Let P be an $n \times n$ matrix with entries in a field and satisfying $P^2 = P$. What are the possible values of $\text{Tr}(P)$?

If λ is an eigenvalue of P (in any algebraic closure), then $\lambda^2 = \lambda$, so $\lambda = 0$ or 1. The trace, being the sum of the eigenvalues counted with multiplicity, must then be an integer between 0 and n. If Q is a diagonal matrix with i ones and $(n-i)$ zeroes on the diagonal, then $Q^2 = Q$ and $\text{Tr}(Q) = i$, so all possibilities can occur.

Let L/K be a Galois extension with Galois group $\mathbb{Z}/4\mathbb{Z}$ and characteristic of K not equal to 2. Let $\{\theta_1, \theta_2, \theta_3, \theta_4\}$ be an orbit for the Galois action on L, with a generator for the Galois action being $\theta_1 \mapsto \theta_2 \mapsto \theta_3 \mapsto \theta_4 \mapsto \theta_1$. Let Q be the quadratic extension of K contained in L. In terms of the θ_i, write down an element β of K so that $Q = K(\sqrt{\beta})$.

Let σ be a generator of $\text{Gal}(L/K)$ acting on the θ_i as $\theta_1 \mapsto \theta_2 \mapsto \theta_3 \mapsto \theta_4 \mapsto \theta_1$. If $\beta \in K$ is such that $Q = K(\sqrt{\beta})$, then $\sqrt{\beta}$ must satisfy

$$\sigma^2(\sqrt{\beta}) = \sqrt{\beta}, \quad \text{and} \quad \sigma(\sqrt{\beta}) = -\sqrt{\beta}.$$

Thus a candidate for $\sqrt{\beta}$ is

$$\sqrt{\beta} := \theta_1 - \theta_2 + \theta_3 - \theta_4,$$

and so we may take

$$\beta = (\theta_1 - \theta_2 + \theta_3 - \theta_4)^2,$$

as long as this expression is nonzero. If it is zero, then instead one may take $\beta = (\theta_1^2 - \theta_2^2 + \theta_3^2 - \theta_4^2)^2$. (If both these choices of β are zero, then $\theta_1 + \theta_3 = \theta_2 + \theta_4$, and $\theta_1^2 + \theta_3^2 = \theta_2^2 + \theta_4^2$, from which it follows that $\{\theta_1, \theta_3\} = \{\theta_2, \theta_4\}$ as sets, which is not possible since the θ_i are distinct.)

Alternate solution: Take

$$\beta = \prod_{i<j}(\theta_i - \theta_j)^2.$$

This is nonzero and it is easy to see that it has the required property.

Let G be a finite group and p a prime. Recall that a subgroup P of G is called a p-Sylow subgroup if $|G| = p^m m$ for m relatively prime to p and $|P| = p^k$. Let G and H be finite groups. Show that every Sylow subgroup of $G \times H$ is of the form $P \times Q$ for P a Sylow subgroup of G and Q a Sylow subgroup of H.

Suppose that the exact powers of p dividing $|G|$ and $|H|$ are p^r and p^s respectively. Let K be a p-Sylow subgroup of $G \times H$, so K has order p^{r+s}. Identify G and H with the subgroups $G \times 1$ and $1 \times H$ of $G \times H$. Let $P = K \cap G$ and $Q = K \cap H$. Let φ be the composite map

$$K \rightarrow G \times H \rightarrow G,$$
where the first map is the inclusion of K in $G \times H$ and the second is the projection onto the second factor. Then $\ker(\varphi) = Q$, being a p-group contained in H, has size bounded by p^r. Also, $\text{image}(\varphi)$, being a p-group contained in G, has size bounded by p^s. Since $|K| = p^{r+s}$, it follows that $|Q| = p^s$. Likewise, $|P| = p^r$ and hence $|P \times Q| = p^{r+s}$. Since $P \times Q$ is contained in K, it follows that $K = P \times Q$.

