Problem AM1. Suppose that A is a 3×3 complex matrix with $\text{tr}(A) = 1$, $\det(A) = 2$ and $\det(\text{Id} + A) = 3$. What is $\det(2\text{Id} + A)$? ($\text{tr}(A)$ and $\det(A)$ denote the trace and determinant of A respectively, and Id is the 3×3 identity matrix.)

Problem AM2. Let A be a positive definite real symmetric $n \times n$ matrix.
(a) Suppose that B is a real $n \times n$ matrix with $AB + BA = 0$. Show that $B = 0$.
(b) Show that, for every $n \times n$ real matrix C, there is an $n \times n$ real matrix B with $AB + BA = C$.

Problem AM3. Let \mathbb{F}_{256} be the field with $256 = 2^8$ elements.
(a) List all fields between \mathbb{F}_2 and \mathbb{F}_{256}.
(b) Let $\theta \in \mathbb{F}_{256}$ be such that $\mathbb{F}_{256} = \mathbb{F}_2(\theta)$. What are the possible orders of θ in the multiplicative group $\mathbb{F}_{256}^* = \mathbb{F}_{256} \setminus \{0\}$?

Problem AM4. Suppose that L/K is a finite Galois extension of fields with Galois group G, and let θ be a primitive element, so $L = K(\theta)$. Let H be a subgroup of G. Define elements α_j of L by the polynomial equality

$$\prod_{h \in H} (x - h(\theta)) = \sum_{j=0}^{\left|H\right|} x^j \alpha_j$$

Show that

$$L^H = K(\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_{|H|}).$$

Problem AM5. Let p be a prime number, let G be a finite group and H a subgroup of G. Show that the number of p-Sylow subgroups of G is greater than or equal to the number of p-Sylow subgroups of H.
Problem PM1. Let A be a 6×6 complex matrix with

$$A^2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

(All omitted entries are zero.) What are the possible Jordan form(s) of A?

Problem PM2. How many subgroups of \mathbb{Z}^2 are there with index 10?

Problem PM3. Does there exist a finite group G with normal subgroups N_1 and N_2 such that $N_1 \cong S_5$, $N_2 \cong S_7$, $G/N_1 \cong S_{42}$ and $G/N_2 \cong S_{41}$?

Problem PM4. Let p be prime and let k be a field of characteristic p. Let the symmetric group S_p act on the vector space k^p by permuting the coordinates.

(a) Show that there is a one dimensional subspace L of k^p which is taken to itself by S_p.

(b) Show that there does not exist a subspace W of k^p, taken to itself by S_p, for which $k^p = L \oplus W$.

Problem PM5. Let f be a polynomial of degree n over \mathbb{Q}, with distinct roots $\theta_1, \theta_2, \ldots, \theta_n$ and let $K = \mathbb{Q}(\theta_1, \ldots, \theta_n)$. Suppose that the Galois group of K over \mathbb{Q} is cyclic, with generator $\theta_1 \mapsto \theta_2 \mapsto \cdots \mapsto \theta_n \mapsto \theta_1$. Show that there is a polynomial $f \in \mathbb{Q}[x]$ such that $f(\theta_k) = \theta_{k+1}$ for all k (with indices modulo n, so we require that $f(\theta_n) = \theta_1$.)