Date: Thursday, March 10, 2022
Location: https://umich.zoom.us/j/96274532499 (password: algebra) Virtual East Hall (4:00 PM to 5:00 PM)
Title: On the HilbertSamuel coefficients of Frobenius powers of an ideal
Abstract: We provide suitable conditions under which the asymptotic limit of the HilbertSamuel coefficients of the Frobenius powers of an mprimary ideal exists in a Noetherian local ring (R,m) with prime characteristic p>0. This, in turn, gives an expression of the HilbertKunz multiplicity of powers of the ideal. We also prove that for a face ring R of a simplicial complex and an ideal J generated by pure powers of the variables, the generalized HilbertKunz function l(R/(J^^{[q])k}) is a polynomial for all q,k and also give an expression of the generalized HilbertKunz multiplicity of powers of J in terms of HilbertSamuel multiplicity of J. We conclude by giving a counterexample to a conjecture proposed by I. Smirnov which connects the stability of an ideal with the asymptotic limit of the first Hilbert coefficient of the Frobenius power of the ideal. This is a joint work with Arindam Banerjee and Jugal Verma.
Files:
Speaker: Kriti Goel
Institution: University of Utah
Event Organizer:
