September 2015, Qualifying Review Algebra, Morning

Please justify all your answers. We write \mathbb{C}, \mathbb{F}_p, \mathbb{Q}, \mathbb{R} and \mathbb{Z} for the complex numbers, the field with p elements, the rational numbers, the real numbers and the integers respectively.

Problem 1. Suppose that a finite group G acts 2-transitively on a set X of cardinality at least 2. Prove the following counting formula:

$$|G_x \cap G_y| \cdot (|X|^2 - |X|) = |G|$$

where x and y are any two distinct elements of X. (2-transitive means: given elements $x \neq y$ and $x' \neq y'$ of X there exists $g \in G$ such that $gx = x'$ and $gy = y'$.)

Problem 2. Suppose that R is a commutative ring with $1 \neq 0$ such that every proper principal ideal is prime. Show that R is a field. (A proper ideal of R is an ideal I with $I \neq R$. A principal ideal is an ideal that can be generated by one element.)

Problem 3. Show that every group of order $255 = 3 \cdot 5 \cdot 17$ is cyclic.

Problem 4. Let α be a complex number with $\alpha^2 = \sqrt{3} - \sqrt{5}$.

(a) What is the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$?
(b) What is the minimal polynomial of α over \mathbb{Q}?
(c) Show that the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ is not Galois.

Problem 5. Let V be an n-dimensional real vector space.

(a) Show that there exists a unique linear map

$$\varphi: \bigwedge^2(V^*) \otimes \bigwedge^2(V) \to V^* \otimes V$$

satisfying

$$\varphi((f_1 \wedge f_2) \otimes (v_1 \wedge v_2)) = (f_1(v_1)f_2 - f_2(v_1)f_1) \otimes v_2 - (f_1(v_2)f_2 - f_2(v_2)f_1) \otimes v_1.$$

(b) Determine the rank of φ, as a function of n.

Problem 1. Let \(f: G \rightarrow H \) be a surjection of finite groups and let \(K \) be a \(p \)-Sylow subgroup of \(G \). Show that \(f(K) \) is a \(p \)-Sylow of \(H \).

Problem 2. Let \(R = \mathbb{C}[x, y] \), and define \(R \)-modules by \(M = R/(x + y)R \), and \(N = R/(x^2 - y^2 - 1)R \). Show that \(M \otimes_R N = 0 \).

Problem 3. Compute the rational canonical form of the following matrix.
\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}
\]
The empty blocks consist solely of zeros.

Problem 4. Suppose that \(p(x) \in \mathbb{Q}[x] \) is an polynomial of degree 5 whose roots are \(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \). Show that, if \(\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)/\mathbb{Q} \) is a Galois extension with Galois group \(S_5 \), then we have
\(\mathbb{Q}(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4) \cap \mathbb{Q}(2\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5) = \mathbb{Q} \).

Problem 5. Let \(V \) and \(W \) be finite dimensional complex vector spaces of dimension \(m \) and \(n \) respectively, and let \(A \) and \(B \) be linear maps \(V \rightarrow W \), with \(A \) surjective. Show that \(A + tB \) is surjective for all but at most \(n \) values of \(t \in \mathbb{C} \).