(1) Suppose that A is a complex $n \times n$ matrix. Show that A is nilpotent if and only if A and $2A$ are similar.

(2) Suppose that G is a finite group of order $|G| = p^d n$ where d and n are positive integers and p is a prime that does not divide n. Show that G contains an element of order p such that the cardinality of its conjugacy class divides n.

(3) For each of the following assertions concerning abelian groups, give an example of a nonzero abelian group A satisfying this assertion.
 (a) $A \otimes_{\mathbb{Z}} A$ is isomorphic to $A \oplus A$;
 (b) A is not finitely generated and $A \otimes_{\mathbb{Z}} A$ is isomorphic to A;
 (c) $A \otimes_{\mathbb{Z}} A = 0$.

(4) Determine whether the field extension $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$ is Galois. If it is Galois, determine the Galois group.

(5) Suppose that d is a positive integer and consider the ring $R = \mathbb{Z}[i]/(3^d)$. Here, $\mathbb{Z}[i]$ is the ring of Gaussian integers with $i^2 = -1$, and (3^d) is the principal ideal in $\mathbb{Z}[i]$ generated by 3^d.
 (a) How many elements does R have?
 (b) How many elements does the group of units R^\times have?
(1) Describe all prime ideals in \(\mathbb{C}[x, y, z]/(y^4 - z^3, y^2) \).

(2) Suppose that \(V \) is an \(n \)-dimensional complex vector space and \(A : V \to V \) is a linear map. Consider the linear map \(B = A \otimes I - I \otimes A \) from \(V \otimes V \) to itself, where \(I \) is the identity map. Show that the rank of \(B \) is at most \(n^2 - n \).

(3) For each of the following statements, prove that it is true or give a counterexample together with an explanation of why it is a counterexample.
 (a) If \(R \) is a commutative ring with \(1 \neq 0 \) and every submodule of \(R \) (viewed as an \(R \)-module) is free, then \(R \) is a Principal Ideal Domain (PID).
 (b) Any PID must either have 1 or infinitely many prime ideals.

(4) In a finite group \(G \) we have \(g^2 h^2 = h^2 g^2 \) for all \(g, h \in G \). Show that the group \(G \) is solvable.

(5) Consider the polynomial \(p(x) = x^{44} - 1 \in \mathbb{F}_3[x] \).
 (a) Show that \(p(x) \) splits over the field \(\mathbb{F}_{3^{10}} \).
 (b) How many roots does \(p(x) \) have in each of the fields \(\mathbb{F}_3, \mathbb{F}_{3^2}, \mathbb{F}_{3^5} \)?
 (c) If we write \(p(x) \) as a product of irreducible polynomials, how many factors of degree 10 do we have? (You do not have to find an explicit factorization.)