Problem 1. Let \(M \) be a \(\mathbb{Z} \)-module in which every element is torsion (i.e., for every \(m \in M \) there is a nonzero \(n \in \mathbb{Z} \) such that \(n \cdot m = 0 \)). Show that \(M \otimes \mathbb{Q} = 0 \).

Solution. Let \(G \) be an abelian group and let \(B : M \times \mathbb{Q} \to G \) be a bilinear map of \(\mathbb{Z} \)-modules. For \(m, n \) as in the problem, and any \(q \in \mathbb{Q} \), we have \(B(m, q) = B(nm, q/n) = B(0, q/n) = 0 \), so \(B \) is identically zero. Thus the universal property defining the tensor product is satisfied by the trivial module and the zero bilinear map, so \(M \otimes \mathbb{Q} = 0 \).

Problem 2. Let \(f(x) = x^8 - 1 \). Find the Galois group of \(f(x) \) over each of the following fields:

(a) The rational field \(\mathbb{Q} \).
(b) The field \(\mathbb{Q}(i) \).
(c) The field \(\mathbb{F}_3 \) of three elements.

Solution. (a) The splitting field of \(f(x) \) over \(\mathbb{Q} \) is \(K = \mathbb{Q}(\zeta) \), where \(\zeta \) is a fixed primitive eighth root of unity. Any automorphism of \(K \) maps \(\zeta \) to another primitive eighth root of unity, namely \(\zeta^i \) with \(i \in \{1, 3, 5, 7\} \), and conversely these are roots of the minimal polynomial of \(\zeta \) over \(\mathbb{Q} \) so they are images of \(\zeta \) under \(\text{Gal}(K/\mathbb{Q}) \). Finally, each automorphism \(\zeta \mapsto \zeta^i \) has order 1 or 2, so \(\text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/2)^2 \).

(b) The splitting field is again \(K = \mathbb{Q}(\zeta) \), but \(\zeta^2 = \pm i \) so \(K \) contains \(\mathbb{Q}(i) \). Hence \([K : \mathbb{Q}(i)] = [K : \mathbb{Q}]/[\mathbb{Q}(i) : \mathbb{Q}] = 4/2 = 2 \), so \(\text{Gal}(K/\mathbb{Q}(i)) \cong (\mathbb{Z}/2) \) (and consists of the maps \(\zeta \mapsto \pm \zeta \)).

(c) The eighth roots of unity in the algebraic closure of \(\mathbb{F}_3 \) are precisely the nonzero elements of \(\mathbb{F}_9 \), so the splitting field of \(f \) is \(\mathbb{F}_9 \), and \(\text{Gal}(\mathbb{F}_9/\mathbb{F}_3) \cong (\mathbb{Z}/2) \) (and is generated by the cubing map).

Problem 3. Let \(V \) be the vector space \(\mathbb{C}[X]/(X^4 + X^2) \oplus \mathbb{C}[X]/(X^2 + 1) \), and let \(L : V \to V \) be the linear map given by multiplication by \(X \). Find the Jordan canonical form of \(L \).

Solution. Decompose \(\mathbb{C}[X]/(X^4 + X^2) \) into \(\mathbb{C}[X]/(X^2) \oplus \mathbb{C}[X]/(X^2 + 1) \), and \(\mathbb{C}[X]/(X^2 + 1) \) into \(\mathbb{C}[X]/(X - i) \oplus \mathbb{C}[X]/(X + i) \), so \(V \) is isomorphic to the \(\mathbb{C}[X] \)-module

\[
\mathbb{C}[X]/(X^2) \oplus \mathbb{C}[X]/(X - i) \oplus \mathbb{C}[X]/(X - i) \oplus \mathbb{C}[X]/(X + i) \oplus \mathbb{C}[X]/(X + i).
\]

The correspondence between \(\mathbb{C}[X] \)-modules and vector spaces with endomorphisms gives the Jordan canonical form

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 \\
0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & -i & 0 \\
0 & 0 & 0 & 0 & -i
\end{pmatrix}.
\]
Problem 4. What are the sizes of the subfields of the field with 2^{12} elements?

Solution. For any prime power q, and any positive integer n, the finite field with q elements has a unique extension of degree n, which is the finite field with q^n elements. The subfields of this field therefore have 2^m elements, where $mn = 12$ for some positive n. So the subfields are those with 2^1, 2^2, 2^3, 2^4, 2^6, and 2^{12} elements.

Problem 5. Let R be a commutative ring. For each of the following statements, either explain briefly why it is true, or give a counterexample together with an explanation of why it is a counterexample.

(a) If R is a unique factorization domain, then R is a principal ideal domain.
(b) If R is a principal ideal domain, then R is a unique factorization domain.
(c) If R is a Euclidean domain, then R is a unique factorization domain.

Solution. (a) $R = \mathbb{Z}[x]$ is a counterexample: it has unique factorization by Gauss’s lemma (since $\mathbb{Q}[x]$ is Euclidean and hence has unique factorization), but the ideal $(2, x)$ is not principal.

