1. Let X be the topological space obtained from the disjoint union of two Moebius bands by gluing their boundaries by a homeomorphism. Compute the homology of X.

2. Recall that $SL_n\mathbb{R}$ denotes the set of real $n \times n$ matrices with determinant 1 which we regard as a subset of \mathbb{R}^{n^2} in the usual way. You may assume that $SL_n\mathbb{R}$ is a smooth submanifold of \mathbb{R}^{n^2}. Define $\pi : SL_n\mathbb{R} \to \mathbb{R}^n$ by setting $\pi(A)$ equal to the first column of A, for each matrix A in $SL_n\mathbb{R}$. Show that π is a submersion if $n > 1$.

3. Let $Y \subset \mathbb{R}^3$ be the subspace obtained by removing the x-axis and the circle given by the equations $x = 0, y^2 + z^2 = 1$. Compute $\pi_1(Y)$.

4. (a) Let X denote \mathbb{R}^ω with the product topology. Show that X is connected.

(b) let Y denote \mathbb{R}^ω with the box topology. Thus Y is the product $\prod_{i=1}^{\infty} R_i$, where each R_i is homeomorphic to the real line \mathbb{R}, and a basis for the topology on Y consists of all subsets of the form $\prod_{i=1}^{\infty} U_i$, where each U_i is open in R_i.

i. Is Y Hausdorff?

ii. Does Y have a countable dense subset?

5. A graph Γ consists of two sets V, E (vertices and edges) and two maps $S, T : E \to V$ (source and target). The topological realization of Γ is the quotient of

$$\bigcup_{e \in E} \{e\} \times [0, 1] \cup V$$

by identifying, for each $e \in E$, $(e, 0)$ resp. $(e, 1)$ with the source resp. target of e. A graph is called connected if its topological realization is connected. A connected graph is called a tree if its topological realization contains no subspace homeomorphic to S^1. A (discrete) group G acts freely on a graph Γ if it acts freely on the sets V and E in a way compatible with source and target. Note that then G also acts freely on the topological realization of Γ.

(a) Characterize all groups G for which there exists a connected graph $\Gamma(G)$ on which G acts freely.

(b) Characterize all groups G for which there exists a tree $\Gamma(G)$ on which G acts freely.
1. Let X and Y be metric spaces and let X be compact. Let f be an isometry of X onto a subspace of Y, and let g be an isometry of Y onto a subspace of X. Show that f must be onto.

[Hint: consider the images of the iterates of $g \circ f$.]

2. Prove or disprove the following statement: Let X, Y be path-connected spaces, and let H denote singular homology. Then

$$H_1(X \times Y) \cong H_1(X) \oplus H_1(Y).$$

3. Recall that S^2 is the unit sphere in \mathbb{R}^3, and let $X = \{(x, y, z) \in S^2 : y^2z = x^3 - xz^2\}$. Is X a smooth submanifold of \mathbb{R}^3? Explain your answer.

4. Give an explicit example of a covering map $f : X \to Y$ with X path-connected such that for some $* \in Y$, $|f^{-1}(*)| = 3$ and f is not a regular covering.

5. Let M and N be smooth manifolds, and suppose that M is connected. Let $f : M \to N$ be a smooth map such that for each x in M, the differential df_x is zero. Give a careful proof that f must be a constant map.