Date: Wednesday, January 12, 2022
Location: 4096 East Hall (4:00 PM to 5:30 PM)
Title: Intrinsic construction of moduli spaces via affine grassmannians
Abstract: Moduli spaces can be viewed as a geometric way of classifying objects of interest in algebraic geometry. For example, there exists a quasiprojective moduli space that parametrizes stable vector bundles on a smooth projective curve C. In order to further understand the geometry of this space, Mumford constructed a compactification by adding a boundary parametrizing semistable vector bundles. If the smooth curve C is replaced by a higher dimensional projective variety X, then one can compactify the moduli problem by allowing vector bundles to degenerate to an object known as a "torsionfree sheaf". Gieseker and Maruyama constructed moduli spaces of semistable torsionfree sheaves on such a variety X. More generally, Simpson proved the existence of moduli spaces of semistable pure sheaves supported on smaller subvarieties of X. All of these constructions use geometric invariant theory (GIT).
The moduli problem of sheaves on X is naturally parametrized by a geometric object M called an "algebraic stack". In this talk I will explain an alternative GITfree construction of the moduli space of semistable pure sheaves which is intrinsic to the moduli stack M. This approach also yields a HarderNarasimhan stratification of the unstable locus of the stack. Our main technical tools are the theory of Thetastability introduced by HalpernLeistner, and some recent techniques developed by Alper, HalpernLeistner and Heinloth. In order to apply these results, one needs to prove some monotonicity conditions for a polynomial numerical invariant on the stack. We show monotonicity by defining a higher dimensional analogue of the affine Grassmannian for pure sheaves. If time allows, I will also explain some applications of these ideas to some other moduli problems. This talk is based on joint work with Daniel HalpernLeistner and Trevor Jones.
Files:
Speaker: Andres Fernandez Herrero
Institution: Cornell University
Event Organizer:
