1. Let $f : U \to \mathbb{C}$ be analytic, $f(x + iy) = u + iv$. Show that $u^2 - v^2$ is harmonic. How about uv? Recall that $g(x + iy)$ is harmonic if $g_{xx} + g_{yy} = 0$.

2. Let (X, μ) be a measure space. Find a necessary and sufficient condition on (X, μ) that $L^q(E) \subset L^p(E)$ for all $1 \leq p < q \leq \infty$.

3. Let U be the region in the first quadrant bounded by the unit circle and the straight line from 1 to i. Find a conformal map from U to the first quadrant.

4. Let $\{f_n\}$ be a sequence of measurable real-valued functions on $[0, 1]$. Show that the set of x for which $\lim_{n \to \infty} f_n(x)$ exists is measurable.

5. (a) Suppose that $f(z)$ is analytic for $1 \leq |z| \leq 4$. Assume that $|f(z)| \leq 1$ for $|z| = 1$ and $|f(z)| \leq 16$ for $|z| = 4$. Prove that $|f(3i)| \leq 9$.

(b) Prove that there is no non-constant analytic function on the Riemann sphere.
6. Let \(\{ f_n(x) \} \) be a sequence of continuous, strictly positive functions on \(\mathbb{R} \) which converges uniformly to the function \(f(x) \). Suppose that all the functions \(\{ f_n \}, f \) are integrable. Is
\[
\lim_{n \to \infty} \int f_n(x) \, dx = \int f(x) \, dx.
\]
Justify your answer.

7. Let \(f \) be an entire function in the complex plane. Suppose that there is a positive integer \(N \) such that \(\frac{f(z)}{z^N} \to 0 \) as \(|z| \to \infty \). Prove that \(f(z) \) is a polynomial of degree at most \(N - 1 \).

8. a) State and prove the Hölder inequality for real measurable functions on \([0,1]\) in suitably related classes \(L^p \) and \(L^q \).
 b) For \(1 \leq r < p < \infty \) prove the continuous injection of \(L^p([0,1]) \) into \(L^r([0,1]) \).

9. Compute the integral
\[
\int_0^\infty \frac{\ln x}{x^2 + 1} \, dx.
\]

10. For a (real-valued) function \(f \) on \(\mathbb{R} \), define
\[
f^y(x) = f(x - y), \quad y \in \mathbb{R}.
\]
 a) Suppose \(f \) is a continuous function on \(\mathbb{R} \) with a compact support. Show that \(\| f^y - f \|_{L^\infty(\mathbb{R})} \to 0 \) as \(y \to 0 \).
 b) Show that if \(f \in L^p(\mathbb{R}) \) for some \(p \in [1, \infty) \), then \(\| f^y - f \|_{L^p(\mathbb{R})} \to 0 \) as \(y \to 0 \).
 c) Give an example of a function \(f \) such that \(\| f^y - f \|_{L^\infty(\mathbb{R})} \to 0 \) as \(y \to \infty \).