Algebra May 2014, Qualifying Review, Morning Exam Solutions

Problem 1. Let A and B be finite sets with $\gcd(|A|, |B|) = 1$. Let G be a group that acts transitively on A and on B. Show that the diagonal action of G on $A \times B$ is transitive.

Solution. Write $n = |A|$ and $m = |B|$. Pick $a \in A$ and $b \in B$, and let G_a and G_b be their stabilizers in G. Note that we have a bijection $G/G_a \to A$ given by $gG_a \mapsto ga$, and so $[G : G_a] = n$. Similarly, $[G : G_b] = m$. Let $H = G_a \cap G_b$. Note that $[G : H] = [G : G_a][G_a : H]$, and so $n = [G : G_a]$ divides $[G : H]$. Similarly, m divides $[G : H]$, and so (since n and m are coprime), nm divides $[G : H]$. Now, H is the stabilizer of $(a, b) \in A \times B$, and so the map $f : G/H \to A \times B$ given by $gH \mapsto (ga, gb)$ is injective. Since $A \times B$ has cardinality nm and G/H has cardinality at least nm, it follows that G/H has cardinality exactly nm and f is a bijection. This proves transitivity: given any $(a', b') \in A \times B$, there exists $g \in G$ mapping to it under f, i.e., $(a', b') = (ga, gb)$.

Problem 2. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Consider K as a \mathbb{Q} vector space. Compute the trace of multiplication by $1 + \sqrt{2}$.

Solution. Define the following elements of K:

$$e_1 = 1, \quad e_2 = \sqrt{2}, \quad e_3 = \sqrt{3}, \quad e_4 = \sqrt{6}.$$

These form a basis for K as a \mathbb{Q} vector space. We now compute what multiplication by $1 + \sqrt{2}$ does in this basis. We have

$$
\begin{align*}
(1 + \sqrt{2})e_1 &= 1 + \sqrt{2} = e_1 + e_2 \\
(1 + \sqrt{2})e_2 &= 2 + \sqrt{2} = 2e_1 + e_2 \\
(1 + \sqrt{2})e_3 &= \sqrt{3} + \sqrt{6} = e_3 + e_4 \\
(1 + \sqrt{2})e_4 &= 2\sqrt{3} + \sqrt{6} = 2e_3 + e_4
\end{align*}
$$

Thus the matrix for multiplication-by-$(1 + \sqrt{2})$ in the basis e_1, e_2, e_3, e_4 is

$$
\begin{bmatrix}
1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 2 & 1
\end{bmatrix}.
$$

This matrix has trace 4, which is (by definition) the trace of multiplication by $1 + \sqrt{2}$.

Remark. One can do the computation more quickly as follows: $\sqrt{2}$ permutes the basis e_i without fixed points, and therefore has trace 0, while the trace of 1 is equal to $[K : \mathbb{Q}] = 4$.

Problem 3. Let A be a real $n \times n$ matrix with no real eigenvalues. Show that there is a polynomial $f \in \mathbb{R}[x]$ so that $f(A)^2 = -\text{Id}$.

Solution. Let R be the \mathbb{R}-subalgebra of the matrix algebra generated by A. It suffices to show that R contains an element which squares to -1. Now, R is isomorphic to $\mathbb{R}[x]/(f(x))$, where $f(x)$ is the minimal polynomial of A. Write $f(x) = \prod_{i=1}^k f_i(x)^{e_i}$, where the $f_i(x)$ are distinct monic irreducible polynomials over \mathbb{R}, and $e_i \geq 1$. Then, by the Chinese remainder theorem, R is isomorphic to $\prod_{i=1}^k R_i$, where $R_i = \mathbb{R}[x]/(f_i(x)^{e_i})$. It therefore suffices to show that each R_i contains an element that squares to -1.

