Morning solutions

(1) Using elementary row operations we get
\[
\begin{pmatrix} 5 & 4 \\ 2 & 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -10 \\ 2 & 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 27 \end{pmatrix}
\]

Using elementary column operations we get
\[
\begin{pmatrix} 1 & 0 \\ 0 & 27 \end{pmatrix}
\]
and \(\mathbb{Z}/2M \cong \mathbb{Z}/(27)\). Since \(\mathbb{Z}/(27)\) has a unique subgroup of index 9 (and order 3), there exists a unique subgroup of \(\mathbb{Z}^2\) containing \(M\) that has index 9. This module \(M\) is generated by \((1, -10)\) and \((0, 9)\).

(2) Suppose that \(B\) be the Jordan normal form of \(A\) and let \(J_n(\lambda)\) be a Jordan block of \(B\) of size \(n \times n\) with eigenvalue \(\lambda\). If \(n > 1\) then \(J_n(\lambda)^2 - \lambda^2 I\) is nonzero and nilpotent. This means that \(B\) has a generalized eigenvector with eigenvalue \(\lambda^2\) that is not an eigenvector. This implies that \(B\) and \(A\) are not diagonalizable, which is a contradiction. Therefore \(n = 1\). So all the Jordan blocks of \(B\) have size \(1 \times 1\).

Therefore, \(B\) is diagonal and \(A\) is diagonalizable.

(3) (a) Let \(\phi : R \to \mathbb{Z}[x]/(2, x)\) be the homomorphism defined by \(\phi(p(x)) = p(x) + (2, x)\). The homomorphism is surjective, and the kernel is \(I := (2, 2x, 2x^2, 2x^3, \ldots)\). By the first isomorphism theorem, \(R/I\) is isomorphic to \(\mathbb{Z}[x]/(2, x) \cong \mathbb{F}_2\), which is a field; thus, \(I\) is maximal. It is also not hard to see that \(2x^n\) does not lie in the \(R\)-ideal generated by \((2, 2x, \ldots, 2x^{n-1})\) because the coefficient of \(x^n\) of any polynomial in \((2, 2x, \ldots, 2x^{n-1})\) is divisible by \(4\). This shows that \(I\) is not finitely generated.

(b) Let \(\psi : R \to \mathbb{Z}[x]/(3) \cong \mathbb{F}_3[x]\) be the homomorphism defined by \(\psi(p(x)) = p(x) + (3)\). It is easy to see that \(\psi\) is surjective and that the kernel is \((3)\). So \(R/(3)\) is isomorphic to \(\mathbb{F}_3[x]\). In particular, this ring is not finite.

(4) (a) To specify a 2-dimensional subspace, one must specify two linearly independent vectors, and then mod out by the choice of basis. The number of possibilities for the first vector is \(p^3 - 1\) as it can be any nonzero vector; the second vector cannot lie in the line spanned by the first, so there are \(p^3 - p\) possibilities. In all, there are \((p^3 - 1)(p^3 - p)\) possibilities. The group \(\text{GL}_2(\mathbb{F}_p)\) has size \((p^2 - 1)(p^2 - p)\) by a similar argument; this group acts freely and transitivity on the choice of basis vectors for a given 2-dimensional subspace of \(V\). Thus, the number of two dimensional subspaces is the quotient \(\frac{(p^4 - 1)(p^3 - p)}{(p^2 - 1)(p^2 - p)} = (p^2 + 1)(1 + p + p^2)\). In particular, this number is congruent to 1 modulo \(p\), and thus not divisible by \(p\).

(b) The number computed in the first part is congruent to 1 modulo \(p\). Now, for any \(p\)-group \(G\) acting on a set \(X\), we have the congruence \(|X^G| \equiv |X| \mod p\): all orbits that are not singletons (i.e., not fixed points) must have size divisible by \(p\) since \(G\) is a \(p\)-group. Applying this to the set \(X\) considered in (a) shows that
$|X^G| \equiv 1 \mod p$, and thus X^G is non-empty. This translates to the existence of a 2-dimensional subspace fixed (setwise) by G.

(5) The splitting field of K over \mathbb{Q} is $\mathbb{Q}((\sqrt{2}, i))$. Since $X^4 - 2$ is irreducible (by Eisenstein), we have $[\mathbb{Q}(\sqrt{2} : \mathbb{Q})] = 4$. Since $i \notin \mathbb{Q}(\sqrt{2})$, we have $[\mathbb{Q}(\sqrt{2}, i : \mathbb{Q}(\sqrt{2})] = 2$ and $[\mathbb{Q}(\sqrt{2}, i : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, i : \mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2} : \mathbb{Q})] = 2 \cdot 4 = 8$. From $[\mathbb{Q}(i : \mathbb{Q}] = 2$ and $[\mathbb{Q}(\sqrt{2}, i : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, i : \mathbb{Q}(i)] \cdot [\mathbb{Q}(i : \mathbb{Q}]$ follows that $[\mathbb{Q}(\sqrt{2}, i : \mathbb{Q}(i)] = 4$ and $x^4 - 2$ is irreducible over $\mathbb{Q}(i)$.

