1. Suppose that a group G acts on a set X. For a point $x \in X$, let G_x denote the stabilizer subgroup $\{g \in G \mid gx = x\}$.

 a). If G acts transitively on X, show that G_x and G_y are isomorphic subgroups of G.
 b). If G_x is conjugate to some subgroup H of G, show that $H = G_y$ for some $y \in X$.
 c). Prove that if G acts transitively on X and G_x is normal, then $G_x = G_y$ for all x and y in X.
 d). Show that if X is finite and G acts transitively, then the cardinality of X is equal to the cardinality of G/G_x, where $x \in X$ is any point.

 Solution.
 a). Since G acts transitively, there exists $h \in G$ such that $hy = x$. We have

 $$g \in G_x \iff gx = x \iff ghy = hy \iff h^{-1}gh = y \iff h^{-1}gh \in G_y.$$
 If we define $\varphi : G_x \to G_y$ by $\varphi(g) = h^{-1}gh$ then it is easily verified that φ is an isomorphism of groups. In particular, we have $G_y = h^{-1}G_xh$.

 b). Suppose that $H = h^{-1}G_xh$. Set $y = hx$. Then $G_y = h^{-1}G_xh = H$ by a).

 c). By a), we have $G_y = h^{-1}G_xh$, and $h^{-1}G_xh = G_x$ because G_x is normal.

 d). Define $\psi : G/G_x \to X$ by $\psi(gG_x) = gx$. This map is well defined because if $gG_x = g'G_x$ for some $g' \in G$, then $g' = gh$ for some $h \in G_y$ and $g'x = ghx = gx$. The function ψ is onto, because G acts transitively. If $gx = g'x$, then $(g')^{-1}gx = x$, so $(g')^{-1}g \in G_x$ and $g'G_x = gG_x$. This shows that ψ is injective. Hence ψ is bijective and $|G/G_x| = |X|$.

2. Let λ be a non-zero element of the algebraically closed field k, and let R be the ring $k[t]/(t^2(t - \lambda)^3)$. Note that R is also a k-vector space in a natural way.

 a). What is the dimension of R over k.
 b). Find an explicit basis for the null space (kernel) of the linear transformation of R over k given by multiplication by $(t - \lambda)^3$.
 c). Find the Jordan canonical form for the linear transformation of the vector space R given by multiplication by t.

 Solution.
 a). The dimension of R is 5, because 5 is the degree of $f = t^2(t - \lambda)^3$. A basis of R is given by $1 + (f), t + (f), t^2 + (f), t^3 + (f), t^4 + (f)$.

 b). Let T be this linear map. Clearly, $t^2 + (f), t^3 + (f), t^4 + (f)$ lie in the kernel T, so the kernel has dimension ≥ 3 and the rank of T is at most $5 - 3 = 2$. Also, $(t - \lambda)^3 + (f)$ and $t(t - \lambda)^3 + (f)$ are linearly independent vectors in the image of T, so the rank of T is equal to 2, the dimension of the kernel is equal to 3, and a basis of the kernel is given by $t^2 + (f), t^3 + (f), t^4 + (f)$.

 c). Denote this linear transformation by S. By the Chinese Remainder Theorem we have a natural isomorphism $R \to k[t]/(t^2) \oplus k[t]/((t - \lambda)^3)$ given by $t + (f) \mapsto (t + (t^2), t + (t - \lambda)^3))$.

If we choose the basis $1 + (t^2), t + (t^2)$ in $k[t]/(t^2)$ and $1 + ((t - \lambda)^3), (t - \lambda) + ((t - \lambda)^3), (t - \lambda)^2 + ((t - \lambda)^3)$ then the matrix of S with respect to these bases is:

$$
\begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & 1 & \lambda \\
0 & 0 & 0 & 1 \\
\end{pmatrix}.
$$

3. Let $M_{n,m}(k)$ be the vector space of $n \times m$ matrices over a field k and consider the “matrix multiplication map”

$$B : M_{n,1}(k) \times M_{1,m}(k) \to M_{n,m}(k)$$

$$
\left(\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \begin{pmatrix} w_1 & \cdots & w_m \end{pmatrix} \right) \mapsto \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \begin{pmatrix} w_1 & \cdots & w_m \end{pmatrix}
$$

a). Prove that the image of B consists precisely of the $n \times m$ matrices of rank at most one.

b). Explain why B is bilinear and use this show that $M_{n,1}(k) \otimes M_{1,m}(k) \cong M_{n,m}(k)$, as vector spaces over k.

c). Give (with justification) an explicit element of $k^3 \otimes k^3$ which can not be written as $v \otimes w$ for any $v, w, \in k^3$.

