial equation of degree p, and $[K(u) : K]$ cannot be p^2. Consider the fields $K(x + ay)$, as a varies over the (infinite) field K, each an extension of degree p of K. If two coincided, say $M = K(x + ay) = K(x + by)$ for $a \neq b$, the difference $(a - b)y$ is in M, so y is in M, and so therefore is $x = x + ay - ay$, so $M = L$, a contradiction.

Problem 5. Let α denote the unique real root of f. If $\beta \in \mathbb{C}$ is another root of f, then its conjugate $\overline{\beta}$ is the third root (this is a root since f has rational, hence real, coefficients; it is distinct from α, which is real, and from β, since otherwise $\beta \in \mathbb{R}$).

Let $\mathbb{Q}(\alpha) \subseteq K$ be the subfield of K generated by α. Since $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, and $\beta \notin \mathbb{R}$, it follows that $\mathbb{Q}(\alpha) \neq K$. We know that f is irreducible, and $\deg(f) = 3$, hence $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$. On the other hand, since $\beta \notin \mathbb{Q}(\alpha)$, we see that β is the root of the irreducible polynomial $f/(x - \alpha)$ in $\mathbb{Q}(\alpha)[x]$. Hence $K = \mathbb{Q}(\alpha, \beta)$ is a degree two extension of $\mathbb{Q}(\alpha)$, and we conclude that $[K : \mathbb{Q}] = 6$.

The extension K/\mathbb{Q} is clearly normal, and separable (since we are in characteristic zero), hence $G = G(K/\mathbb{Q})$ has order six. Therefore we either have $G \simeq \mathbb{Z}/6\mathbb{Z}$, or $G \simeq S_3$. In order to show that $G \simeq S_3$, it is enough to show that G has at least two subgroups of order two (which rules out $G \simeq \mathbb{Z}/6\mathbb{Z}$).

We have already found one such subgroup, namely $G(K/\mathbb{Q}(\alpha))$. On the other hand, since β is a root of f, we also have $[\mathbb{Q}(\beta) : \mathbb{Q}] = 3$. Since $\beta \notin \mathbb{Q}(\alpha)$, the two subextensions $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are distinct, which proves our assertion.
Problem 1. Note that \(A = \mathbb{C}[x]/((x - \sqrt{2})^3) \oplus \mathbb{C}[x]/((x + \sqrt{2})^3) \). Since \(x^3 - 2\sqrt{2} = (x - \sqrt{2})(x^2 + \sqrt{2}x + 2) \), it follows that \((x^3 - 2\sqrt{2})^3 \equiv 0 \) in the first factor, but \((x^3 - 2\sqrt{2})^2 \neq 0 \). Similarly for powers of \(x^3 + 2\sqrt{2} \) in the second factor. The minimal polynomial is therefore \((x - 2\sqrt{2})(x + 2\sqrt{2})^3 = (X^2 - 8)^3 \). The Jordan canonical form has two 3 by 3 blocks, one with \(2\sqrt{2} \)'s down the diagonal, the other with \(-2\sqrt{2} \)'s down the diagonal, both with 1’s just above (or below) the diagonal, 0’s elsewhere.

Problem 2. Consider the group homomorphism \(f: G \to \text{Aut}(G) \), where \(f(x) \) is conjugation by \(x \), that is \(y \to yxy^{-1} \). The kernel of \(f \) is the center \(Z(G) \) of \(G \). Therefore \(G/Z(G) \) is a subgroup of a cyclic group, hence it is cyclic itself. This implies that there is \(u \in G \) such that every element in \(G \) can be written as \(gu^m \) for some \(g \in Z(G) \) and \(m \in \mathbb{Z} \). Given \(x = gu^m \), \(y = hu^n \), with \(g, h \in Z(G) \), we have
\[
xy = gu^mhu^n = ghu^{m+n} = u^{m+n}hg = yx.
\]
Therefore \(G \) is commutative.

Problem 3. The characteristic polynomial of \(A \) has the form \(X^3 - bx^2 + dx - a = \prod_{i=1}^{3}(X - \lambda_i) \), from which it follows that \(b = \sum_{i=1}^{3} \lambda_i, \ c = \sum_{i=1}^{3} \lambda_i^2, \ d = \sum_{i<j} \lambda_i \lambda_j \), so \(c = b^2 - 2d \). The companion matrix
\[
\begin{pmatrix}
0 & 0 & a \\
1 & 0 & -d \\
0 & 1 & b
\end{pmatrix}
\]
will produce any \(a, b, c \), if the characteristic is not 2, with \(d = (b^2 - c)/2 \). If the characteristic is 2, a triple can be achieved exactly when \(c = b^2 \), for example by this matrix, with any \(d \).

Problem 4. Since \(\zeta \) is a primitive \(12^{th} \) root of 1, it is a \(6^{th} \) (but not square) root of \(-1 \), so it satisfies the polynomial \((X^6 + 1)/(X^2 + 1) = X^4 - X^2 + 1 \). The other roots of this polynomial are \(\zeta^5, \zeta^7, \) and \(\zeta^{11} \), which shows that it cannot satisfy a polynomial of lower degree, and that the field extension it generates is Galois. The four automorphisms of this field take \(\zeta \) to \(\zeta^i \), for \(i = 1, 5, 7, 11 \), which identifies the Galois group with \(\mathbb{Z}/12\mathbb{Z}^* \). Each element of this group has square the identity, so it is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \). The fixed fields of its nontrivial elements are \(\mathbb{Q}(\zeta + \zeta^5) = \mathbb{Q}(i) \), \(\mathbb{Q}(\zeta + \zeta^{11}) = \mathbb{Q}(\sqrt{3}) \), and \(\mathbb{Q}(\zeta^2 + \zeta^4) = \mathbb{Q}(\sqrt{-3}) \).

Problem 5. For i) consider the ring homomorphism \(\phi: C([0,1]) \to \mathbb{R} \) given by \(\phi(f) = f(p) \). This is clearly surjective (every \(a \in \mathbb{R} \) is the image of the constant function \(a \)), and its kernel is \(\mathfrak{m}_p \). Since \(C([0,1])/\mathfrak{m}_p \simeq \mathbb{R} \) is a field, it follows that \(\mathfrak{m}_p \) is a maximal ideal.

For ii), it is enough to show that given any proper ideal \(I \) of \(C([0,1]) \), there is \(p \in [0,1] \) such that \(I \subseteq \mathfrak{m}_p \), that is, every function in \(I \) vanishes at \(p \). For every \(f \in I \), let \(Z(f) \) denote the set \(\{ q \in [0,1] \mid f(q) = 0 \} \). We need to show that \(\bigcap_{f \in I} Z(f) \neq \emptyset \).
Suppose that this is not the case: since $[0, 1]$ is a compact topological space, we deduce that there are $f_1, \ldots, f_m \in I$ such that $Z(f_1) \cap \ldots \cap Z(f_m) = \emptyset$. We claim that in this case $I = C([0, 1])$. Indeed, since the f_i have no common zero, we can define

$$h_i = \frac{f_i}{\sum_{i=1}^m f_i^2}.$$

Therefore $h_i \in C([0, 1])$ for every i, and since $\sum_i h_i f_i = 1 \in I$, this proves our claim. We get a contradiction, showing that in fact there is $p \in [0, 1]$ such that $I \subseteq m_p$.