Seminar Event Detail

Commutative Algebra

Date:  Thursday, March 10, 2022
Location: (password: algebra) Virtual East Hall (4:00 PM to 5:00 PM)

Title:  On the Hilbert-Samuel coefficients of Frobenius powers of an ideal

Abstract:   We provide suitable conditions under which the asymptotic limit of the Hilbert-Samuel coefficients of the Frobenius powers of an m-primary ideal exists in a Noetherian local ring (R,m) with prime characteristic p>0. This, in turn, gives an expression of the Hilbert-Kunz multiplicity of powers of the ideal. We also prove that for a face ring R of a simplicial complex and an ideal J generated by pure powers of the variables, the generalized Hilbert-Kunz function l(R/(J^[q])k) is a polynomial for all q,k and also give an expression of the generalized Hilbert-Kunz multiplicity of powers of J in terms of Hilbert-Samuel multiplicity of J. We conclude by giving a counter-example to a conjecture proposed by I. Smirnov which connects the stability of an ideal with the asymptotic limit of the first Hilbert coefficient of the Frobenius power of the ideal. This is a joint work with Arindam Banerjee and Jugal Verma.


Speaker:  Kriti Goel
Institution:  University of Utah

Event Organizer:     


Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact

Back to previous page
Back to UM Math seminars/events page.