Problem 1.
(a) Suppose I is an ideal in a principal ideal domain R such that $I^2 = I$. Show that $I = (0)$ or $I = R$.
(b) Give an example of an ideal I in a commutative ring R such that $I^2 = I$ but I is not (0) or R.

Solution.
(a) Since R is a PID, we have $I = (a)$ for some $a \in R$, and so $I^2 = (a^2)$. Thus $(a) = (a^2)$, and so $ua = a^2$ for some unit u of R. If $a = 0$ then $I = (0)$. Otherwise, we can divide by a and we find $u = a$, so $I = (u) = R$.
(b) Take $R = \mathbb{C} \times \mathbb{C}$ and I to be the ideal generated by the element $(1, 0)$.

Problem 2. Suppose that A is an invertible symmetric $n \times n$ matrix with real entries. Show that there exist invertible real matrices R and S such that $I_n = RAR^t - SAS^t$, where I_n is the $n \times n$ identity matrix.

Solution. Suppose that the signature of A is $(p, n - p, 0)$, i.e., it has p positive eigenvalues and $n - p$ negative eigenvalues. Define

$$B = \begin{pmatrix} 2I_p & 0 \\ 0 & -I_{n-p} \end{pmatrix}, \quad C = \begin{pmatrix} I_p & 0 \\ 0 & -2I_{n-p} \end{pmatrix}.$$

Then we have $I = B - C$. The matrices A, B, C all have the same signature, so $B = RAR^t$ for some invertible real matrix R and $C = SAS^t$ for some invertible matrix S.

Problem 3. Let A be a 2×2 matrix with real entries. Suppose there exist non-zero vectors $v, w \in \mathbb{R}^2$ such that $\|A^n v\| \to 0$ as $n \to \infty$ and $\|A^n w\| \to \infty$ as $n \to \infty$, where $\| \cdot \|$ denotes the length of a vector. Show that A is diagonalizable over the reals, i.e., there exists an invertible real matrix S such that SAS^{-1} is diagonal.

Solution. We first note that if B is conjugate to A then there still exist vectors v', w' such that $\|B^n v'\| \to 0$ and $\|B^n w'\| \to \infty$. Indeed, if $B = SAS^{-1}$ then take $v' = Sv$ and $w' = Sw$. We have $B^n v' = S(A^n v)$, which goes to 0 because $A^n v$ does, and $B^n w' = S(A^n w)$, which goes to ∞ because $A^n w$ does. We are therefore free to replace A with a conjugate matrix throughout.

Now suppose that A has non-real eigenvalues. Then A is conjugate to a matrix of the form λR where λ is a scalar and R is a rotation matrix. However, this is impossible: if $|\lambda| \leq 1$ then w cannot exist and if $|\lambda| \geq 1$ then v cannot exist.

Next suppose that A has a repeated eigenvalue λ. If A is a scalar matrix, the reasoning in the previous paragraph applies and yields a contradiction. Otherwise, A is conjugate to

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

In fact, the reasoning in the previous paragraph still applies: if $|\lambda| \leq 1$ then w cannot exist, while if $|\lambda| \geq 1$ then v cannot exist.
We thus conclude that A has distinct real eigenvalues, and is therefore diagonalizable over the reals.

Problem 4. Suppose $a, b \in \mathbb{Q}$ and $\zeta = e^{2\pi i/3}$ is a primitive third root of unity. Let $L = \mathbb{Q}(\zeta, \sqrt[3]{a}, \sqrt[3]{b})$.

(a) Show that the field extension L/\mathbb{Q} is Galois.

(b) Suppose that none of the numbers a, b, ab, ab^2 is a third power of a rational number. Show that L/\mathbb{Q} has degree 18.

Solution. (a) Let K_a, K_b be the fields $\mathbb{Q}(\zeta, \sqrt[3]{a})$ and $\mathbb{Q}(\zeta, \sqrt[3]{b})$ respectively. These are the splitting fields of $x^3 - a$ and $x^3 - b$ respectively. It follows that the extensions K_a/\mathbb{Q} and K_b/\mathbb{Q} are Galois. Therefore, the compositum $L = K_aK_b$ is also a Galois extension over \mathbb{Q}.

