QR Exam Algebra, January 2015, Morning

Please justify all your answers, and label which solutions apply to which problems. We write \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \) and \(\mathbb{F}_p \) for the integers, the rational numbers, the reals, the complex numbers and the field with \(p \) elements, respectively.

Problem 1 Let \(V \) be the vector space of real \(2 \times 3 \) dimensional matrices. Let \(J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). Define a symmetric bilinear form \(\langle \, , \, \rangle \) on \(V \) by
\[
\langle A, B \rangle = \text{trace}(A^T J B).
\]
Compute the signature of \(\langle \, , \, \rangle \).

Problem 2 Let \(p \) be a prime and let \(G \) be a subgroup of \(S_p \) acting transitively on \(\{1, 2, \ldots, p\} \). Let \(N \) be a nontrivial normal subgroup of \(G \). Show that \(N \) also acts transitively on \(\{1, 2, \ldots, p\} \).

Problem 3 Let \(p \) be a prime which is 3 mod 4; let \(R \) be the ring \(\mathbb{F}_p[x]/(x^2(x - 2)(x^2 + 1)) \); let \(F \) be the endomorphism \(\phi(u) = u^p \) of \(R \); note that \(\phi \) is an \(\mathbb{F}_p \)-linear map. Compute the characteristic polynomial of \(\phi \) as an \(\mathbb{F}_p \)-linear automorphism of \(R \).

Problem 4 Suppose that \(\alpha \in \mathbb{C} \) is not algebraic over \(\mathbb{Q} \), and let \(g(x) \in \mathbb{Q}[x] \) be a nonconstant polynomial of degree \(d \) and define \(\beta = g(\alpha) \in \mathbb{Q}(\alpha) \). Show that the polynomial \(g(x) - \beta \in \mathbb{Q}(\beta)[x] \) is irreducible. (Hint: view \(g(x) - \beta \) as a polynomial in \(\mathbb{Q}[\beta][x] \).)

Problem 5 Let \(p \) be a prime number, let \(n \) and \(m \) be positive integers and let \(A \) be an \(n \times n \) matrix with integer entries such that \(A^m = p \, I_n \) (\(I_n \) is the identity matrix). Show that \(m \leq n \).
QR Exam Algebra, January 2015, Afternoon

Please justify all your answers, and label which solutions apply to which problems. We write \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} and \mathbb{F}_p for the integers, the rational numbers, the reals, the complex numbers and the field with p elements, respectively.

Problem 1 Let R and S be commutative rings and let $\phi : R \to S$ be a ring homomorphism taking 1 to 1.
(a) Show that, if p is a prime ideal of S, then $\phi^{-1}(p)$ is a prime ideal of R.
(b) Give an example to show that, if m is a maximal ideal of S, then $\phi^{-1}(m)$ need not be a maximal ideal of R.

Problem 2 Let V be an n dimensional complex vector space and let $\phi : V \to V$ be a complex linear map. Let W be V considered as a real vector space (of dimension $2n$) and let ψ be the same map ϕ considered as an \mathbb{R}-linear map $W \to W$.
What is the relationship between the complex number $\det \phi$ and the real number $\det \psi$? (Prove your answer to be correct.)

Problem 3 Show that there is a matrix in $GL_n(\mathbb{F}_p)$ (the general linear group of invertible $n \times n$ matrices with entries in the field \mathbb{F}_p) of multiplicative order $p^n - 1$.

Problem 4 Show that there are no simple groups of order 300. (Hint: A short route is through the 5 Sylows.)

Problem 5 Let $f(x)$ be a degree n polynomial over \mathbb{Q} such that the splitting field K of f has $[K: \mathbb{Q}] = n!$. Let g be a polynomial in $\mathbb{Q}[x]$ with $0 < \deg g < n$. Show that there is a nonzero polynomial $h \in \mathbb{Q}[x]$ so that $f(x)$ divides $h(g(x)) - x$.