Seminar Event Detail

Student Combinatorics

Date:  Tuesday, March 30, 2021
Location:  Virtual (5:30 PM to 6:30 PM)

Title:  Chip-firing on graphs

Abstract:   In the Baker-Norine chip-firing game, you're given a graph with each vertex assigned an integer value that represents a number of chips at the vertex (negative values represent debt). The game is winnable if there exists a way to "chip-fire" at the vertices so that all vertices are out of debt.
In this talk, we'll introduce this game, along with some divisor theory of graphs. We'll then discuss two different ways to measure the "degree" of winnability, as well as an algorithm to determine if a given distribution of chips is winnable. If time permits, we'll also see how the game relates to divisor theory and the Riemann-Roch theorem in algebraic geometry.

Zoom link:
Password: cookies


Speaker:  Teresa Yu
Institution:  University of Michigan

Event Organizer:     


Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact

Back to previous page
Back to UM Math seminars/events page.