(1) Suppose that \(L \subseteq \mathbb{Z}^2 \) is the subgroup generated by \((5, 4)\) and \((2, 7)\). Show that there is a unique subgroup \(M \subseteq \mathbb{Z}^2 \) of index 9 that contains \(L \). Give generators of \(M \).

(2) Suppose that \(A \) is an invertible square matrix with complex entries. Show that if \(A^2 \) is diagonalizable, then so is \(A \).

(3) Suppose that \(R \) is the subring of the polynomial ring \(\mathbb{Z}[x] \) consisting of all polynomials \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \) for which the coefficients \(a_1, a_2, \ldots, a_n \) are even (but \(a_0 \) does not have to be even).

(a) Show that \(R \) contains a maximal ideal that is not finitely generated.

(b) What is the ring \(R/(3) \)? Is it finite?

(4) Consider the vector space \(V = \mathbb{F}_p^4 \) where \(\mathbb{F}_p \) is the field with \(p \)-elements.

(a) How many 2-dimensional subspaces does \(V \) have?

(b) Suppose that a subgroup \(G \subseteq \text{GL}_4(\mathbb{F}_p) \) is a \(p \)-group. Show that there exists a 2-dimensional subspace \(W \) of \(V \) such that \(g \cdot W \subseteq W \) for all \(g \in G \).

(5) Let \(K \) be the splitting field of \(X^4 - 2 \) over \(\mathbb{Q} \).

(a) What is the Galois group of \(K \) over \(\mathbb{Q} \)?

(b) Find all subfields \(L \) of \(K \) such that \([L : \mathbb{Q}] = 4\). (Here \([L : \mathbb{Q}] \) is the degree of the field extension \(L/\mathbb{Q} \).)
(1) Suppose that M is a field containing \mathbb{F}_p and K and L are subfields of M. Assume that the number of elements of K, L and M are with p^6, p^{10} and p^{60} respectively. How many elements do the fields KL and $K \cap L$ have?

(2) Let $A \in \text{Mat}_{n,n}(K)$ be an $n \times n$ matrix with entries in the field K and suppose that the characteristic polynomial of A is irreducible over K.
(a) Let $L \subseteq \text{Mat}_{n,n}(K)$ be the K-span of $I, A, A^2, \ldots, A^{n-1}$. Show that L is a subring of $\text{Mat}_{n,n}(K)$, and show that the ring L is a field.
(b) For a nonzero vector $v \in K^n$, prove that $v, Av, \ldots, A^{n-1}v$ form a basis of K^n.

(3) Calculate the following groups:
(a) $\mathbb{Z}/(3) \otimes_{\mathbb{Z}} \mathbb{Z}/(2)$.
(b) $\mathbb{Z}/(3) \otimes_{\mathbb{Z}} \mathbb{Z}/(9)$.
(c) $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}$.

(4) Let V be a vector space of dimension 3.
(a) Show that there exists a linear map $\varphi : \Lambda^2 V \otimes V \rightarrow \Lambda^2 V \otimes V$ such that
$$\varphi((a \wedge b) \otimes c) = (a \wedge c) \otimes b - (b \wedge c) \otimes a.$$
(b) Determine the eigenvalues of φ and their multiplicities.

(5) Let G be a group of even order. Show that there exists an element in G of order 2 whose conjugacy class has an odd number of elements.