1. List, by giving generators for them, the ideals of \(\mathbb{Z}[x]/\langle 4, x^2 \rangle \).

2. Let \(p \) be prime and let \(\mathbb{F}_{p^6} \) be the field with \(p^6 \) elements.
 (a) For \(x \in \mathbb{F}_{p^6} \), what are the possible degrees of the minimal polynomial of \(x \) over \(\mathbb{F}_p \)?
 (b) For how many elements of \(\mathbb{F}_{p^6} \) does each of these minimal degrees occur?

3. Let \(V \) be an \(n \)-dimensional vector space, let \(w \) be a vector in \(V \), and let \(\phi \) be in the dual space \(V^* \). Define \(T: V \to V \) by the formula \(T(v) = \phi(v)w \). Find the characteristic polynomial of \(T \).

4. Let \(G \) be a finite group acting transitively on a set \(X \) with \(|X| > 1 \).
 (a) Show that there is some element of \(G \) which fixes no element of \(X \).
 (b) Give a counter-example to this claim when \(G \) and \(X \) are infinite.

5. Let \(p \) be prime. For which abelian groups \(G \) is there a short exact sequence

 \[
 0 \to \mathbb{Z}/p^2\mathbb{Z} \to G \to \mathbb{Z}/p^2\mathbb{Z} \to 0
 \]
1. Let D be a commutative integral domain. Let A be an $n \times n$ matrix with entries in D. Show that, if $A^N = 0$ for some positive integer N, then $A^n = 0$.

2. Let $f(x)$ be a degree 4 polynomial with rational coefficients and let θ_1, θ_2, θ_3 and θ_4 be the roots of f. Let $\beta = \theta_1\theta_2 + \theta_2\theta_3 + \theta_3\theta_4 + \theta_1\theta_4$. Show that β is the root of a cubic polynomial with rational coefficients.

3. Consider the bilinear form $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1y_1 + x_2y_2 - x_3y_3$ on \mathbb{R}^3. Let V be a 2-dimensional subspace of \mathbb{R}^3. What are the possible signatures of the restriction to V of the form \langle , \rangle?

4. If G is a group, and H a subgroup of G, the normalizer $N(H)$ is defined to be $\{g \in G : gHg^{-1} = H\}$. Let p be prime; let G be the symmetric group S_p and let H be the cyclic subgroup of G generated by the cycle $(1 \ 2 \ 3 \ \cdots \ p)$. What is the order of $N(H)$?

5. Let K be the splitting field of $x^{420} - 1$ over \mathbb{Q}. Show that $\text{Gal}(K/\mathbb{Q})$ is abelian. (Do not simply quote the classification of Galois groups of cyclotomic extensions.)