1. Let X be a topological space, and U an open subset of X. Let A denote $\overline{U} - U$. Show that the interior of A is empty.

2. (a) Show that $H_1(S^1 \times P^2) \cong \mathbb{Z} \times \mathbb{Z}_2$.
(b) Suppose that $S^1 \times P^2$ covers some space, and let h be a covering translation. Show that the induced isomorphism h_* of $H_1(S^1 \times P^2)$ must be the identity.

3. Let K be a 3–dimensional simplicial complex, and let $f : K \to \mathbb{R}P^2 \times S^3$ and $g : \mathbb{R}P^2 \times S^3 \to S^1 \times S^4$ be continuous maps. Show that the composite map $g \circ f$ is null homotopic.

4. Let $f : X \to Y$ be a continuous map. Suppose that Y is connected, and that $f^{-1}(y)$ is also connected, for each y in Y.
 (a) Show that if f is a quotient map, then X is connected.
 (b) If f is not a quotient map, must X necessarily be connected? Explain your answer.

5. A space $X = \bigcup_{k=1}^{\infty} X_k$, where each X_k is a simply connected subset of X, and $X_k \subset X_{k+1}$, for each $k \geq 1$.
 (a) Show that if each X_k is open in X, then X is simply connected.
 (b) Show that if each X_k is closed in X (but not necessarily open), then X need not be simply connected.
1. A space X is constructed by gluing a Moebius band M and an annulus A as follows. One boundary component of A is glued to ∂M by a homeomorphism. The other boundary component of A is glued to the core circle of M by a homeomorphism. Calculate the homology groups of X.

2. Let X denote the cone on the real line \mathbb{R}. Decide whether X is locally compact. [The cone on a space Y is the quotient of $Y \times I$ obtained by identifying $Y \times \{0\}$ to a point.]

3. Let M be a connected smooth compact n–manifold without boundary, and let N be a connected smooth n–manifold. Let $f : M \to N$ be a smooth immersion.

 (a) Show that f is a covering map.

 (b) Show that $S^2 \times S^2$ cannot be immersed into \mathbb{R}^4, but can be embedded in \mathbb{R}^5.

4. Let X and Y be closed connected oriented 2–manifolds, and let $f : X \to Y$ be a map of degree $m \neq 0$. Let A denote the image of $f_* : \pi_1(X, x) \to \pi_1(Y, f(x))$.

 By considering the cover of Y corresponding to A, show that the index of A in $\pi_1(Y, f(x))$ is finite and divides m.

5. If A is a subspace of a topological space X, a map $f : X \to A$ is a retraction if the restriction of f to A is the identity map. Prove that

 (a) if X is a compact smooth manifold, there is no retraction of X to its boundary.

 (b) there is no retraction of $\mathbb{R}P^2$ onto $\mathbb{R}P^1$.

 (c) there is no retraction of the plane \mathbb{R}^2 onto the "topologist’s sine curve" W, where $W = \{(x, \sin \frac{1}{x}) : x \neq 0\} \cup \{(0, y) : -1 \leq y \leq 1\}$.