Alternate Solution: Let the exact powers of p dividing $|G|$ and $|H|$ are p^r and p^s respectively. Let P be a p-Sylow of G and let Q be a p-Sylow of H. Then $|P \times Q| = p^r \cdot p^s = p^{r+s}$, and is thus a p-Sylow of $G \times H$. Any two p-Sylows of $G \times H$ are conjugate, so every p-Sylow of $G \times H$ is of the form $(g, h)(P \times Q)(g, h)^{-1} = (gP g^{-1}) \times (hQ h^{-1})$. We are done, as $gP g^{-1}$ and $hQ h^{-1}$ are p-Sylows of G and H respectively.

(4) Let A be an $n \times n$ matrix over a field k. Let L_A be the linear map

$$M_{n \times n}(k) \to M_{n \times n}(k), \quad X \mapsto A \cdot X.$$

Is the characteristic polynomial of L_A determined by the characteristic polynomial of A?

Let k^n be the space of column vectors of length n and let $\varphi_A : k^n \to k^n$ be the (left) multiplication by A map. We can identify $M_{n \times n}(k)$ with $k^n \otimes k^n$ via the map sending e_{ij} to $e_i \otimes e_j$. Via this identification, the linear map L_A is just $\varphi_A \otimes 1$, hence the characteristic polynomial of L_A is the nth power of the characteristic polynomial of A.

(5) A is a finite abelian group in which every element has order dividing 63 and in which there are 108 elements of order exactly 63. Determine all possibilities for the structure of A.

By the structure theorem for finite abelian groups, A must be a sum of some number of copies of $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$, with at least one copy each of $\mathbb{Z}/9\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$. Suppose that $$A \cong (\mathbb{Z}/3\mathbb{Z})^a \oplus (\mathbb{Z}/9\mathbb{Z})^b \oplus (\mathbb{Z}/7\mathbb{Z})^c,$$

with $b, c \geq 1$. The number of elements in A of order exactly 63 is then

$$3^a \cdot (9^b - 3^b) \cdot (7^c - 1).$$

Since $7^c - 1$ must divide 108, it follows that $c = 1$. Then $a = b = c = 1$ is the only solution. Thus,

$$A \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z} \oplus \mathbb{Z}/7\mathbb{Z}.$$
(1) Let \(G \) be a finite group, and let \(A \) and \(B \) be subgroups of \(G \) with \(|G| = |A||B| \) and \(\gcd(|A|, |B|) = 1 \). Show that every element of \(G \) can be uniquely written as \(ab \) with \(a \in A \) and \(b \in B \).

First observe that \(A \cap B = 1 \) since \(\gcd(|A|, |B|) = 1 \). Let \(f : A \times B \to G \) be the map (of sets) given by

\[
f(a, b) = a \cdot b.
\]

We claim that \(f \) is injective. Indeed,

\[
f(a, b) = f(a', b') \Rightarrow a \cdot b = a' \cdot b' \Rightarrow (a')^{-1} \cdot a = b' \cdot b^{-1} \in A \cap B = 1,
\]

so \(a' = a \) and \(b' = b \). Since \(f \) is injective, and \(|G| = |A||B| = |A \times B| \), it follows that \(f \) must be surjective as well. Thus \(f \) is bijective, which is the same thing as saying that every element of \(G \) can be written uniquely as \(ab \) with \(a \in A \) and \(b \in B \).

(2) Let \(L/F \) be a Galois extension with Galois group \(\text{GL}_2(\mathbb{F}_p) \). Let \(H \) be the subgroup \(\left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \) of \(G \) and let \(K \) be its fixed field.

(a) What is the group \(\{ g \in \text{GL}_2(\mathbb{F}_p) : gK = K \} \)?

(b) What is the group of automorphisms of \(K \) that fix \(F \)? Please identify these groups as explicitly as possible.

(a) Let us write \(G \) for \(\text{Gal}(L/F) = \text{GL}_2(\mathbb{F}_p) \). By the main theorem of Galois theory,

\[
\{ g \in G : gK = K \} = \{ g \in G : \text{Gal}(L/gK) = \text{Gal}(L/K) \}
= \{ g \in G : g\text{Gal}(L/K)g^{-1} = \text{Gal}(L/K) \}
= N_G(H).
\]

An explicit computation shows that

\[
N_G(H) = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, d \in \mathbb{F}_p^\times, b \in \mathbb{F}_p \right\}.
\]