Let J_i be the ideal of R_i generated by $f(x)$. Note that this ideal is nilpotent: $J_i^{e_i} = 0$. We will prove inductively that for each $m > 0$ the ring R_i contains an element x such that $x^2 = -1$ modulo J_i^m. Taking $m = e_i$ will give an element of R_i squaring to -1. We first prove the $m = 1$ case. The roots of $f_i(x)$ are eigenvalues of A, and therefore not real. Thus $R_i/J_i = \mathbb{R}[x]/(f_i(x))$ is isomorphic to \mathbb{C}. Therefore, if x maps to $\sqrt{-1} \in R_i/J_i$ then $x^2 = -1$ holds modulo J_i. Suppose now that we have $x \in R_i$ such that $x^2 = -1$
modulo J_i^m, i.e., $x^2 = -1 + y$ with $y \in J_i^m$. Let $z = x(1 + \frac{1}{2}y)$. Then
\[z^2 = (-1 + y)(1 + y + \frac{1}{4}y^2) = -1 - \frac{1}{4}y^2 + \frac{1}{4}y^3. \]
Since $\frac{1}{4}(y^3 - y^2)$ belongs to J_i^{m+1}, we thus see that $z^2 = -1$ modulo J_i^{m+1}. This completes the proof.

Problem 4. Recall that $\text{SL}_2(\mathbb{Z})$ is the group of 2×2 integer matrices of determinant 1. Show that the commutator subgroup of $\text{SL}_2(\mathbb{Z})$ is a proper subgroup. (Hint: One proof uses the isomorphism $\text{SL}_2(\mathbb{F}_2) = S_3$.)

Solution. Let $f : \text{SL}_2(\mathbb{Z}) \rightarrow \text{SL}_2(\mathbb{F}_2)$ be the reduction mod 2 map. The two matrices
\[g = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \text{and} \quad h = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \]
belong to $\text{SL}_2(\mathbb{Z})$. By direct computation, $f(g)$ has order 2 and $f(h)$ has order 3. It follows that $f(g)$ and $f(h)$ generated $\text{SL}_2(\mathbb{F}_2)$, as this group has order 6. Thus f is surjective, since its image contains a generating set. Now, $\text{SL}_2(\mathbb{F}_2)$ is solvable: the subgroup generated by $f(h)$ has index 2, and is therefore normal, and so $\text{SL}_2(\mathbb{F}_2)$ is an extension of $\mathbb{Z}/2\mathbb{Z}$ by $\mathbb{Z}/3\mathbb{Z}$. Thus the commutator subgroup of $\text{SL}_2(\mathbb{F}_2)$ is a proper subgroup. Since f maps the commutator subgroup of $\text{SL}_2(\mathbb{Z})$ into the commutator subgroup of $\text{SL}_2(\mathbb{F}_2)$, it follows that the commutator subgroup of $\text{SL}_2(\mathbb{Z})$ must also be a proper subgroup.

Problem 5. What are the orders of elements in $\text{GL}_2(\mathbb{F}_{13})$? Note that the order of $\text{GL}_2(\mathbb{F}_{13})$ is $(13^2 - 13)(13^2 - 1) = 13 \cdot 12^2 \cdot 14$.

Solution. There are three types of elements of $G = \text{GL}_2(\mathbb{F}_{13})$: (1) those that are semi-simple with eigenvalues in \mathbb{F}_{13}; (2) those that are semi-simple and whose eigenvalues are Galois conjugate elements of \mathbb{F}_{13^2}; and (3) those that are not semi-simple. We compute the orders of each type of elements.

Suppose g is a Type 1 element of G. Then it is conjugate to a diagonal matrix, and therefore has the same order as a diagonal matrix. Furthermore, every diagonal matrix is Type 1. The group of diagonal matrices is isomorphic to $\mathbb{F}_{13}^\times \times \mathbb{F}_{13}^\times \cong (\mathbb{Z}/12\mathbb{Z})^2$.

Every element of this group has order dividing 12, and every divisor of 12 occurs. Thus the Type 1 elements have orders 1, 2, 3, 4, 6, and 12.

