Please justify all your answers, and label which solutions apply to which problems. We write \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \) and \(\mathbb{F}_p \) for the integers, the rational numbers, the reals, the complex numbers and the field with \(p \) elements, respectively.

1. Show that the alternating group \(A_6 \) cannot act transitively on a set with 24 elements.

Solution. Suppose that the group \(G = A_6 \) acts transitively on a set \(X \) with 24 elements. Let \(x \in X \). Then the Stabilizer group \(G_x = \{ g \in G \mid g \cdot x = x \} \) has 360/24 = 15 elements. Groups with 15 elements are always commutative. The group \(G_x \) contains an element \(g \) of order 5 and an element \(h \) of order 3. The element \(g \) is a 5-cycle, and the element \(h \) is a 3-cycle or a product of two 3-cycles. The elements \(g \) and \(h \) cannot commute. Contradiction.

2. Let \(\text{Mat}_{2 \times 2}(\mathbb{C}) \) be the space of \(2 \times 2 \) matrices with complex entries. Define a linear map \(L \) from \(\text{Mat}_{2 \times 2}(\mathbb{C}) \) to itself by \(L(X) = AX -XA \), where \(A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \). Compute the Jordan form of \(L \). (Your answer should be a \(4 \times 4 \) matrix.)

Solution. We choose a basis of \(\text{Mat}_{2 \times 2}(\mathbb{C}) \): \(e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \), \(e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \), \(e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \), \(e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \).

The matrix of \(L \) with respect to this basis is:

\[
\begin{pmatrix}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

The matrix of \(L \) with respect to the basis \(-e_2, e_1, e_3, e_4\) is:

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

which is in Jordan normal form.

3. Let \(R \) be the ring \(\mathbb{Z}[x]/(x^2 - 2) \). Which of the following ideals of \(R \) are prime: \((0) \), \((2) \), \((3) \), \((7) \)? Which are maximal?

Solution. We can define a surjective ring homomorphism \(\varphi : \mathbb{Z}[x] = \mathbb{Z} + \mathbb{Z}\sqrt{2} \) by sending \(x \) to \(\sqrt{2} \). This yields an isomorphism \(R = \mathbb{Z}[x]/(x^2 - 2) \cong \mathbb{Z}[\sqrt{2}] \). Since \(\mathbb{Z}[\sqrt{2}] \) is a domain, \((0) \) is a prime ideal. However, \(\mathbb{Z}[\sqrt{2}] \) is not a field, so \((0) \) is not maximal. The ideal \((1) \) is the whole ring, and by definition this ideal is not maximal or prime. The ring \(R/(2) \cong \mathbb{Z}[x]/(x^2 - 2, 2) \cong \mathbb{F}_2[x]/(x^2) \) has a zero divisor, namely \(x \). So \(R/(2) \) is not a domain, and \((2) \) is not prime or maximal. The ring \(R/(3) \cong \mathbb{Z}[x]/(x^2 - 2, 3) \cong \mathbb{F}_3[x]/(x^2 - 2) \) is a field because \(x^2 - 2 \) is irreducible over \(\mathbb{F}_3 \) (since it has no root). So \((3) \) is maximal and prime. Finally, \(R/(7) \cong \mathbb{Z}[x]/(x^2 - 2, 7) \cong \mathbb{F}_7[x]/(x^2 - 2) \) is not a domain because \((x - 3) \) is a zero divisor (\((x - 3)(x + 3) = x^2 - 2 \) over \(\mathbb{F}_7 \)). So \((7) \) is not prime or maximal.

4. Let \(p \) be prime and let \(a \) be a rational number which is not a \(p \)-th power. Show that \(z^p - a \) is irreducible over \(\mathbb{Q} \). (You may use that \(\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) = (\mathbb{Z}/p\mathbb{Z})^\times \), where \(\zeta_p \) is a nontrivial \(p \)-th root of unity.)
Solution. Let \(\alpha \) be a root of \(z^p - a \). Then the roots of \(z^p - a \) are \(\alpha, \zeta_p \alpha, \zeta_p^2 \alpha, \ldots, \zeta_p^{p-1} \alpha \).

Let \(G = \text{Gal}(\mathbb{Q}(\zeta_p, \alpha)/\mathbb{Q}) \). If \(g \) is an element of \(G \), then \(g \) sends \(\alpha \) to \(\alpha \zeta_p^B \) for some \(B \) and sends \(\zeta_p \) to \(\zeta_p^A \). Then \(g \) sends \(\zeta_p^x \alpha \) to \(\zeta_p^{Ax+B} \alpha \). So \(G \) is a subgroup of the group of all maps of the form \(x \mapsto Ax + B \) where \(A \in \mathbb{F}_p \) and \(B \in \mathbb{F}_p \).

