Justify your answers.

(1) Suppose that R is an integral domain in which every ideal is finitely generated (i.e., R is noetherian), and for every $a \in R$ there exists an element $b \in R$ with $b^2 = a$. Show that R is a field.

(2) Suppose that V_1, V_2, \ldots, V_r are nonzero subspaces of the \mathbb{R}-vector space V such that $V_1 + V_2 + \cdots + V_r = V$. Let d_1, d_2, \ldots, d_r be the dimensions of V_1, V_2, \ldots, V_r respectively. Define W as the subspace of $\wedge^r V$ spanned by all $w_1 \wedge w_2 \wedge \cdots \wedge w_r$ with $w_i \in V_i$ for all i. Show that

\[
\dim V = d_1 + d_2 + \cdots + d_r
\]

if and only if

\[
\dim W = d_1 d_2 \cdots d_r.
\]

(3) Suppose that G is a finite group and

\[
G_0 = \{e\} \subset G_1 \subset \cdots \subset G_{n-1} \subset G_n = G
\]

is a chain of subgroups such that the set G_i/G_{i-1} has at most 4 elements for $i = 1, 2, \ldots, n$. Prove that G is solvable.

(4) Suppose that V is an \mathbb{R}-vector space of dimension 5, and $\langle \cdot, \cdot \rangle$ is a symmetric bilinear form on V. A subspace W of V is called totally isotropic if the restriction of $\langle \cdot, \cdot \rangle$ to W is equal to 0. Suppose that the largest possible dimension of a totally isotropic subspace is 2. What are the possibilities for the signature of $\langle \cdot, \cdot \rangle$?

(5) (a) Let $\zeta_{12} = e^{2\pi i/12}$ be a primitive 12-th root of unity. Show that $\zeta_{12}^{11} - \zeta_{12}^7 = \sqrt{3}$.

(b) Let K be the splitting field of $X^{12} - 3$ over \mathbb{Q}. What is the degree of the extension K/\mathbb{Q}?

(c) What is the Galois group of K/\mathbb{Q} and how does it act on the roots of $X^{12} - 3$?
Justify your answers.

(1) Let H be the subgroup of the symmetric group S_8 generated by the 3 elements $\sigma_1 = (1 \ 2)$, $\sigma_2 = (1 \ 3)(2 \ 4)$ and $\sigma_3 = (1 \ 5)(2 \ 6)(3 \ 7)(4 \ 8)$. Show that H is a 2-Sylow subgroup of S_8.

(2) Suppose that R is a finite commutative ring with identity. Show that there exists a ring isomorphism between R and a product $R_1 \times R_2 \times \cdots \times R_d$ of rings, such that the number of elements in R_i is a prime power for every i.

(3) Suppose that F is a field, V is an F-vector space and $v_1, v_2, v_3, v_4 \in V$ such that
$$v_1 \otimes v_1 \otimes v_1, v_2 \otimes v_2 \otimes v_2, v_3 \otimes v_3 \otimes v_3, v_4 \otimes v_4 \otimes v_4 \in V \otimes V \otimes V$$
are linearly dependent. Show that $v_j = \lambda v_i$ for some $\lambda \in F$ and some i, j with $i \neq j$.

(4) Assume that L is a Galois extension of the field K with an abelian Galois group G of order $216 = 2^3 3^3$. Suppose that there are exactly 28 subfields M of L such that M is a field extension of K of degree $2^2 3^2 = 36$. Determine G.

(5) Suppose that q is a prime power, \mathbb{F}_q is the field with q elements and A is an invertible $n \times n$ matrix with entries in \mathbb{F}_q. If the minimal polynomial of A is multiplicity free (i.e., it is not divisible by the square of an irreducible polynomial), show that A and A^q are conjugate.
(1) Suppose that $a \in R$ is nonzero. We construct a sequence a_0, a_1, a_2, \ldots by $a_0 = a$ and $a_{k+1}^2 = a_k$ for all $n \geq 0$. Let $I = (a_0, a_1, a_2, \ldots)$. Since I is finitely generated, we have $I = (a_0, a_1, \ldots, a_k)$ for some k. But then $I = (a_k)$. In particular, we have $a_{k+1} = ba_k$ for some $b \in R$ and $a_k = a_{k+1}^2 = b^2a_k^2$. Since a_k is nonzero, we can cancel and get $1 = b^2a_k$. This shows that a_k is a unit, and therefore a is a unit because it is a power of a_k. Every nonzero element in R is a unit, so R is a field.

