Justify your answers.

(1) Classify all finite groups G (up to isomorphism) that have only one automorphism.

Solution. Suppose that the finite group G has only 1 automorphism. For $g \in G$, we have an automorphism $\varphi_g : G \to G$ defined by $\varphi_g(h) = ghg^{-1}$. From the assumption on G follows that φ_g is the identity, and $ghg^{-1} = h$ for all $g, h \in G$. So G is commutative. Let $\psi : G \to G$ be defined by $\psi(g) = g^{-1}$. Since ψ is the identity, we have $g^2 = 1$ for all $g \in G$. This shows that G is isomorphic to the group $(\mathbb{Z}/2\mathbb{Z})^r$. If $r \geq 2$ then we can permute the factors. So $r \leq 1$ and G is either trivial or isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Clearly these two groups have no non-trivial automorphisms.

(2) Suppose that F is a field, $p(x) \in F[x]$ is a separable, irreducible polynomial of degree 3 with roots $\alpha_1, \alpha_2, \alpha_3$.

(a) Show that if the characteristic of F is not 2 or 3, then $F(\alpha_1, \alpha_2, \alpha_3) = F(\alpha_1 - \alpha_2)$.

(b) Show that if F has characteristic 3, then it is possible that $F(\alpha_1, \alpha_2, \alpha_3) \neq F(\alpha_1 - \alpha_2)$.

Solution.

(a) Since $p(x)$ is separable, $\alpha_1, \alpha_2, \alpha_3$ are distinct. Let $K = F(\alpha_1, \alpha_2, \alpha_3)$ be the splitting field of $p(x)$. Since K/F is a splitting field of a separable polynomial, it is a Galois extension. Let G be the Galois group. Suppose that σ is a nontrivial automorphism with $\sigma(\alpha_1 - \alpha_2) = \alpha_1 - \alpha_2$. If $\sigma = (1 2)$, then we have $\alpha_2 - \alpha_1 = \sigma(\alpha_1 - \alpha_2) = \alpha_1 - \alpha_2$, so $2\alpha_1 = 2\alpha_2$ and $\alpha_1 = \alpha_2$. Contradiction. If $\sigma = (1 3)$ then $\alpha_3 - \alpha_2 = \alpha_1 - \alpha_2$. So $\alpha_3 = 2\alpha_1$. If $\sigma = (2 3)$ we get a similar contradiction. If $\sigma = (1 2 3)$ then we have $\alpha_2 - \alpha_3 = \alpha_1 - \alpha_2$. By symmetry (using the transitive action of the Galois group) we must also have $2\alpha_1 = \alpha_2 + \alpha_3$. Taking the sum of the two equations we get $3\alpha_1 = 3\alpha_3$ and $\alpha_1 = \alpha_3$. Contradiction. And the case $\sigma = (1 3 2)$ is similar. We conclude that σ is the identity. By the Galois correspondence, $F(\alpha_1 - \alpha_2)$ must be the splitting field K.

(b) Note that $x^3 - x - 1$ is irreducible in $F_3[x]$ because it has no root. Let $F_{27} = F_3[x]/(x^3 - x - 1)$ be the field with 27 element, and let $\alpha = x + (x^3 - x - 1) \in F_{27}$. The Frobenius map ϕ acts by $\phi(\alpha) = \alpha^3 = \alpha + 1$ and $\phi^2(\alpha) = \phi(\alpha + 1) = \alpha + 2$, and $\phi^3(\alpha) = \alpha$. Since $\{\alpha_1, \alpha_2, \alpha_3\} = \{\alpha, \alpha + 1, \alpha + 2\}$ we have that $\alpha_1 - \alpha_2 \notin F_3$, but $\alpha_1 \notin F_3$. We conclude that $K \neq F(\alpha_1 - \alpha_2)$.

(3) Suppose that A is a 2×2 matrix with real entries that is conjugate to its square A^2. What are the possible rational canonical forms for A?
Solution. Suppose that λ is an eigenvalue and not equal to 0 or 1. Then λ^2 an eigenvalue of A^2 and therefore of A. Now λ^4 is another eigenvalue so $\lambda^4 \in \{\lambda, \lambda^2\}$. If $\lambda^2 = \lambda$ then $\lambda = -1$. In that case A has eigenvalues $-1, 1$ and A^2 has eigenvalues 1, 1 which is not possible. So $\lambda^4 = \lambda$ and $\lambda^3 - 1 = (\lambda - 1)(\lambda^2 + \lambda + 1) = 0$, so $\lambda^2 + \lambda + 1 = 0$. We conclude that $\lambda \in \{0, 1, \zeta, \zeta^2\}$ where $\zeta = e^{2\pi i/3}$ is a primitive 3rd root of unity. The possible pairs of eigenvalues are $(0, 0), (1, 0), (1, 1), (\zeta, \zeta^2)$.