There exists a nontrivial group homomorphism \(\varphi : G \to \mathbb{F}_p^\times \) that sends the map \(x \mapsto Ax + B \) to \(A \in \mathbb{F}_p^\times \). If the kernel of \(\varphi \) is trivial, then \(G \) is cyclic. Say \(G \) is generated by \(x \mapsto Ax + B \) where \(A \neq 0, 1 \). Then \(G \) fixes one element and \(z^p - a \) has a root in \(\mathbb{Q} \) which is not the case.

So \(G \) has a nontrivial kernel. This means that \(G \) contains a \(p \) cycle and \(G \) acts transitively on the roots. This implies that \(z^p - a \) is irreducible.

5. Let \(V \) be a finite dimensional vector space over an arbitrary field \(k \) and let \(A \) be an endomorphism of \(V \). Show that \(V \) can be uniquely written as \(V_0 \oplus V_1 \) where \(A(V_0) \subseteq V_0 \), \(A(V_1) \subseteq V_1 \), \(A|_{V_0} \) is nilpotent and \(A|_{V_1} \) is invertible. (\(A|_{V_0} \) and \(A|_{V_1} \) are the restrictions of \(A \) to \(V_0 \) and \(V_1 \) respectively.)

Solution. Let \(n \) be the dimension of \(V \), and define \(V_0 \) and \(V_1 \) as the kernel and image of \(A^n \) respectively. It is clear that \(A(V_0) \subseteq V_0 \) and \(A(V_1) \subseteq V_1 \) and that \(A|_{V_0} \) is nilpotent. We claim that kernel of \(A^m \) is equal to \(V_0 \) for all \(m > n \). If \(p(X) \) is the characteristic polynomial of \(A \), then the ideal \((p(X), X^m)\) in \(k[X] \) is equal to \((X^l)\) for some \(l \) and \(l \leq n \) because \(p(X) \) has degree \(n \). It follows that \(X^n \in (p(X), X^m) \) and we can write \(X^n = f(X)p(X) + g(X)X^m \). If we plug in \(X = A \) and use Cayley-Hamilton, then we have \(A^n = f(A)p(A) + g(A)A^m = g(A)A^m \). Now it is clear that the kernel of \(A^m \) is contained in \(V_0 \). Suppose that \(v \in V_1 \cap V_0 \). Then we can write \(v = A^n(w) \) for some \(w \in V \) and \(A^n(v) = A^2n(w) = 0 \). It follows that \(v = A^n(w) = 0 \). So \(V_1 \cap V_0 = \{0\} \). Since \(V_1 \cong V/V_0 \), we have \(\dim V_0 + \dim V_1 = \dim V \). It follows that \(V = V_0 \oplus V_1 \). Any element of the kernel of \(A|_{V_1} \) lies in \(V_0 \cap V_1 \) so \(A|_{V_1} \) has trivial kernel and is therefore invertible.
QR Exam Algebra, September 2014, Afternoon

Please justify all your answers, and label which solutions apply to which problems.

1. Set

\[M = \begin{pmatrix} 2 & 4 & 10 \\ 1 & 3 & 7 \\ 1 & 1 & 15 \end{pmatrix}. \]

Let \(G \) be the abelian group \(\mathbb{Z}^3/M\mathbb{Z}^3 \). (The quotient of \(\mathbb{Z}^3 \) by the image of the map \(M \).)

Write \(G \) as a direct sum of cyclic groups of prime power order.

Solution.

Using elementary row/column operations:

\[
\begin{pmatrix} 2 & 4 & 10 \\ 1 & 3 & 7 \\ 1 & 1 & 15 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 7 \\ 2 & 4 & 10 \\ 1 & 1 & 15 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 7 \\ 0 & -2 & -4 \\ 0 & -2 & 8 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 12 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 12 \end{pmatrix}
\]

This is the Smith normal form. So the invariant factors are 4, 2, 3, and the elementary divisors are 2, 4, 3. We have \(\mathbb{Z}^3/M\mathbb{Z}^3 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \).

2. Let \(\alpha \) and \(\beta \) be algebraic numbers of degrees \(a \) and \(b \) over \(\mathbb{Q} \).

(a) If \(\mathbb{Q}(\alpha)/\mathbb{Q} \) and \(\mathbb{Q}(\beta)/\mathbb{Q} \) are Galois, show that \([\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] \) divides \(ab \).

(b) Show that \([\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] \) need not divide \(ab \) without the hypothesis that \(\mathbb{Q}(\alpha)/\mathbb{Q} \) and \(\mathbb{Q}(\beta)/\mathbb{Q} \) are Galois.

Solution.