(a) There exists an automorphism σ fixing $\mathbb{Q}(i)$ such that $\sigma(\sqrt{2}) = i\sqrt{2}$. Let τ be complex conjugation. On the set of roots $\{\sqrt{2}, i\sqrt{2}, -\sqrt{2}, -i\sqrt{2}\}$ the actions of the automorphisms are given by $\sigma = (1\ 2\ 3\ 4)$ and $\tau = (2\ 4)$. Together they generate the dihedral group D_8 with 8 elements. So this must be the whole Galois group.

(b) By the Galois correspondence these subfields correspond to subgroups of D_8 of order 2. The order 2 subgroups are $\langle(1\ 3)\rangle$, $\langle(2\ 4)\rangle$, $\langle(1\ 3)(2\ 4)\rangle$, $\langle(1\ 2)(3\ 4)\rangle$ and $\langle(1\ 4)(2\ 3)\rangle$. The corresponding subfields are $\mathbb{Q}(i\sqrt{2})$, $\mathbb{Q}(-\sqrt{2})$, $\mathbb{Q}(i, \sqrt{2})$, $\mathbb{Q}((1 + i)\sqrt{2})$ and $\mathbb{Q}((1 - i)\sqrt{2})$, respectively.
Afternoon solutions

(1) We have $[M : \mathbb{F}_p] = 60$, $[K : \mathbb{F}_p] = 6$ and $[L : \mathbb{F}_p] = 10$. The Galois group G of the extension M/\mathbb{F}_p is $\mathbb{Z}/(60)$. The group G_K fixing K has index 6 so it is generated by $10 + (60)$. Similarly, the Galois group G_L that fixes L is generated by $6 + (60)$. The intersection of G_K and G_L is generated by $30 + (60)$. This intersection is isomorphic to $\mathbb{Z}/2$. This implies that $[M : KL] = 2$. So $[KL : \mathbb{F}_p] = 60/2 = 30$ and KL has p^{30} elements. The group generated by G_K and G_L is generated by $2 + (60)$. This group is isomorphic to $\mathbb{Z}/2$. Therefore $[M : K \cap L] = 30$, $[K \cap L : \mathbb{F}_p] = 60/30 = 2$ and $K \cap L$ has p^2 elements.

(2) The Galois group of K over \mathbb{F}_p is $\mathbb{Z}/(de)$ since the finite field \mathbb{F}_p has a unique extension (necessarily Galois) of degree n for any integer $n \geq 1$. As $\mathbb{Z}/(de)$ has a unique quotient of size d (namely, $\mathbb{Z}/(d)$), there is a unique field L between \mathbb{F}_p and K such that L/\mathbb{F}_p is Galois with group $\mathbb{Z}/(d)$. But then L has degree d over \mathbb{F}_p, so L must have p^d elements.

(3) Let $f(x)$ be the characteristic polynomial of A. Its degree is n. Since $f(x)$ is reducible, the ideal $(f(x))$ is maximal.

(a) Consider the ring homomorphism $\phi : K[x] \to \text{Mat}_{n,n}(K)$ that sends the polynomial $p(x)$ to $p(A)$. For any polynomial $p(x)$ we can write $p(x) = q(x)f(x) + r(x)$ where $r(x)$ has degree $< n$ (or is equal to 0). We have $p(A) = q(A)f(A) + r(A) = r(A)$ which lies in the span of $I, A, A^2, \ldots, A^{n-1}$. So the image $\text{im}(\phi)$ of ϕ is equal to the span of $I, A, A^2, \ldots, A^{n-1}$. The kernel of ϕ contains the maximal ideal $(f(x))$. Since $\ker(\phi)$ is clearly not equal to $K[x]$, we must have $\ker(\phi) = (f(x))$. By the first isomorphism theorem, we have $K[x]/(f(x)) \cong \text{im}(\phi)$. Because $(f(x))$ is maximal, $K[x]/(f(x))$ is a field.