Solution.

a). For matrices A_1, A_2 we have

$$\text{rank}(A_1 A_2) \leq \min\{\text{rank}(A_1), \text{rank}(A_2)\}.$$

Since $\text{rank}(A_1), \text{rank}(A_2) \leq 1$, we have $\text{rank}(B(A_1, A_2)) = \text{rank}(A_1 A_2) \leq 1$. Suppose that C is an $m \times n$ matrix of rank 1, Then there exist an invertible matrix D such that DC is in row echelon form. So

$$DC = \begin{pmatrix} w_1 & w_2 & \cdots & w_m \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

If the first column of D^{-1} is $(v_1, v_2, \cdots, v_n)^{tr}$, then $C = (v_1, \cdots, v_n)^{tr}(w_1, \cdots, w_m)$ lies in the image of B.

b) It is easy to verify that B is bilinear. So there exists a unique linear map $\hat{B} : M_{n,1}(k) \otimes M_{1,m}(k) \to M_{n,m}(k)$ such that $\hat{B}(A_1 \otimes A_2) = B(A_1, A_2)$. Clearly, every $m \times n$ matrix C is a sum of matrices of rank 1, namely $C = C_1 + C_2 + \cdots + C_n$ where C_i is the matrix which has 0’s in all rows except row i, and the i-th row of C_i is the same as the i-th row of C. This shows that \hat{B} is surjective. The spaces $B_{n,1}(k) \otimes M_{1,m}(k)$ and $M_{n,m}(k)$ both have dimension mn. Therefore, \hat{B} is a linear isomorphism.

c). If $n = m = 3$, then we may identify $M_{n,1}(k)$ and $M_{1,m}(k)$ with k^3. So we have an isomorphism $\hat{B} : k^3 \otimes k^3 \to M_{3,3}(k)$ by $b)$. Let C be a 3×3 matrix of rank > 1 and let $A = B^{-1}(C)$. Then $A \in k^3 \otimes k^3$ is not a pure tensor: if $A = A_1 \otimes A_2$ then $C = \hat{B}(A) = \hat{B}(A_1 \otimes A_2) = B(A_1, A_2)$ has rank ≤ 1.

2
4. Compute the number of abelian groups of order 120, up to isomorphism.

Solution. $120 = 2^4 \cdot 3 \cdot 5$. Every abelian group is isomorphic to the product of its p-Sylow subgroups. So an abelian group G of order 120 is isomorphic to $G_2 \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ where G_2 is the 2-Sylow subgroup. The possibilities for G_2 are $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, and $\mathbb{Z}/8\mathbb{Z}$, and these are pairwise nonisomorphic. So there are 3 abelian groups of order 120. (We can also write G uniquely in the form $\mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_r\mathbb{Z}$ where $d_1 \mid d_2 \mid \cdots \mid d_r$. Then the groups up to isomorphism are $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}$, $\mathbb{Z}/120\mathbb{Z}$.)

5. If the Galois group of a finite Galois extension L/K is S_3, describe explicitly the lattice of intermediate fields. For each intermediate field F, specify what the Galois group of L/F is, and whether F is a normal extension of K.

Solution. The subgroups of S_3 are the trivial group $\langle e \rangle$, the group S_3 itself and the cyclic subgroups $\langle (1\ 2) \rangle$, $\langle (1\ 3) \rangle$, $\langle (2\ 3) \rangle$ and $\langle (1\ 2\ 3) \rangle$. By the Galois correspondence, the lattice of intermediate fields is:

![Diagram]