(a) The composite field extension \(\mathbb{Q}(\alpha, \beta) : \mathbb{Q} \) is also Galois. Let \(G, G_\alpha, G_\beta \) be the Galois groups of \(\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha), \mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\beta) \) and \(\mathbb{Q}(\alpha, \beta) : \mathbb{Q} \) respectively. Let \(c \) be the number of elements of \(G \), which is also the degree of the extension \(\mathbb{Q}(\alpha, \beta) : \mathbb{Q} \). Since \(\mathbb{Q}(\alpha) : \mathbb{Q} \) is Galois, \(G_\alpha \subseteq G \) is normal, and \(G/G_\alpha \) is the Galois group of \(\mathbb{Q}(\alpha) : \mathbb{Q} \). It follows that \(G/G_\alpha \) has \(a \) elements, and \(G_\alpha \) has \(c/a \) elements. Similarly, \(G_\beta \) has \(c/b \) elements. Since \(\mathbb{Q}(\alpha, \beta) \) is the composition of \(\mathbb{Q}(\alpha) \) and \(\mathbb{Q}(\beta) \) we have \(G_\alpha \cap G_\beta = \{e\} \). It follows that \(G_\alpha G_\beta \) is a subgroup of \(G \) with \((c/a) \cdot (c/b) \) elements. So \((c/a) \cdot (c/b) \) divides \(c \) and therefore \(c \) divides \(ab \).

(b) Let \(\alpha \) and \(\beta \) be two distinct roots of the irreducible polynomial \(X^3 - 2 \). Then we have \(a = b = 3 \), and the degree of \(\mathbb{Q}(\alpha, \beta) : \mathbb{Q} \) is 6.

3. Suppose that \(n \geq 2 \) and \(A \) is a complex \(n \times n \) matrix.

(a) Show that there exists a linear map \(L : \mathbb{C}^n \to \mathbb{C}^n \) such that \(L(v \wedge w) = Av \wedge w + v \wedge Aw \).

(b) Prove that if \(A \) is skew-symmetric, then \(L \) is not invertible.

Solution.

(a) Define \(\Theta : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n \) by \(\Theta(v, w) = Av \wedge w + v \wedge Aw \). Then \(\Theta \) is bilinear, and

\[
\Theta(w, v) = Aw \wedge v + w \wedge Av = -v \wedge Aw - Av \wedge w = -\Theta(w, v).
\]
This shows that Θ is alternating. By the universal property, there exists a unique linear map $L : \bigwedge^2(C^n) \to \bigwedge^2(C^n)$ such that $L(v \wedge w) = \Theta(v, w)$.

(b) Suppose that A is skew-symmetric. Suppose that $\lambda \neq 0$ is an eigenvalue of A. Then $A^t = -A$ also has an eigenvalue λ, and A has an eigenvalue $-\lambda$. If v and w are eigenvectors for the eigenvalues λ and $-\lambda$ respectively, then we have

$$L(v \wedge w) = Av \wedge w + v \wedge Aw = \lambda(v \wedge w) - \lambda(v \wedge w) = 0.$$

Now v and w are linearly independent, so $v \wedge w \neq 0$ and we conclude that L has a nontrivial kernel. The other case is where the only eigenvalue of A is 0. Then A is nilpotent. If $A = 0$ then $L = 0$ and is not invertible. Otherwise, there exists a vector v with $A^2v = 0$ and $Av \neq 0$. Let $w = Av$. Then v and w are linearly independent because $Av \neq 0$ and $Aw = 0$. So $v \wedge w \neq 0$ and

$$L(v \wedge w) = Av \wedge w + v \wedge Aw = w \wedge w + v \wedge 0 = 0.$$

Again, L has a nontrivial kernel.

4. Show that a group of order 140 has a normal subgroup isomorphic to $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Solution.

Suppose that G is a group of order 140. The number of 5-Sylow subgroups divides $140/5 = 28$ and is congruent to 1 modulo 5. It follows that there is a unique 5-Sylow subgroup $H_5 \cong \mathbb{Z}/5\mathbb{Z}$. The number of 7-Sylow subgroups divides $140/7 = 20$ and is congruent to 1 modulo 7. It follows that there is a unique 7 Sylow subgroup $H_7 \cong \mathbb{Z}/7\mathbb{Z}$. Clearly, $H_5 \cap H_7$ is not equal to H_5, so $H_5 \cap H_7$ is trivial. So H_5H_7 is a group of order 35, and H_7 is a normal subgroup. The automorphism group of H_7 has order 6, so H_5 can only act trivially on H_7. This shows that $H_5H_7 \cong H_5 \times H_7 \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

5. Let p be an odd prime. Let $f(x)$ be an irreducible polynomial of degree p with rational coefficients whose splitting field has Galois group the dihedral group of order $2p$. Show that f has either all real roots or precisely one real root.

Solution. Let D be the Galois group of the splitting field of $f(x)$. Let σ denote complex conjugation. Since $\sigma^2 = \text{Id}$, either σ has order 1 or 2 as an element of D. If σ has order 1, then all roots of f are fixed by σ, hence real, and we are done. Suppose, then that σ has order 2. Choose a root β of D and let its stabilizer be H. Then the stabilizers of the various roots of f are the conjugates of H. Each order 2 element of D lies in precisely one such conjugate, so σ fixes exactly one root of f, as desired.