(b) Write \(\text{Aut}(K/F) \) for the group of automorphisms of \(K/F \). Note that \(K/F \) is not Galois since \(H \) is not normal in \(G \). However, if \(\sigma \in \text{Aut}(K/F) \), then \(\sigma \) can be extended to an element \(g \) of \(\text{Gal}(L/F) \). By part (a), such a \(g \) must belong to \(N_G(H) \). Conversely, any \(g \in N_G(H) \) when restricted to \(K \), gives an element of \(\text{Aut}(K/F) \). Thus there is a surjective homomorphism

\[
N_G(H) \to \text{Aut}(K/F),
\]

whose kernel is exactly \(H \). Consequently,

\[
\text{Aut}(K/F) \cong N_G(H)/H \cong \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} : a, d \in \mathbb{F}_p^\times \right\} \cong \mathbb{F}_p^\times \times \mathbb{F}_p^\times.
\]

(3) Let \(H \) be the vector space of \(2 \times 2 \) Hermitian matrices. (A matrix is Hermitian if it is the complex conjugate of its transpose.) Define the quadratic form \(q \) on \(H \) by \(q(M) = \det M \). What is the signature of \(q \)?
A general 2×2 Hermitian matrix looks like $\begin{pmatrix} w & x+iy \\ -x-iy & z \end{pmatrix}$, with (w, x, y, z) real. Its determinant is $ wz - x^2 - y^2$. Rewriting this as $(\frac{w+z}{2})^2 - (\frac{w-z}{2})^2 - x^2 - y^2$, we see that the signature is $++-$.

(4) **Classify (up to isomorphism) all groups of order 2013, and prove that your list is complete.** (Note: $2013 = 3 \times 11 \times 61$.)

There are two such groups: $\mathbb{Z}/3 \times \mathbb{Z}/11 \times \mathbb{Z}/61$ and $\mathbb{Z}/11 \times (\mathbb{Z}/3 \rtimes \mathbb{Z}/61)$, where $\mathbb{Z}/3$ acts on $\mathbb{Z}/61$ by multiplication by 13. (Note that $13^3 = 2197 \equiv 1 \mod 61$. Answers which simply stated that there is a nontrivial cube root of 1 modulo 61 without computing it received full credit.)

Let G be a group of order 2013. The number of 61-Sylow’s must be $\equiv 1 \mod 61$. The only divisor of 2013 which is 1 mod 61 is 1, so the 61-Sylow is normal. Also, as 61 is prime, the only group of order 61 is cyclic. So we have a short exact sequence

$$0 \to \mathbb{Z}/61 \to G \to H \to 0$$

where H has order 33. As $33 = 3 \times 11$ and $11 \equiv 1 \mod 3$, the only group of order 33 is $\mathbb{Z}/33$ (also known as $\mathbb{Z}/3 \times \mathbb{Z}/11$). Since 33 and 61 are relatively prime, this short exact sequence must be semidirect.

It remains to find all ways for $\mathbb{Z}/33$ to act on $\mathbb{Z}/61$. The automorphism group of $\mathbb{Z}/61$ is the same as the group of units in the ring $\mathbb{Z}/61$, which is a cyclic group of order 60. So we need to find homomorphisms from $\mathbb{Z}/33$ to $\mathbb{Z}/60$. Since $\text{GCD}(33, 60) = 3$, such a map must send a generator of $\mathbb{Z}/33$ to a 3-torsion element in $\mathbb{Z}/60$.

One possibility is that this 3-torsion element is the identity, meaning that $\mathbb{Z}/33$ acts trivially on $\mathbb{Z}/61$. In this case, the short exact sequence splits and $G \cong \mathbb{Z}/61 \times \mathbb{Z}/33 \cong \mathbb{Z}/61 \times \mathbb{Z}/3 \times \mathbb{Z}/11$.

The other possibility is that this 3-torsion element is one of the two nontrivial cube roots of unity. In this case, $\mathbb{Z}/11$ still acts trivially, so the group breaks up as $\mathbb{Z}/11 \times (\mathbb{Z}/3 \rtimes \mathbb{Z}/61)$. Choosing different cube roots of unity gives isomorphic groups, related by the automorphism $x \mapsto x^{-1}$ of $\mathbb{Z}/3$.