(b) The map $\psi : \text{Mat}_{n,n}(K) \to K^n$ defined by $\psi(p(x)) = p(A)v$ is a $K[x]$-module homomorphism. The kernel is a submodule (hence an ideal) of $K[x]$ that contains the maximal ideal $(f(x))$. The kernel is not the whole ring, because v is nonzero. Because $(f(x))$ is maximal, the kernel of ψ must be equal to $(f(x))$. If $v, Av, \ldots, A^{n-1}v$ are linearly dependent, then there exists a nonzero polynomial $q(x)$ of degree $\leq n - 1$ with $q(A)v = 0$. Since $q(x) \in \ker(\psi) = (f(x))$ we have $f(x) | q(x)$ but this is a contradiction because $f(x)$ has degree n and $q(x)$ has degree $< n$. So $v, Av, \ldots, A^{n-1}v$ are linearly independent. Since K^n has dimension n, these vectors must form a basis.

(4) (a) 0. Because $\mathbb{Z}/(2) \otimes \mathbb{Z}/(3)$ is generated as a \mathbb{Z}-module by

$$ (1 + (2)) \otimes (1 + (3)) = (3 + (2)) \otimes (1 + (3)) = $$

$$ = (1 + (2)) \otimes (3 + (3)) = (1 + (2)) \otimes (0 + (3)) = 0. $$

(b) $\mathbb{Z}/(3)$. The map $\psi : \mathbb{Z}/(3) \times \mathbb{Z}/(9) \to \mathbb{Z}/(3)$ given by $\psi(a+(3), b+(9)) = ab+(3)$ is well defined, so there exists a surjective group homomorphism $\mathbb{Z}/(3) \otimes_{\mathbb{Z}} \mathbb{Z}/(9) \to$
On the other hand \(\mathbb{Z}/(3) \times \mathbb{Z}/(9) \) is generated by \((1 + (3)) \otimes (1 + (9))\) which has order at most 3 in \(\mathbb{Z}/(3) \otimes_{\mathbb{Z}} \mathbb{Z}/(9) \).

(c) This module is generated by elements of the form
\[
(\frac{a}{b} + \mathbb{Z}) \otimes \frac{c}{d} = (\frac{a}{b} + \mathbb{Z}) \otimes (b \cdot \frac{c}{db}) = (a + \mathbb{Z}) \otimes \frac{c}{db} = (0 + \mathbb{Z}) \otimes \frac{c}{db} = 0.
\]

(5)

(a) Define \(\psi : V \times V \times V \to \Lambda^2 V \otimes V \) by
\[
\psi(a, b, c) = (a \wedge c) \otimes b - (b \wedge c) \otimes a.
\]

For fixed \(c \), this map is bilinear in \(a \) and \(b \). It is also skew-symmetric: \(\psi(a, b, c) = -\psi(b, a, c) \). By the universal property of \(\Lambda^2 V \), there exists a map \(\theta : \Lambda^2 V \to \Lambda^2 \otimes V \) such that
\[
\theta((a \wedge b), c) = \psi(a, b, c) = (a \wedge c) \otimes b - (b \wedge c) \otimes a.
\]

It is easy to verify that this map is also linear in \(c \), so \(\varphi \) is bilinear, and there exists a linear map \(\varphi : \Lambda^2 V \otimes V \to \Lambda^2 V \otimes V \) with the property
\[
\varphi((a \wedge b) \otimes c) = \theta(a \wedge b, c) = (a \wedge c) \otimes b - (b \wedge c) \otimes a.
\]

(b) Restricting \(\varphi \) to the span of \((e_1 \wedge e_2) \otimes e_3, (e_1 \wedge e_3) \otimes e_2\) and \((e_2 \wedge e_3) \otimes e_1\) gives the matrix
\[
\begin{pmatrix}
0 & 1 & -1 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{pmatrix}
\]

This matrix has eigenvalue \(-2\) with multiplicity 1 and eigenvalue 1 with multiplicity 2. For \(i \neq j \), \((e_i \wedge e_j) \otimes e_j\) is an eigenvector with eigenvalue 1. There are 6 such vectors. Combined we have the eigenvalue 1 with multiplicity 8 and the eigenvalue \(-2\) with multiplicity 1.

(6) Let \(n = 2^r m \) be the order of \(n \) where \(r > 0 \) and \(m \) is odd. Suppose that \(S \) is the 2-Sylow subgroup of \(G \). It has \(2^r \) elements. Since \(S \) is a nontrivial 2-group, it has a nontrivial center, and this nontrivial center has an element of order 2, call it \(g \). Consider the action of \(G \) on itself by conjugation. If \(H \) is the stabilizer, and \(C \) is the orbit, then \(H \) is the centralizer of \(g \), \(C \) is the conjugacy class of \(g \) and \(|H| \cdot |C| = |G| \).

Since \(H \) contains \(S \), \(|H| \) is divisible by \(2^r \) which implies that \(|C| \) is odd.