Case $(0, 0)$. If the invariant factors are x^2, then the rational canonical form is

$$
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
$$

and $A^2 = 0$ is not conjugate to A. Contradiction. So the invariant factors are x, x. So $A = 0$ and the rational canonical form is

$$
R_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

Case $(0, 1)$. The invariant factors are $x(x - 1) = x^2 - x$, the rational canonical form is

$$
R_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}
$$

Case $(1, 1)$. The invariant factors are $(x - 1), (x - 1)$ or $(x - 1)^2 = x^2 - 2x + 1$ and the possible rational canonical forms are

$$
R_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad R_4 = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}
$$

Case (ζ, ζ^2). In this case, the minimum polynomial must be $(x - \zeta)(x - \zeta^2) = x^2 + x + 1$ and the rational canonical form is

$$
R_5 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}
$$

For each i we verify that the rational canonical form of R_i^2 is equal to R_i.

(4) Let R be the ring

$$
\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} + c\sqrt{4} \mid a, b, c \in \mathbb{Z}\}
$$

and $I = (5)$ be the ideal of R generated by 5. Write $R/(5)$ as a product of fields.

Solution. We have $R \cong \mathbb{Z}[x]/(x^3 - 2)$ and $R/(5) \cong \mathbb{F}_5[x]/(x^3 - 2)$. Now $x^3 - 2$ has a root, namely $3 = -2$, so $x^3 - 2 = (x + 2)(x^2 - 2x - 1)$. We verify that $x^2 - 3x - 1$ does not have a root in in \mathbb{F}_5. So we have

$$
R/(5) \cong \mathbb{F}_5[x]/(x + 2) \times \mathbb{F}_5[x]/(x^2 - 2x - 1) \cong \mathbb{F}_5 \times \mathbb{F}_{25}.
$$

(5) Suppose that p, q, r are distinct prime numbers, and $\Phi_{qr}(x) \in \mathbb{Z}[x]$ is the qr-th cyclotomic polynomial. For which p, q, r is $\Phi_{qr}(x)$ irreducible as a polynomial in $\mathbb{F}_p[x]$ after reducing its coefficients modulo p?
Solution. Let $\phi : K \to K$ be the Frobenius automorphism $\alpha \mapsto \alpha^p$ that generates the Galois group K/\mathbb{F}_p. Let d be the order of the congruence class $p + (qr)$ in $\mathbb{Z}/(qr)^\times = \mathbb{Z}/(q)^\times \times \mathbb{Z}/(r)^\times = \mathbb{Z}/(q-1) \times \mathbb{Z}/(r-1)$. The polynomial
\[f(x) = (x - \alpha)(x - \alpha^p) \cdots (x - \alpha^{p^{d-1}}) \]
is invariant under ϕ, so it lies in $\mathbb{F}_p[x]$. Also, $f(x)$ is irreducible because the Galois group acts transitively on the roots. So $f(x)$ is the minimum polynomial of α, and must divide $\Phi_{qr}(x)$. Now $\Phi_{qr}(x)$ is irreducible if and only if $f(x) = \Phi_{qr}(x)$ and this is true if and only if $d = (q-1)(r-1)$. If $d = (q-1)(r-1)$ then $\mathbb{Z}/(q-1) \times \mathbb{Z}/(r-1)$ is cyclic, and $q - 1$ and $r - 1$ are relatively prime. In particular, $q = 2$ or $r = 2$. Suppose $q = 2$. Then $d = (q-1)(r-1) = (r-1)$ if and only if $p + (r)$ generates $\mathbb{Z}/(r)^\times$.

\[\]
Justify your answers.

(1) Let \(K/Q \) be a field extension, and suppose that \(\alpha, \beta \in K \) satisfy \(K = Q(\alpha, \beta) \) and \(\alpha^2 = \beta^3 \).

(a) Show that if \(\beta \in Q(\alpha) \) then \([K : Q] < \infty \).
(b) If \([K : Q] = \infty \), show that \(Q(\alpha) \cap Q(\beta) = Q(\alpha^2) \).

