Seminar Event Detail


Integrable Systems and Random Matrix Theory

Date:  Monday, April 04, 2022
Location:  ZOOM ID: 926 6491 9790 Virtual (4:00 PM to 5:00 PM)

Title:  Uniqueness of solutions of the KdV-hierarchy via Dubrovin-type flows

Abstract:   We consider the Cauchy problem for the KdV hierarchy -- a family of integrable PDEs with a Lax pair representation involving one-dimensional Schrodinger operators -- under a local in time boundedness assumption on the solution.

For reflectionless initial data, we prove that the solution stays reflectionless. For almost periodic initial data with absolutely continuous spectrum, we prove that under Craig-type conditions on the spectrum, Dirichlet data evolve according to a Lipschitz Dubrovin-type flow, so the solution is uniquely recovered by a trace formula. This applies to algebro-geometric (finite gap) solutions; more notably, we prove that it applies to small quasiperiodic initial data with analytic sampling functions and Diophantine frequency.

This also gives a uniqueness result for the Cauchy problem on the line for periodic initial data, even in the absence of Craig-type conditions. This is joint work with Milivoje Lukić.

A recording of the talk can be found here.

Files:


Speaker:  Giorgio Young
Institution:  Rice University

Event Organizer:   Ahmad Barhoumi    barhoumi@umich.edu

 

Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact math-webmaster@umich.edu

Back to previous page
Back to UM Math seminars/events page.