(b) Since L is a Galois extension over \mathbb{Q}, it is also Galois over $\mathbb{Q}(\zeta)$. Let G be the Galois group of the extension $L/\mathbb{Q}(\zeta)$. The extensions $K_a/\mathbb{Q}(\zeta)$ and $K_b/\mathbb{Q}(\zeta)$ have degree 1 or 3, so L is an extension of degree 1, 3 or 9 of $\mathbb{Q}(\zeta)$. If L is not an extension of degree 9 then G has order at most 3 and G is cyclic. Let σ be a generator of G. We have $\sigma(\sqrt[3]{a}) = \zeta^j \sqrt[3]{a}$ and $\sigma(\sqrt[3]{b}) = \zeta^k \sqrt[3]{b}$. It is easy to verify from this that the cube root of at least one of the elements a, b, ab, ab^2 must be invariant under σ. That cube root lies in $\mathbb{Q}(\zeta) \cap \mathbb{R} = \mathbb{Q}$.

Problem 5. Let S_3 act on $V = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ by permuting the tensor factors. Show that there are infinitely many subspaces W of V that are stable by S_3 (that is, $gW \subset W$ for all $g \in S_3$).

Solution. Suppose that v is an element of V. Then the span of gv, over $g \in S_3$, is clearly an S_3-stable subspace of V and has dimension at most 6. We thus see that every vector of V is contained in a proper stable subspace of V. (Note that V has dimension 8.)

Let W_1, \ldots, W_n be proper stable subspaces of V. Since \mathbb{C} is an infinite field, V is not the union of W_1, \ldots, W_n. We can therefore pick $v \in V$ not belonging to W_1, \ldots, W_n. Let W_{n+1} be a proper S_3-stable subspace containing v, which exists by the first paragraph. Obviously, W_{n+1} is not equal to any W_i with $1 \leq i \leq n$, since W_{n+1} contains v and the other W_i do not. Continuing in this manner, we produce an infinite number of invariant subspaces.
Problem 1. Show that every group of order 224 = 2^5 \cdot 7 has an element of order 14.

Solution. Let G be a group of order 224 and S be the set of 7-Sylow subgroups of G. The cardinality of S divides 32 and is congruent to 1 modulo 7, so it has to be 1 or 8. Let H be a 2-Sylow subgroup of G. It has 32 elements, and it acts on S by conjugation. Let N \in S be a 7-Sylow subgroup, and let U be its stabilizer subgroup in H. The H-orbit of N / S has at most 8 elements, so the stabilizer U has at least 32/8 = 4 elements. The group U normalizes N. Let \varphi : U \rightarrow \text{Aut}(N) be the group homomorphism associated with the conjugation action of U on N. Since Aut(N) has 6 elements, and the number of elements of U is divisible by 4, the group homomorphism \varphi : U \rightarrow \text{Aut}(N) cannot be injective. We can choose a nontrivial element of order 2 in the kernel of \varphi. We can also choose g be a generator of N. Then h and g commute, h has order 2 and g has order 7. Then hg has order 14.

Problem 2. Suppose that A is a 6 \times 6 complex matrix with minimum polynomial \(x^6 + x^5 - x^4 - x^3 \). Determine the characteristic polynomial and minimal polynomial of A^2.

Solution. Let \(p(x) = x^6 + x^5 - x^4 - x^3 = x^3(x+1)^2(x-1) \). Since the minimum polynomial has degree 6, \(p(x) \) must also be the characteristic polynomial. The Jordan normal form of A has Jordan blocks \(J_3(0), J_2(-1), J_1(1) \), where \(J_m(\lambda) \) is the \(m \times m \) Jordan block with eigenvalue \(\lambda \). The Jordan normal form of \(J_3(0)^2 \) has blocks \(J_2(0) \) and \(J_1(0) \), the Jordan normal form of \(J_2(-1)^2 \) is \(J_2(1) \) and the Jordan normal form of \(J_1(1)^2 \) is \(J_1(1) \). The characteristic polynomial of \(A^2 \) is \(x^2 \cdot x \cdot (x - 1)^2 \cdot (x - 1) = x^3(x-1)^3. \) The minum polynomial of \(A^2 \) is the least common multiple of \(x^2, x, (x - 1)^2, (x - 1) \), which is \(x^2(x-1)^2 \).

Problem 3. Suppose A and B are invertible 2 \times 2 complex matrices.

(a) Show that there exists a linear transformation \(F : \mathbb{C}^2 \otimes \mathbb{C}^2 \rightarrow \mathbb{C}^2 \otimes \mathbb{C}^2 \) such that \(F(v \otimes w) = (Av) \otimes (Bw) - (Bv) \otimes (Aw) \).

(b) Show that the rank of \(F \) is at most 2.