(2) We have a surjective linear map

$$\varphi : V_1 \oplus V_2 \oplus \cdots \oplus V_r \rightarrow V$$

deﬁned by $\varphi(v_1, \ldots, v_r) = v_1 + \cdots + v_r$ and a surjective linear map

$$\psi : V_1 \otimes V_2 \otimes \cdots \otimes V_r \rightarrow W$$

with the property $\psi(v_1 \otimes v_2 \otimes \cdots \otimes v_r) = v_1 \wedge v_2 \wedge \cdots \wedge v_r$. We have to show that φ is injective if and only if ψ is injective.

Suppose φ is not injective. Choose (v_1, v_2, \ldots, v_r) in the kernel. Then $v_1 + v_2 + \cdots + v_r = 0$. After permuting V_1, \ldots, V_r we may assume without loss of generality v_1, \ldots, v_s are nonzero, and $v_{s+1} = \cdots = v_r = 0$. Choose $v'_j \in V_j$ nonzero for $j = s + 1, \ldots, r$. We have $v_1 + \cdots + v_s = 0$, so

$$\psi(v_1 \otimes \cdots \otimes v_s \otimes v'_{s+1} \otimes \cdots \otimes v'_r) = v_1 \wedge \cdots \wedge v_s \wedge v'_{s+1} \wedge \cdots \wedge v'_r = 0$$

so ψ is not injective.

Suppose that φ is injective (and hence an isomorphism). We can choose a basis $v_{i,1}, v_{i,2}, \ldots, v_{i,d_i}$ of V_i for all i. Then $v_{i,1}, \ldots, v_{i,d_1}, v_{2,1}, \ldots, v_{2,d_2}, \ldots, v_{r,d_r}$ is a basis of V, and

$$\psi(v_{1,j_1} \otimes v_{2,j_2} \otimes \cdots \otimes v_{r,j_r}) = v_{1,j_1} \wedge v_{2,j_2} \wedge \cdots \wedge v_{r,j_r}$$

is a basis of W if j_k ranges from 1 to d_k for all i. This shows that ψ is injective.

(3) We prove the statement by induction on n. The case $n = 0$ is clear. The group G_n acts on G_n/G_{n-1}. Let H be the kernel of this action. Then G_n/H is a subgroup of S_4. The group S_4 is solvable, so G_n/H is solvable as well. By the induction hypothesis, G_{n-1} is solvable. So H is solvable because it is contained in G_{n-1}. Since G_n/H and H are solvable, G_n is solvable.

(4) Suppose that the signature is $(a, b, 5 - a - b)$. There exists a subspace A of dimension a on which $\langle \cdot, \cdot \rangle$ is positive definite. Suppose that the restriction of $\langle \cdot, \cdot \rangle$ to W is trivial. If $A \cap W$ contains a nonzero vector, then $\langle v, v \rangle = 0$ because $v \in W$ and $\langle v, v \rangle > 0$ because $v \in A$. Contradiction, so $A \cap W = 0$, and dim $W \leq 5 - a$. Similarly dim $W \leq 5 - b$ so $2 = \dim W \leq 5 - \max\{a, b\}$. This shows that $\max\{a, b\} \leq 3$. On
the other hand, the matrix of $\langle \cdot, \cdot \rangle$ with respect to some basis v_1, \ldots, v_n is

$$
\begin{pmatrix}
I_a & 0 & 0 \\
0 & -I_b & 0 \\
0 & 0 & 0
\end{pmatrix}
$$

If $s = \min\{a, b\}$, and U is the span of $v_1 + v_{a+1}, \ldots, v_s + v_{a+s}, v_{a+b+1}, \ldots, v_5$ then the restriction of $\langle \cdot, \cdot \rangle$ to U is trivial, and $2 \geq \dim U = s + 5 - a - b = 5 - \max\{a, b\}$.

This shows that $\max\{a, b\} \geq 3$. We conclude that $\max\{a, b\} = 3$.

