Justify all of your answers. We write \mathbb{C}, \mathbb{F}_p, \mathbb{Q}, \mathbb{R} and \mathbb{Z} for the complex numbers, the field with p elements, the rational numbers, the real numbers and the integers respectively.

Problem 1. How many isomorphism classes of abelian groups of order 6^4 are there?

Problem 2. Let $\zeta_n = e^{2\pi i/n}$ be a primitive n^{th} root of unity.
 (a) For which positive integers n does $\mathbb{Q}(\zeta_n)$ contain $\sqrt{2}$?
 (b) For which positive integers n does $\mathbb{Q}(\zeta_n)$ contain $\sqrt[3]{2}$?

Problem 3. Suppose that A and B are complex, invertible $n \times n$ matrices with $AB + BA = 0$. Show that there exists a complex, invertible $n \times n$ matrix C such that $A + CAC = 0$.

Problem 4. Let V be the set of 2×2 real matrices, thought of as a 4-dimensional real vector space. For a real number λ, define a symmetric bilinear form $\langle \ , \ \rangle$ on V by
 $\langle A, B \rangle = \text{Tr}(AB) + \lambda \text{Tr}(AB^t)$
Here Tr is trace and B^t is the transpose of B. For which λ is this form positive definite?

Problem 5. Let p be a prime number and let n be a positive integer.
 (a) Show that there is a positive integer m, depending on p and n, such that if A is an invertible $n \times n$ matrix with entries in \mathbb{F}_p that is diagonalizable over the algebraic closure $\overline{\mathbb{F}}_p$ then $A^m = \text{id}_n$.
 (b) Determine the minimal positive m in (a) when $p = 3$ and $n = 4$.
May 2017, Qualifying Review Algebra, Afternoon

Justify all of your answers. We write \mathbb{C}, \mathbb{F}_p, \mathbb{Q}, \mathbb{R} and \mathbb{Z} for the complex numbers, the field with p elements, the rational numbers, the real numbers and the integers respectively.

Problem 1. Let G be a finite group and let p be a prime number. Show that the following conditions are equivalent:

(a) The group G acts transitively on a set X such that the cardinality of X is at least 2 and relatively prime to p.

(b) The order of G is not a power of p.

Problem 2. Suppose that R is a commutative ring with 1, and p and q are prime ideals of R such that every element of $R \setminus (p \cup q)$ is a unit. Show that at least one of p or q is maximal.

Problem 3. Suppose that K is a field of characteristic $\neq 2$ and $L = K(\beta)$ is a field extension of K with $\beta^2 + \beta^{-2} \in K$. Show that L/K is a Galois extension.

Problem 4. Suppose that V is a real vector space of dimension n.

(a) Show that there exists a linear map $\varphi: \bigwedge^2 V \to \text{Hom}(V^*, V)$ such that

$$\varphi(a \wedge b)(f) = f(a)b - f(b)a$$

for all $a, b \in V$.

(b) Suppose n is odd. Show that no element of the image of φ is invertible.

Problem 5. Let $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$. A *matching* on V is a set $\{E_1, E_2, E_3, E_4\}$ where each E_i is a two-element subset of V such that $V = E_1 \cup E_2 \cup E_3 \cup E_4$. Let \mathcal{M} be the set of matchings. The group S_8 naturally acts on \mathcal{M}, and the action is transitive. Let $G \subset S_8$ be the stabilizer of some matching. How many orbits does G have on \mathcal{M}?