Suppose g is a Type 2 element. Let H be the subgroup of $\text{GL}_2(\mathbb{F}_{13^2})$ consisting of elements of the form
\[\begin{bmatrix} \alpha & 0 \\ 0 & \overline{\alpha} \end{bmatrix}, \]
where α is a non-zero element of \mathbb{F}_{13^2}, and $\overline{\alpha}$ is its Galois conjugate. Then g is conjugate over \mathbb{F}_{13^2} to an element of H, and therefore has the same order as an element of H. Furthermore, every element of H is conjugate to some element of G (the matrix for the multiplication-by-α map on \mathbb{F}_{13^2} is conjugate to the above matrix). The group H is isomorphic to $\mathbb{F}_{13^2}^\times \cong \mathbb{Z}/168\mathbb{Z}$. Every element of this group has order dividing 168, and every divisor of 168 occurs. Thus the Type 2 elements have orders 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 64, and 168.

Finally, suppose that g is a Type 3 element. Then g is conjugate to a matrix of the form
\[\begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix} \]
where $a \in \mathbb{F}_{13}^\times$, and every matrix of this form is a Type 3 element. Note that
\[\begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} 1 & a^{-1} \\ 0 & 1 \end{bmatrix} = g_1g_2. \]
The order of g_1 is just the order of a in \mathbb{F}_{13}^\times, and therefore divides 12; furthermore, by choosing a appropriately, the order of g_1 can be any divisor of 12. The order of g_2 is equal to 13. Since g_1 and g_2 commute and have coprime orders, the order of g_1g_2 is just the product of the orders of g_1 and g_2. We thus see that the Type 3 elements have orders 13, 26, 39, 52, 78, and 156.
In conclusion, the orders of elements of G are:

1, 2, 3, 4, 6, 7, 8, 12, 13, 14, 21, 24, 26, 28, 39, 42, 52, 56, 78, 84, 156, and 168.

Thus, while $|G|$ has 48 divisors, only 22 of them actually occur as orders of elements.
Algebra May 2014, Qualifying Review, Afternoon Exam Solutions

Problem 1. Let G and H be finite groups with $|G| = |H| = n$. Let K be a subgroup of $G \times H$ with $|K| = n$ and $K \cap (G \times \{ e \}) = K \cap (\{ e \} \times H) = \{ e \}$. Show that $G \cong H$.

Solution. Let $f : G \times H \to G$ and $g : G \times H \to H$ be the two projection maps. The kernel of f is $\{ e \} \times H$. Therefore, $\ker(f) \cap K = \{ e \}$, and so the restriction of f to K is injective. Since $|K| = |G|$, it follows that the restriction of f to K is bijective, and so f induces a group isomorphism $K \to G$. Similarly, g induces a group isomorphism $K \to H$. Since isomorphism is transitive, G and H are isomorphic.

Problem 2. Let $f(x)$ be a degree 6 polynomial with rational coefficients, whose splitting field over \mathbb{Q} has Galois group S_6 and let β be a root of f. Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be algebraic numbers all of whom are of degree ≤ 5. Show that β is not in $\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_r)$.

Solution. Let K be the splitting field of f, which is the Galois closure of $\mathbb{Q}(\beta)$. Let L_i be the Galois closure of $\mathbb{Q}(\alpha_i)$, and let G_i be the Galois group of L_i over \mathbb{Q}. Then the compositum $L = L_1 \cdots L_r$ is the Galois closure of $\mathbb{Q}(\alpha_1, \ldots, \alpha_r)$, and its Galois group G is a subgroup of $G_1 \times \cdots \times G_r$. If β were contained in $\mathbb{Q}(\alpha_1, \ldots, \alpha_r)$ then K would be contained in L, and so $\text{Gal}(K/\mathbb{Q}) = S_6$ would be a quotient of $\text{Gal}(L/\mathbb{Q}) = G$. However, each G_i is a subgroup of S_n with $1 \leq n \leq 5$, and so this is impossible. (Consider the Jordan–Hölder constituents: S_6 has the simple group A_6 as a constituent, but A_6 does not occur as a constituent of any subgroup of S_n with $n \leq 5$, and therefore does not occur as a constituent of G.)