We have the following possibilities. $(3, 0, 2), (0, 3, 2), (3, 1, 1), (1, 3, 1), (3, 2, 0), (2, 3, 0)$.

(5) (a) Note that $\zeta_{12}^3 = \zeta_4 = i$, $\zeta_{12}^4 = \zeta_3 = -\frac{1}{2} + \frac{1}{2}\sqrt{3}i$ and $\zeta_{12}^8 = \zeta_3^2 = -\frac{1}{2} - \frac{1}{2}\sqrt{3}i$. So we have

$$
\zeta_{12}^{11} - \zeta_{12}^7 = \zeta_{12}^8 \zeta_{12}^3 - \zeta_{12}^4 \zeta_{12}^3 = (-\frac{1}{2} - \frac{1}{2}\sqrt{3}i)i - (-\frac{1}{2} + \frac{1}{2}\sqrt{3}i)i = \sqrt{3}.
$$

(b) The splitting field is $K = \mathbb{Q}(\sqrt[12]{3}, \zeta_{12})$. Let $M = \mathbb{Q}(\zeta_{12})$. Then we have $\sqrt{3} \in M$, so $\sqrt[12]{3}$ satisfies the equation $X^6 - \sqrt{3} = 0$ over M. This shows that $[K : M] \leq 6$.

Also $[M : \mathbb{Q}] = \phi(12) = 4$. It follows that

$$
[K : \mathbb{Q}] = [K : M][M : \mathbb{Q}] \leq 6 \cdot 4 = 24.
$$

On the other hand, let $L = \mathbb{Q}(\sqrt[12]{3})$. Because of Eisenstein’s criterion, $X^{12} - 3$ is irreducible over \mathbb{Q}, so $[L : \mathbb{Q}] = 12$. Since ζ_{12} is not real, it does not lie in L, so $[K : L] \geq 2$ and $[K : \mathbb{Q}] = [K : L][L : \mathbb{Q}] \geq 2 \cdot 12 = 24$. We conclude that $[K : \mathbb{Q}] = 12$.

(c) Let us order the roots as $\sqrt[12]{3}, \zeta_{12} \sqrt[12]{3}, \ldots, \zeta_{12}^{11} \sqrt[12]{3}$. Then the Galois group is generated by a 12-cycle $(1 2 3 \cdots 12)$ and complex conjugation, which is $(2 12)(3 11)(4 10)(5 9)(6 8)$. So the Galois group is the dihedral group of order 24.
(1) we have $8! = 2^7 \cdot (7 \cdot 3 \cdot 5 \cdot 3)$. So a 2-Sylow subgroup is a subgroup with 2^7 elements. We have $\sigma'_1 = \sigma_2\sigma_1\sigma_2 = (3\ 4)$. The group generated by σ_1, σ'_1 has order 4 and does not contain σ_2, and σ_2 normalizes the subgroup of order 4. So the group H_1 generated by σ_1 and σ_2 has $2^3 = 8$ elements. Let $H_2 = \sigma_3H_1\sigma_3$. Then $H_1 \times H_2$ is a subgroup with 2^6 elements. Now σ_3 does not lie in $H_1 \times H_2$, so $H/(H_1 \times H_2)$ has order 2, and H has order 2^7 elements.

(2) Consider the ring homomorphism $\varphi : \mathbb{Z} \to R$ with $\varphi(1) = 1_R$. Then the kernel is a principal ideal (n) where n is a positive integer. We can write $n = p_1^{k_1} \cdots p_r^{k_r}$ where p_1, \ldots, p_r are distinct (positive) primes and k_1, \ldots, k_r are positive integers. Let p_i be the ideal in R generated by $p_i^{k_i}$. Then we have $p_i + p_j = R$ for $i \neq j$. By the Chinese Remainder Theorem, we get:

$$R \cong R/(0) = R/(p_1 \cdots p_r) \cong R/p_1 \times \cdots \times R/p_r.$$

The ring $R_i = R/p_i$ is a finite $\mathbb{Z}/(p_i^{k_i})$-module. Moreover, we have a chain

$$0 \subset p_i^{k_i-1}R_i \subset p_i^{k_i-2}R_i \subset \cdots \subset p_iR_i \subset R_i$$

such that $p_i^{j-1}R_i/p_i^jR_i$ is an $R/(p_i)$-module for all j. It follows that $p_i^{j-1}R_i/p_i^jR_i$ is a finite dimensional \mathbb{F}_{p_i}-vector space, hence its cardinality is a power of p_i. We conclude that

$$|R_i| = \prod_{j=1}^{k_i} |p_i^{j-1}R_i/p_i^jR_i|$$

is a power of p_i.