(b) True: for any infinite sequence a_1, a_2, \ldots such that $a_{i+1} | a_i$, the union of the ideals $(a_1) \subset (a_2) \subset \ldots$ is an ideal, and hence a principal ideal (a), but then $a \in (a_n)$ for some n, so $a_n | a_k$ for $k > n$. Thus each nonzero $a_1 \in R$ has a factorization, since if a_1 is neither irreducible nor a unit then $a_1 = a_2b_2$ where neither a_2 nor b_2 is a unit, and the above argument shows that after repeating this process finitely many times we will obtain a factorization of a_1. Now suppose a_1 has two factorizations $p_1 \ldots p_r = q_1 \ldots q_s$, where each p_i and q_j is irreducible. Note that (p_i) is maximal, and hence prime, because if $(p_i) \subset (a)$ then $a \mid p_i$ so a is either a unit or an associate of p_i. Since (p_i) contains $q_1 \ldots q_s$, it follows that $p_i \mid q_j$ for some j, whence p_i and q_j are associates. Repeating this process shows that the two factorizations of a_1 are the same up to unit multiples.

(c) True: Euclideanity implies that any ideal is generated by any of its nonzero elements of minimal norm, so R is a principal ideal domain, and hence a unique factorization domain by (b).
Problem 1. Suppose a finite group G of order n acts on a finite set X of cardinality m, Assume that m cannot be written as a sum of divisors of n which are greater than 1. Show that there must be an x in X which is fixed by every g in G.

Solution. The set is the disjoint union of the orbits of the action, and the cardinality of the orbit of x is $[G : G_x]$ where G_x is the stabilizer of x in G. Since these numbers cannot all be greater than 1, some x in X must satisfy $G_x = G$.

Problem 2. Let $M_n(K)$ be the K-algebra of n by n matrices over the field K. Construct an isomorphism of K-algebras

$$M_m(K) \otimes_K M_n(K) \cong M_{mn}(K).$$

Solution. For any vector spaces V and W over K, one has a canonical homomorphism of K-algebras

$$\text{End}(V) \otimes_K \text{End}(W) \to \text{End}(V \otimes_K W),$$

taking $L \otimes M$ to the endomorphism that sends $v \otimes w$ to $L(v) \otimes M(w)$, for $v \in V$ and $w \in W$. Identify $M_m(K)$ with $\text{End}(K^m)$ and $M_n(K)$ with $\text{End}(K^n)$. Since $K^m \otimes K K^n$ is isomorphic to K^{mn}, we can identify $M_{mn}(K)$ with $\text{End}(K^m \otimes_K K^n)$, which gives the required homomorphism. Using standard bases, one checks that this homomorphism is one-to-one, and therefore an isomorphism, since the two spaces have the same dimension.

Problem 3. Suppose that K/\mathbb{Q} is a (finite) Galois field extension. Prove that for any subfield L of K there exist subfields L_1, L_2, \ldots, L_r of K such that $L = L_1 \cap L_2 \cap \cdots \cap L_r$ and the degree $[K : L_i]$ is a prime power for every i.

Solution. Let H be the subgroup of $\text{Gal}(K/\mathbb{Q})$ consisting of elements fixing each element of L, so K/L is Galois with group H. Let P_1, \ldots, P_r be the Sylow subgroups of H, and let L_i be the subfield of K fixed by P_i. Then $[K : L_i]$ is a prime power for each i, and the intersection $L_1 \cap \cdots \cap L_r$ is the subfield of K fixed by the group $\langle P_1, \ldots, P_r \rangle$ generated by the various P_i. This subgroup of H has order of divisible by every prime power divisor of $\#H$, so the subgroup equals H and thus $L_1 \cap \cdots \cap L_r = K^H = L$.

Problem 4. Describe, using Jordan canonical forms, the 4×4 matrices M over the complex numbers such that $M^4 = M^2$. (Note: you may express your answer in terms of similarity/conjugacy.)

Solution. Any complex matrix M is similar to its Jordan canonical form, and the property $M^4 = M^2$ is preserved under similarity. So suppose M is in Jordan canonical form. Consider a Jordan block of M with diagonal entry α. Equating diagonal entries of M^4 and M^2 shows that $\alpha^4 = \alpha^2$, so $\alpha \in \{0, 1, -1\}$. If the size of the block is at least 2, then equating superdiagonal entries of M^4 and M^2 shows that $4\alpha^3 = 2\alpha$, so $\alpha = 0$. If the size of the block is at least 3, then equating supersuperdiagonal entries of M^4 and M^2 shows that $0 = 1$, contradiction. Hence M is similar to a matrix in Jordan canonical form, in which
each Jordan block has diagonal entry 0, 1, or -1, and has size at most 2, with size 2 only occurring for diagonal entry 0. These conditions are necessary and sufficient.

Problem 5. Let $T : V \to V$ be a linear transformation of a finite-dimensional vector space over a field K. Prove that there is a v in V with the property that, for any polynomial $P(X)$ in $K[X]$, $P(T) = 0$ in the endomorphism ring of V if and only if $P(T)(v) = 0$ in V.

Solution. By the correspondence between endomorphisms of vector spaces and $K[X]$-modules, and the structure theorem for modules over a principal ideal domain, one can write V as a direct sum of $K[X]/(P_1) \oplus \cdots \oplus K[X]/(P_r)$, where each P_i is a monic polynomial, each dividing the next. The image of X in the last factor gives the desired element v, since for any P, $P(T) = 0$ exactly when it is divisible by P_r, which is the condition for $P(T)(v)$ to vanish.