For each group G, L^G is the fixed field of G, and the Galois group of the extension L/L^G is G. The normal subgroups of S_3 are $\langle e \rangle$, S_3 and $\langle (1\ 2\ 3) \rangle$ so the only cases where F is a normal extension of K are $F = L$, $F = K$ or $F = L^{\langle (1\ 2\ 3) \rangle}$.
1. An ideal I in a commutative ring R is said to be radical if $f^n \in I$ implies $f \in I$, for any element $f \in R$ and any positive integer n.
 a). State and prove a characterization of the radical ideals of \mathbb{Z}, in terms of their generators.
 b). If I and J are radical ideals of \mathbb{Z}, prove that $I \cap J$ and $I + J$ are radical. Here, $I \cap J$ is the largest ideal contained in both I and J, and $I + J$ is the smallest ideal containing both I and J.
 c). Prove or give a counterexample: If I and J are radical ideals in \mathbb{Z}, so is IJ. Here, IJ is the ideal generated by elements of the form xy where $x \in I$ and $y \in J$.

Solution.
 a). Every ideal in \mathbb{Z} is principal and of the form (d) with $d \geq 0$. We have $e \in (d)$ if and only if $d \mid e$. The ideal (0) is prime because \mathbb{Z} is an integral domain. It follows that (0) is radical. Let $I = (d)$ with $d > 0$. Let $d = p_1^{k_1} \cdots p_r^{k_r}$ be the prime factorization where $p_1 < \cdots < p_r$ are distinct primes and k_1, \ldots, k_r are positive integers. We claim that (d) is radical if and only if d is square-free, i.e., $k_1 = k_2 = \cdots = k_r = 1$. Suppose that (d) is radical. Let $f = p_1 \cdots p_r$, then $f^n \in (d)$ if $n \geq k_i$ for all i. So $f \in (d)$ and $d \mid f$. It follows that k_1, \ldots, k_r are all equal to 1. Conversely, if $d = p_1 \cdots p_r$, and $f^n \in (d)$, then $d \mid f^n$. It follows that every p_i must appear in the prime factorization of f, so $d \mid f$ and $f \in (d)$.
 b). If $I = (0)$ or $J = (0)$ then $I + J$ is equal to J or I respectively, and $I + J$ is radical. If $I = (d)$ and $J = (e)$, then $I + J = (f)$ where f is the greatest common divisor of d and e. If d and e are squarefree, then so is f, and $I + J$ is radical. The intersection of radical ideals is radical in any ring. Suppose that I and J are radical and $f^n \in I \cap J$. Then $f^n \in I$, so $f \in I$. And also $f^n \in J$ so $f \in J$. Therefore $f \in I \cap J$. This shows that $I \cap J$ is radical.
 c). If $I = J = (2)$, then I and J are radical, but $IJ = (4)$ is not radical because $2^2 \in (4)$, but $2 \not\in (4)$.

2. Let p_1, \ldots, p_n be distinct prime integers, and let K be the extension of \mathbb{Q} obtained by adjoining the square roots of these elements.
 a). Describe the Galois group G of K over \mathbb{Q} by giving an explicit set of generators.
 b). Prove that G is abelian, and express it as a direct sum of subgroups of prime power order.

Solution.
 a), b). Let $K_i = \mathbb{Q}(\sqrt{p_i})$ for all i. Since $\sqrt{p_i}$ is irrational, K_i/\mathbb{Q} is a field extension of degree 2. This extension is Galois and $\text{Gal}(K_i/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$. This group is generated by σ_i where $\sigma_i(\sqrt{p_i}) = -\sqrt{p_i}$. Now the composition field $K = K_1K_2 \cdots K_n$ is also a Galois extension over \mathbb{Q}. Restriction gives us an injective group homomorphism
 $$\varphi : \text{Gal}(K/\mathbb{Q}) \to \text{Gal}(K_1/\mathbb{Q}) \times \cdots \times \text{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
 Suppose that φ is not onto. Then there exists a nonzero group homomorphism $\psi : (\mathbb{Z}/2\mathbb{Z})^n \to \mathbb{Z}/2\mathbb{Z}$ with $\psi \circ \varphi = 0$. This homomorphism is given by $\psi(a_1 + 2\mathbb{Z}, \ldots, a_n + 2\mathbb{Z}) = k_1a_1 + \cdots + k_na_n + 2\mathbb{Z}$ for some $k_1, \ldots, k_n \in \{0, 1\}$. Define $d = \prod_{i=1}^d p_i^{k_i}$. Then d is a squarefree element integer > 1. Since \sqrt{d} is fixed under $\text{Gal}(K/\mathbb{Q})$, we have that $\sqrt{d} \in \mathbb{Q}$. This is a contradiction because \sqrt{d} is irrational. It follows that φ is onto. So φ is an isomorphism and $\text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$.
3. Let \(a \) be a real number. Find the rank and signature of the matrix
\[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & a
\end{pmatrix}
\]
as a function of \(a \). For which values of \(a \) is it positive definite?