Bonus: Finding a cube root of 1 modulo 61 by hand. In any field of characteristic $\neq 2, 3$, the following are equivalent:

- $\zeta^3 = 1$ and $\zeta \neq 1$
- $\zeta^2 + \zeta + 1 = 0$
- $(2\zeta + 1)^2 = -3$

So, we aim to find a square root of -3 modulo 61. Looking at square near multiples of 61, we see that $8^2 \equiv 3 \mod 61$ and $11^2 \equiv -1 \mod 61$, so $88^2 \equiv -3 \mod 61$. For ease of computation, we work with 27 rather than 88, as $27 \equiv 88 \mod 61$. So we may take $\zeta = (-1 \pm 27)/2 \mod 61$; this gives us $\zeta = 13$ and $\zeta = 47$ as the nontrivial cube roots of 1.

(5) **Let R be the ring $\mathbb{Z}[X,Y]/(7, X^2 + 3Y^2)$.

(a) Is R a domain? Why or why not?

(b) Classify the prime ideals in R that are not maximal.

Write F_7 for the field $\mathbb{Z}/7\mathbb{Z}$.
The ring R is not a domain. Notice that $(X+2Y)(X-2Y) = X^2 - 4Y^2 = X^2 + 3Y^2 = 0$ in R. However, the degree one part of R is $\mathbb{F}_7 X \oplus \mathbb{F}_7 Y$, so $X + 2Y$ and $X - 2Y$ are nonzero.

There are two non-maximal prime ideals: $(X+2Y)$ and $(X-2Y)$. We first show that $(X-2Y)$ is prime and nonmaximal; the proof for $(X+2Y)$ is practically identical. We compute

$$R/(X-2Y) \cong \mathbb{Z}[X,Y]/(7, X - 2Y, X^2 + 3Y^2)$$
$$\cong \mathbb{F}_7[X,Y]/(X-2Y, X^2 - 4Y^2)$$
$$\cong \mathbb{F}_7[X,Y]/(X-2Y)$$
$$\cong \mathbb{F}_7[Y]$$

Note that $\mathbb{F}_7[Y]$ is a domain but not a field, so the ideal is prime but not maximal. (The second isomorphism is because $-4 \equiv 3 \mod 7$, the third is because $X - 2Y$ divides $X^2 - 4Y^2$.)

We now must show that there are no other such ideals. Let p be a prime ideal of R. Since $(X-2Y)(X+2Y)$ is 0 in R, either $X - 2Y$ or $X + 2Y$ (or both) must be in p. Without loss of generality, say that $X - 2Y$ is in p. So R/p is a quotient of $R/(X-2Y)$, which we computed above to be isomorphic to $\mathbb{F}_7[Y]$. We are looking for domains which occur as $\mathbb{F}_7[Y]/q$ for an ideal q of $\mathbb{F}_7[Y]$. Such domains are either $\mathbb{F}_7[Y]$ itself, or are $\mathbb{F}_7[Y]/f(Y)$ for an irreducible polynomial f. In the latter case, the quotient is the finite field with $7^\deg f$ elements, so the corresponding ideal is maximal. The only case which gives us non-maximal prime ideals is when the quotient is $\mathbb{F}_7[Y]$, which corresponds to the stated ideals.

Alternate solution:

Observe that $R \cong \mathbb{F}_7[X,Y]/(X^2 - 4Y^2) = \mathbb{F}_7[X,Y]/((X + 2Y)(X - 2Y)) \cong \mathbb{F}_7[t,s]/(ts)$, via the change of variables $X + 2Y = t$, $X - 2Y = s$. It is clear from this description that R is not a domain, since $ts = 0$ but neither t nor s is zero in R. Prime ideals of R that are not maximal correspond bijectively to primes p in $\mathbb{F}_7[t,s]$ containing ts, that are not maximal. Any such prime must contain t or s. Suppose that $p \supset (t)$. Since $\mathbb{F}_7[t,s]/(t) \cong \mathbb{F}_7[s]$, and all nonzero prime ideals in $\mathbb{F}_7[s]$ are maximal, it follows that $p = (t)$. Similarly, if $p \supset (s)$, then in fact p must equal (s). In the original coordinates X, Y, we find then that the only prime ideals of R that are not maximal are $(X + 2Y)$ and $(X - 2Y)$.