Date: Tuesday, November 16, 2021
Location: 1360 East Hall (4:00 PM to 5:00 PM)
Title: Randomness in nonlinear dispersive equations
Abstract: Randomness is ubiquitous in nature. It is exhibited in mathematics in a wide range of models and problems from different areas. From the point of view of PDEs, there are three main phenomena we are interested in: statistical description of the system, propagation of randomness, and stochastic regularization. I will talk about a series of recent works in nonlinear dispersive equations related to these three phenomena. Using the nonlinear Schrodinger equation as a model, I will discuss the dynamics of Gibbs measure (equilibrium statistical mechanics), mathematical treatment of wave turbulence (non-equilibrium statistical mechanics), and uniqueness of rough solutions. These are joint works with Zaher Hani, Andrea Nahmod, and Haitian Yue.
Files:
Speaker: Yu Deng
Institution: University of Southern California
Event Organizer:
|