Solution. The determinants of the upper-left 1 \times 1, 2 \times 2 and 3 \times 3 submatrices are 1, 1, \(a - 2 \). The quotients, are 1, 1/1 = 1, \((a - 2)/1 = a - 2\). If \(a < 2 \), then the signature is 1, 1, -1, if \(a = 2 \) then the signature is 1, 1, 0, and if \(a > 2 \) then the signature is 1, 1, 1. The matrix is positive definite if \(a > 2 \).

4. Give examples of the following:
 a). A UFD \(R \) that is not a PID.
 b). A module \(M \) over a PID that is neither free nor torsion.
 c). A torsion module over a PID which has two submodules \(M \) and \(N \) satisfying \(M \cap N = 0 \) and whose annihilators satisfy \(\text{Ann} \ M \subset \text{Ann} \ N \).

Solution.
 a). \(\mathbb{Q}[x, y] \) is a UFD but not a PID. Every polynomial ring over a field is a UFD, but \(\mathbb{Q}[x, y] \) is not a PID, because \((x, y)\) is not principal.
 b). The \(\mathbb{Z} \)-module \(\mathbb{Z} \oplus \mathbb{Z}/2 \) is not torsion, and not free.
 c). Take \(R = \mathbb{Z} \), and the module \(U = M \oplus N \) where \(M = \mathbb{Z}/2 \) and \(N = \mathbb{Z}/4 \). Then \(\text{Ann} \ M = (2), \text{Ann} \ N = (4) \).

5. a). Let \(n \) be a positive integer, and let \(\text{Aut}(\mathbb{Z}/(2^n)) \) be the automorphism group of the cyclic group \(\mathbb{Z}/(2^n) \) of order 2\(^n\). How many elements does \(\text{Aut}(\mathbb{Z}/(2^n)) \) have?
 b). Suppose that a finite group \(G \) has a cyclic 2-Sylow subgroup \(H \). Show that the centralizer subgroup \(Z_G(H) \) of \(H \) in \(G \) is equal to the normalizer subgroup \(N_G(H) \) of \(H \) in \(G \).

Solution.
 a). The group \(\mathbb{Z}/2^n \mathbb{Z} \) is generated by \(1 + 2^n \mathbb{Z} \). Any automorphism of \(\mathbb{Z}/2^n \mathbb{Z} \) sends \(1 + 2^n \mathbb{Z} \) to another generator \(a + 2^n \mathbb{Z} \) where \(a \) is odd. There are \(2^{n-1} \) odd numbers between 0 and \(2^n \), so \(\text{Aut}(\mathbb{Z}/2^n \mathbb{Z}) \) has \(2^{n-1} \) elements.
 b). \(H \) is isomorphic to \(\mathbb{Z}/2^n \mathbb{Z} \) for some positive integer \(n \). The group \(Z_G(H) \) acts on \(H \) by conjugation. So we have a group homomorphism
 \[
 \varphi : N_G(H) \to \text{Aut}(\mathbb{Z}/2^n \mathbb{Z}).
 \]
The kernel of \(\varphi \) is \(Z_G(H) \). So \(N_G(H)/Z_G(H) \) can be identified with a subgroup of \(\text{Aut}(\mathbb{Z}/2^n \mathbb{Z}) \). In particular, \(N_G(H)/Z_G(H) \) is a 2-group. If \(N_G(H)/Z_G(H) \) is nontrivial, then 2 divides \(|N_G(H)|/|Z_G(H)| \), so it divides
\[
\frac{|G|}{|H|} = \frac{|G|}{|N_G(H)|} \cdot \frac{|Z_G(H)|}{|N_G(H)|} \cdot \frac{|N_G(H)|}{|Z_G(H)|}.
\]
But \(|G|/|H| \) is odd because \(H \) is the 2-Sylow subgroup of \(G \). Contradiction. So \(N_G(H) = Z_G(H) \).