1. Let Z be a convex 10-gon in the plane with vertices $A_0, A_1, A_2, A_3, A_4, B_4, B_3, B_2, B_1, B_0$ appearing in this order on the boundary (oriented counter-clockwise). Let X be the topological space obtained from Z by gluing the line segments A_0A_1 with B_2B_3, B_0B_1 with A_2A_3, A_1A_2 with B_1B_2, A_3A_4 with B_3B_4, A_0B_0 with B_4A_4. All pairs of line segments are attached by linear maps with the vertices corresponding in the order listed (first to first, last to last).

(a) Calculate $\pi_1(X)$.

(b) Classify the surface X.

2. Prove that every CW-structure on $\mathbb{R}P^n$ has at least one cell in each dimension $0, 1, \ldots, n$.

3. Let X be a graph with one vertex and two edges. Does there exist a connected covering $f : Y \to X$ which is regular and a connected covering $g : Z \to Y$ which is regular such that $fg : Z \to X$ is not a regular covering? Prove your answer.

4. Let $Z = (\mathbb{C} \setminus \{e^{2k\pi i/5} \mid k \in \mathbb{Z}\}) \times [0,1]$. Let a space Y be obtained from Z by identifying $(z, 0)$ with $(ze^{2\pi i/5}, 1)$ for every $z \in \mathbb{C} \setminus \{e^{2k\pi i/5} \mid k \in \mathbb{Z}\}$. Compute $\pi_1(Y)$.

5. Let

\[S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}, \]

\[D^3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \leq 1\}, \]

Let $f : S^2 \to S^2$ be a (continuous) map of degree k, and let $\pi : S^2 \to \mathbb{R}P^2$ be a covering. Let X be the pushout of the diagram

\[\xymatrix{ S^2 \ar[r]^{\pi \circ f} & \mathbb{R}P^2 \ar[d] \cr & D^3. } \]

Calculate the homology of X.