Solution. (a) Define a linear map \(f : \mathbb{C}^2 \times \mathbb{C}^2 \rightarrow \mathbb{C}^2 \otimes \mathbb{C}^2 \) by \(f(v, w) = (Av) \otimes (Bw) - (Bv) \otimes (Aw) \). Then it is easy to verify that \(f \) is bilinear. So there exists a linear map \(F : \mathbb{C}^2 \otimes \mathbb{C}^2 \rightarrow \mathbb{C}^2 \otimes \mathbb{C}^2 \) that satisfies \(F(v \otimes w) = f(v, w) \) for all \(v, w \in \mathbb{C}^2 \).

(b) It is clear that \(F(v \otimes v) \) is an anti-symmetric tensor in \(\mathbb{C}^2 \otimes \mathbb{C}^2 \). The space \(\bigwedge^2(\mathbb{C}^2) \) of anti-symmetric tensors has dimension 1. The subspace of \(\mathbb{C}^2 \otimes \mathbb{C}^2 \) spanned by pure tensors of the form \(v \otimes v \) is the space \(\text{Sym}^2(\mathbb{C}^2) \) of symmetric tensors, which has dimension 3 (one can see this simply by taking \(v \) to be \(e_1, e_2 \), where \(e_1 \) and \(e_2 \) are a basis for \(\mathbb{C}^2 \)). Thus \(F \) induces a map \(\text{Sym}^2(\mathbb{C}^2) \rightarrow \bigwedge^2(\mathbb{C}^2) \), the kernel of which has dimension at least 2. Thus the kernel of \(F \) has dimension at least 2, and so the rank of \(F \) is at most 2.

Problem 4. Let \(F \) be the field \(\mathbb{C}(x_1, \ldots, x_n) \). Let \(S_n \) act on this field by permuting the variables, and let \(E = F^{S_n} \) be the fixed field. Suppose that \(\Phi \in E[T] \) is a polynomial of degree at most \(n - 1 \) such that \(\Phi(x_i) = \Phi(x_j) \) for all \(1 \leq i, j \leq n \). Show that \(\Phi \) is constant.

Solution. Let \(a = \Phi(x_1) \), an element of \(F \). If \(\sigma \in S_n \) then \(a^\sigma = \Phi(x_{\sigma(i)}) = \Phi(x_1) = a \). Thus \(a \) belongs to \(E \), and so the polynomial \(\Psi(T) = \Phi(T) - a \) still has coefficients in \(E \). But
\[\Psi(x_1) = 0 \text{ and } x_1 \text{ has degree } n \text{ over } E, \text{ and so } \Psi(T) = 0, \text{ which shows that } \Phi \text{ is constant.} \]

(If \(x_1\) had degree \(<n\) over \(E\) then the Galois closure of \(E(x_1)\) would have degree \(<n!\), but the Galois closure if clearly \(F\), which has degree \(n!\).)

Problem 5. Consider the polynomial \(p(x) = x^9 + 1 \in F_2[x]\).

(a) Show that \(p(x)\) splits over the field \(F_{64}\).

(b) Show that \(p(x) = (x + 1)(x^2 + x + 1)(x^6 + x^3 + 1)\) is the irreducible factorization of \(p\). (It is enough to show that the three factors are irreducible, you don’t have to do the multiplication!)

(c) How many units does the ring \(F_2[x]/(p(x))\) have?

Solution.

(a) \(p(x)\) divides \(x^{64} - x\) and \(x^{64} - x\) factors over \(F_{64}\) into linear factors.

(b) Obviously \(x + 1\) is irreducible, and \(x^2 + x + 1\) is irreducible because it is quadratic but does not have a root. Let \(\alpha\) be a root of \(x^6 + x^3 + 1\). The Frobenius automorphism \(\phi\) generates the Galois group of \(F_{64}\) over \(F_2\) and has order 6. Now, \(\alpha\) is not a root of \(x^4 + x\) or \(x^8 + x\) because these polynomials are relatively prime to \(x^6 + x^3 + 1\). Therefore, \(\alpha\) does not lie in any proper subfield of \(F_{64}\). So the degree of \(\alpha\) over \(F_2\) is 6 and \(x^6 + x^3 + 1\) is irreducible.

(c) By the Chinese Remainder Theorem,

\[F_2[x]/(p(x)) \cong F_2 \times F_2[x]/(x^2 + x + 1) \times F_2[x](x^6 + x^3 + 1) \cong F_2 \times F_4 \times F_{64}\]

and

\[F_2[x]/(p(x))^* \cong F_2^* \times F_4^* \times F_{64}^*\]

so there are \(1 \cdot (4 - 1) \cdot (64 - 1) = 3 \cdot 63 = 189\) units.