Solution: If \(\beta = 0 \) then \(\alpha = 0 \) so \(K = Q \), whence the conclusion of (a) holds and the hypothesis of (b) does not hold. Henceforth assume \(\beta \neq 0 \), and put \(\gamma := \alpha/\beta \in K \). Then \(\gamma^2 = \beta \) and \(\gamma^3 = \alpha \), so \(K = Q(\gamma) \). Suppose that \([K : Q] = \infty \), or equivalently that \(\gamma \) is transcendental over \(Q \). For any rational function \(f(X) \in Q[X] \) of degree \(n > 0 \), write \(f(X) = a(X)/b(X) \) where \(a, b \) are coprime polynomials in \(Q[X] \) with \(\max(\deg a, \deg b) = n \), and put \(t := f(\gamma) \), which is transcendental over \(Q \). Then \(\gamma \) is a root of the degree-\(n \) polynomial \(m(X) := a(X) - t \cdot b(X) \) in \((Q(t))[X] \). This polynomial is irreducible in \((Q[t])[X] \) since its \(t \)-degree is 1 and gcd\((a, b) = 1 \), so by Gauss’s lemma it is irreducible in \((Q(t))[X] \). Thus \([Q(\gamma) : Q(t)] = \deg m = n \). Plainly \(L := Q(\alpha) \cap Q(\beta) \) contains \(Q(\alpha^2) \), so that \([K : L] \leq [K : Q(\alpha^2)] = [Q(\gamma) : Q(\gamma^0)] = 6 \). But \([K : L] \) is divisible by both \([K : Q(\alpha)] = [Q(\gamma) : Q(\gamma^3)] = 3 \) and \([K : Q(\beta)] = [Q(\gamma) : Q(\gamma^2)] = 2 \), and hence by 6, so \([K : L] = 6 \) and thus \(L = Q(\alpha^2) \). This proves (b). Moreover, since \([K : L] = 6 \neq 3 = [K : Q(\alpha)] \), we have \(\beta \notin Q(\alpha) \), yielding the contrapositive of (a).

(2) Let \(G \) be a finite subgroup of the group \(GL_n(Q) \) of invertible \(n \)-by-\(n \) matrices with rational coefficients. Prove that every prime \(p \) which divides the order of \(G \) must satisfy \(p \leq n + 1 \).

Solution. By Cauchy’s theorem, \(G \) contains an element \(A \) of order \(p \). By Cayley–Hamilton, \(A \) is killed by its characteristic polynomial \(f_A(x) \), which is a degree-\(n \) polynomial in \(Q[x] \). Thus the minimal polynomial \(m_A(x) \) of \(A \) is a nonconstant monic polynomial in \(Q[x] \) which divides \(f_A(x) \). But \(m_A(x) \) also divides \(x^n - 1 \), and is not \(x - 1 \), so it must be either \(x^n - 1 \) or \((x^p - 1)/(x - 1) \) (since the latter polynomial is irreducible in \(Q[x] \)). Therefore \(p - 1 \leq \deg m_A \leq \deg f_A = n \).

(3) Let \(R := K[X,Y] \) be the polynomial ring in two variables over the field \(K \). Show that the ideal \(M := \langle X, Y \rangle \) of \(R \) can be written as the union of prime ideals of \(R \) which are properly contained in \(M \).

Solution. Here \(M \) consists of all elements of \(R \) having zero constant term. For any nonzero \(f \in M \), we may write \(f \) as the product of irreducible polynomials in \(R \), at least one of which must have zero constant term and hence must be in \(M \). Since \(R \) is a
unique factorization domain, the ideal generated by any such irreducible polynomial p is a prime ideal, and this prime ideal contains f and must be properly contained in M since it cannot contain both X and Y because p cannot divide both X and Y. Thus R is the union of the collection of all such prime ideals (p).

(4) Let H and J be subgroups of the finite group G such that the indices $[G : H]$ and $[G : J]$ are coprime. Show that every element of G can be written as hj for some $h \in H$ and $j \in J$.

$$\frac{\#H \cdot \#J}{\#(H \cap J)} = \frac{\#G \cdot [G : H \cap J]}{[G : H] \cdot [G : J]}$$

which is a multiple of $\#G$ and hence must equal $\#G$, so $HJ = G$.

(5) Show that the tensor product of \mathbb{Z}-modules $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$.

Solution. For any $a, b \in \mathbb{Q}$, we can write $a = m/n$ with $m, n \in \mathbb{Z}$ and $n \neq 0$, so that

$$(a + \mathbb{Z}) \otimes (b + \mathbb{Z}) = n \cdot ((a + \mathbb{Z}) \otimes (b/n + \mathbb{Z})) = ((na) + \mathbb{Z}) \otimes (b/n + \mathbb{Z}) =$$

$$= (m + \mathbb{Z}) \otimes (b/n + \mathbb{Z}) = (0 + \mathbb{Z}) \otimes (b/n + \mathbb{Z}) = 0.$$

Because the module $(\mathbb{Q}/\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z})$ is generated by such elements, it is equal to 0.