(3) Suppose that

$$(\star) \quad \lambda_1v_1 \otimes v_1 \otimes v_1 + \lambda_2v_2 \otimes v_2 \otimes v_2 + \lambda_3v_3 \otimes v_3 \otimes v_3 + \lambda_4v_4 \otimes v_4 \otimes v_4 = 0.$$

If v_4 is not a multiple of v_1, v_2, v_3 then there exist $f_1, f_2, f_3 \in V^*$ with $f_i(v_i) = 0$ and $f_i(v_4) = 1$. If we apply $f_1 \otimes f_2 \otimes f_3$ to (\star) we get $\lambda_4 = 0$. By symmetry, if f_j is not a multiple of f_i for all $i \neq j$, then $\lambda_j = 0$.

(4) Let G be the Galois Group. Then $G = G_2 \times G_3$ where G_2 and G_3 are abelian groups of order $2^3 = 8$ and $3^3 = 27$. There are 3 possibilities for G_2, namely $\mathbb{Z}/8$, $\mathbb{Z}/4 \times \mathbb{Z}/2$ and $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$. There are 3 possibilities for G_3, namely $\mathbb{Z}/27$, $\mathbb{Z}/9 \times \mathbb{Z}/3$ and $\mathbb{Z}/3 \times \mathbb{Z}/3 \times \mathbb{Z}/3$. A field M corresponds to a subgroup H of G of order 6. We can write $H = H_2 \times H_3$ where $H_2 \subset G_2$ has order 2 and $H_3 \subset G_3$ has order 3. The
number of choices for H_2 are

<table>
<thead>
<tr>
<th>H_2</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}/8$</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{Z}/4 \times \mathbb{Z}/2$</td>
<td>3</td>
</tr>
<tr>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$</td>
<td>7</td>
</tr>
</tbody>
</table>

The number of choices for H_3 are

<table>
<thead>
<tr>
<th>H_3</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}/27$</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{Z}/9 \times \mathbb{Z}/3$</td>
<td>4</td>
</tr>
<tr>
<td>$\mathbb{Z}/3 \times \mathbb{Z}/3 \times \mathbb{Z}/3$</td>
<td>13</td>
</tr>
</tbody>
</table>

To count the number of subgroups, note that H_2 and H_3 are cyclic. For example, to count the number of possibilities of $H_3 \subseteq \mathbb{Z}/9 \times \mathbb{Z}/3$, we see that there are 3 elements a in $\mathbb{Z}/9$ with $3a = 0$, and 3 elements b in $\mathbb{Z}/3$ with $3b = 0$. So there are 9 pairs (a, b) with $3(a, b) = 0$. If we exclude the i0, then there are $9 - 1 = 8$ elements of order 3. But for every subgroup of order 3 there are 2 choices for a generator, so there are $8/2 = 4$ subgroups of $\mathbb{Z}/9 \times \mathbb{Z}/3$ of order 3.

If there are $28 = 7 \cdot 4$ choices for H, then the group must be $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/9 \times \mathbb{Z}/3 \cong \mathbb{Z}/18 \times \mathbb{Z}/6 \times \mathbb{Z}/2$.

(5) Suppose that the characteristic polynomial $c(X)$ of A is irreducible. Then we have $c(A^q) = c(A)^q = 0$ So the minimal polynomial of A^q divides $c(X)$ and must therefore be $c(X)$. So A and A^q have the same invariant factors, namely just $c(X)$. This shows that A and A^q are conjugate. More generally, if the minimal polynomial of A does not have multiplicities, then the elementary divisors are all irreducible. With respect to some basis, A has a block diagonal form with diagonal blocks A_1, A_2, \ldots, A_r each with an irreducible characteristic polynomial. Now A_i and A_i^q are conjugate for all i, so A and A^q are conjugate.