Problem 3. Let p be a prime and let $q = p^e$ for some positive integer e. How many elements of \mathbb{F}_q are of the form $x^p - x$, for $x \in \mathbb{F}_q$?

Solution. Let $f : \mathbb{F}_q \to \mathbb{F}_q$ be the map given by $f(x) = x^p - x$. Regarding \mathbb{F}_q as an \mathbb{F}_p vector space, this map is linear. Its kernel is exactly \mathbb{F}_p^\times. (Proof: every element of \mathbb{F}_p^\times belongs to the kernel, by Fermat’s little theorem, which gives p distinct roots of the degree p polynomial f, and so there are no other roots.) Thus f is a map of e dimensional vector spaces whose kernel is one dimensional. It follows that the image of f is $e - 1$ dimensional, and thus contains $p^{e - 1}$ elements.

Problem 4. Let $1 \to H \to G \xrightarrow{\pi} C \to 1$ be a short exact sequence of finite groups, with C cyclic and $\text{GCD}(|H|, |C|) = 1$. Show that there is a map of groups $\sigma : C \to G$ with $\pi(\sigma(x)) = x$ for all $x \in C$.

Solution. Let $n = |H|$ and $m = |C|$. Since π is surjective, there exists an element $x \in G$ such that $\pi = \pi(x)$ is a generator of C. Choose an integer a such that $an = 1$ modulo m, which is possible since n and m are relatively prime, and put $y = x^a$. Then $\pi(y) = \pi^a = \pi : \pi^{an - 1} = \pi$ since $an - 1$ is divisible by m and C has order m. On the other hand, $y^n = x^{am}$. Since $\pi^m = 1$, it follows that $\pi(x^m) = 1$, and so x^m belongs to H. Since H has order n, it follows that $(x^m)^n = 1$. Thus $y^n = 1$. We can therefore define a group homomorphism $\sigma : C \to G$ by $\sigma(\pi^k) = y^k$. This map is well-defined since every element of C is of the form π^k, for some $k \in \mathbb{Z}/m\mathbb{Z}$, and $y^m = 1$. We have $\pi(\sigma(\pi^k)) = \pi(\sigma(\pi))^k = \pi(y)^k = \pi^k$, and so $\pi \circ \sigma$ is the identity.

Problem 5. Let A and B be two $n \times n$ matrices over a field K.

(a) Show that the matrices AB and BA need not be similar.

(b) Show that AB and BA have the same characteristic polynomial.

Solution. (a) Take

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$
Then AB is non-zero but BA is zero, and so they are not similar.

(b) First suppose that A is invertible. Then AB and BA are similar, as $AB = A(BA)A^{-1}$, and so have the same characteristic polynomial. We now handle the general case. For a matrix M, let $c_i(M)$ be the ith coefficient of the characteristic polynomial of M. Note that this is a polynomial in the entries of M. Define a polynomial $f(t)$ by

$$f(t) = c_i((A - tI_n)B) - c_i(B(A - tI_n)).$$

Suppose that $t \in K$ is not an eigenvalue of A. Then $A - tI_n$ is invertible, and so $(A - tI_n)B$ and $B(A - tI_n)$ have the same characteristic polynomial, and so $f(t) = 0$. Thus $f(t) = 0$ for infinitely many elements $t \in K$, as A has finitely many eigenvalues. It follows that $f(t)$ is the zero polynomial. In particular, $0 = f(0) = c_i(AB) - c_i(BA)$. Thus $c_i(AB) = c_i(BA)$ for all i, and so the characteristic polynomials of AB and BA agree.