Problem 1. How many elements does each of the following groups have?
 (1) $\text{Hom}_Z(\mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/10\mathbb{Z})$
 (2) $\mathbb{Z}/2\mathbb{Z} \otimes_\mathbb{Z} \mathbb{Q}$
 (3) $(\mathbb{Z} \times \mathbb{Z})/M$, where M is the subgroup generated by $(2, 4)$ and $(4, 2)$

Problem 2. Suppose that $K/\mathbb{Q}, L/\mathbb{Q}$ are Galois extensions with $\text{Gal}(K/\mathbb{Q}) = \text{Gal}(L/\mathbb{Q}) = \mathbb{Z}/6\mathbb{Z}$ and $[K \cap L : \mathbb{Q}] = 2$.
 (1) What is $[KL : \mathbb{Q}]$? Is KL/\mathbb{Q} a Galois extension?
 (2) How many subfields does KL have?

Problem 3. Suppose that X and Y are skew-symmetric $n \times n$ matrices with entries in \mathbb{R}. For $A, B \in \text{Mat}_{n,n}(\mathbb{R})$, define $\langle A, B \rangle = \text{Tr}(A^t XBY)$ where Tr denotes the trace and A^t is the transpose of A.
 (1) Show that $\langle \cdot, \cdot \rangle$ is a symmetric bilinear form.
 (2) If $n = 2$ and $X = Y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, what is the signature of $\langle \cdot, \cdot \rangle$?

Problem 4. Suppose that G is a group of order p^n where p is prime, and suppose that $g \in G$ is not in the center of G. Show that there exists an element $h \in G$ such that $h \neq g$, h is conjugate to g and h commutes with g.

Problem 5. Let T be a linear endomorphism of a finite-dimensional real vector space V. Let I denote the identity endomorphism of V. Suppose $\text{rank}(T) + \text{rank}(I - T) = \text{dim}(V)$. Show that $T^2 = T$.
Problem 1. Let R be a commutative ring containing 1, R^* be the set of invertible elements and $m = R \setminus R^*$.

(1) Show that if m is an abelian group under addition, then it is the unique maximal ideal of R.

(2) Conversely, suppose that R has a unique maximal ideal. Show that this maximal ideal is equal to m.

Problem 2.

(1) List all monic irreducible polynomials of degree 2 and 3 over the field \mathbb{F}_2.

(2) Write down all possible rational canonical forms in Mat$_3(\mathbb{F}_2)$.

(3) How many conjugacy classes does the group $GL_3(\mathbb{F}_2)$ have?

Problem 3. Suppose that

$\alpha_1 = \sqrt{4 + 2\sqrt{5}}, \quad \alpha_2 = \sqrt{\frac{9}{2} + 2\sqrt{5}}, \quad \alpha_3 = \sqrt{5 + 2\sqrt{5}}, \quad \alpha_4 = \sqrt{6 + 2\sqrt{5}}$

and let K_i be the smallest normal extension of \mathbb{Q} containing α_i for $i = 1, 2, 3, 4$. The Galois groups Gal(K_i/\mathbb{Q}), $i = 1, 2, 3, 4$ are equal to

$\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, D_8 (dihedral group with 8 elements),

but not necessarily in that order. Match each of the 4 normal extensions with its Galois group.

Problem 4. Classify the groups of order $68 = 2^2 \cdot 17$. List each group exactly once.

Problem 5. Suppose that $A : V \to V$ is a linear endomorphism of an n-dimensional \mathbb{C}-vector space V.

(1) Prove that there exists a unique linear map $B : \wedge^2 V \to \wedge^2 V$ such that

$B(v \wedge w) = Av \wedge w + v \wedge Aw$

for all $v, w \in V$.

(2) If A has n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, what are the eigenvalues of B?