Commutators in the Metaplectic Group

Daniel Hast

Let F be a local field with nontrivial Hilbert symbol and characteristic not equal to 2 — that is, \mathbb{R}, \mathbb{Q}_p, or $\mathbb{F}_q((t))$ (where q is a power of an odd prime) — and fix a nontrivial continuous character $\psi : F \rightarrow \mathbb{T}$. Let $(V, \langle \cdot, \cdot \rangle)$ be a $2n$-dimensional symplectic vector space over F.

We will prove that the metaplectic group is equal to its commutator subgroup and apply this result to show that the projective Weil representation of $\text{Sp}(V)$ is not linearizable.

1 Preliminaries

1.1 The Weil index

The Weil index γ is a character of the Witt group $W(F)$ which is used in the construction of the metaplectic group. If $\alpha \in F^\times$ and $\langle \alpha \rangle$ is the one-dimensional quadratic space, we denote $\gamma(\langle \alpha \rangle)$ by $\gamma(\alpha)$. We will use the fact that for all $\alpha, \beta \in F^\times$,

$$\gamma(\alpha)\gamma(\beta) \gamma(1) \gamma(\alpha\beta) = (\alpha, \beta),$$

where (α, β) is the quadratic Hilbert symbol.

1.2 The Maslov index

Let ℓ_1, \ldots, ℓ_r be Lagrangian subspaces of V. The Maslov index of these Lagrangians is a quadratic space $\tau(\ell_1, \ldots, \ell_r)$. By [2], §2.1, the Maslov index has the following properties (plus some others which we won’t use):

1. Symplectic invariance: For any $g \in \text{Sp}(V)$,

$$\tau(\ell_1, \ldots, \ell_r) = \tau(g\ell_1, \ldots, g\ell_r).$$

2. Dihedral symmetry:

$$\tau(\ell_1, \ldots, \ell_r) = \tau(\ell_2, \ldots, \ell_r, \ell_1),$$

$$\tau(\ell_1, \ell_2, \ldots, \ell_r) = -\tau(\ell_n, \ell_{n-1}, \ldots, \ell_1).$$

3. Chain condition: For any $3 \leq k < n$,

$$\tau(\ell_1, \ldots, \ell_r) = \tau(\ell_1, \ldots, \ell_k) + \tau(\ell_1, \ell_k, \ldots, \ell_n).$$

By [2] (§2.2.4-6, p. 22), the Maslov index $\tau(\ell_1, \ldots, \ell_r)$ is the nondegenerate quotient of the quadratic space (T, q), where

$$T = \{(v_1, \ldots, v_r) \in \ell_1 \oplus \cdots \oplus \ell_r \mid v_1 + \cdots + v_r = 0\}$$
and
\[q((v_1, \ldots, v_r)) = \sum_{r \geq i > j > 1} \langle v_i, w_j \rangle. \]

(1.2.1)

By [2] (§2.4.1, p. 23),
\[\dim T = \frac{(n - 2) \dim V}{2} - \sum_{i \in \mathbb{Z}/r\mathbb{Z}} \dim(\ell_i \cap \ell_{i+1}) + 2 \dim \bigcap_{i \in \mathbb{Z}/r\mathbb{Z}} \ell_i. \]

(1.2.2)

The following lemma will be useful for computing the Maslov index.

Lemma 1.1. Suppose \(\dim V = 2 \), \((p, q)\) is a symplectic basis for \(V \), and \(\ell = \text{span}(p) \). If \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \(B = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in \text{Sp}(2, F) \), then
\[\tau(\ell, A\ell, B\ell) = \langle cz(az - cx) \rangle. \]

Proof. Let \((T, q) = \tau(\ell, A\ell, B\ell)\) denote the quadratic space. Observe that
\[(cx - az)p + zAp - cBp = (cx - az) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} a \\ c \end{bmatrix} - c \begin{bmatrix} x \\ z \end{bmatrix} = 0. \]

By equation (1.2.1), the quadratic form is given by \(q(v_1, v_2, v_3) = \langle v_3, v_2 \rangle \). So by basic properties of the symplectic basis,
\[q((cx - az)p, zAp, -cBp) = \langle -cBp, zAp \rangle = -cz \langle \begin{bmatrix} x \\ z \end{bmatrix}, \begin{bmatrix} a \\ c \end{bmatrix} \rangle = -cz(xc - za) = cz(az - cx). \]

By equation (1.2.2), \(\dim T \leq 1 \), hence \(T = \langle cz(az - cx) \rangle \).

\[\square \]

1.3 Construction of the metaplectic group

The metaplectic group \(\text{Mp}(V) \) is explicitly constructed in [2] (§4.3.2, p. 50). (Note: Li uses the notation \(\hat{\text{Sp}}(W) \) instead of \(\text{Mp}(V) \).) We reproduce the key details of the construction here.

Let \(\Lambda(V) \) be the set of Lagrangian subspaces of \(V \). For every \(g \in \text{Sp}(V) \) and \(\ell \in \Lambda(V) \) (with an arbitrary orientation fixed on \(\ell \)), define
\[m_g(\ell) := \gamma(1)^{\dim \ell - \dim(\ell \cap g\ell)} \gamma(A_{g\ell, \ell}), \]

where \(A_{g\ell, \ell} \) is the pairing of the orientations on \(g\ell \) and \(\ell \) defined in [2] (§1.3.13, p. 18). Also, for any \(g, h \in \text{Sp}(V) \), denote
\[c_{g,h}(\ell) := \gamma(\tau(\ell, g\ell, gh\ell)). \]

Define \(\text{Mp}(V) \) to be the set of all pairs of the form \((g, t)\), where \(g \in \text{Sp}(V) \) and \(t : \Lambda(V) \rightarrow \mathbb{C}^\times \) is a map such that

- \(t(\ell)^2 = m_g(\ell)^2 \) for all \(\ell \in \Lambda(V) \),
- \(t(\ell') = \gamma(\tau(\ell, g\ell, g\ell'))t(\ell) \) for all \(\ell, \ell' \in \Lambda(V) \).

Multiplication in \(\text{Mp}(V) \) is defined by
\[(g, s) \cdot (h, t) = (gh, st \cdot c_{g,h}). \]

The unit element is \((1, 1)\), and \((g, t)^{-1} = (g^{-1}, t^{-1}) \) since \(c_{g,g^{-1}}(\ell) = 1 \). Also, we have the following:

Proposition 1.2 ([2], §4.3.3, p. 51). The projection map \(\text{Mp}(V) \rightarrow \text{Sp}(V) \) defined by \((g, t) \mapsto g \) makes \(\text{Mp}(V) \) a two-fold covering of \(\text{Sp}(V) \).
2 Main theorem

This section is devoted to the proof of the following:

Theorem 2.1. The metaplectic group \(\text{Mp}(V) \) is equal to its commutator subgroup.

Throughout the proof, let \(M \) denote the commutator subgroup \([\text{Mp}(V), \text{Mp}(V)]\).

2.1 Initial reductions

Suppose \((1, -1) \in M\). The group operation on \(\text{Mp}(V) \) is simply multiplication in the first coordinate and \(\text{Sp}(V) = [\text{Sp}(V), \text{Sp}(V)] \), so for each \(x \in \text{Sp}(V) \), some \((x, \sigma)\) is in \(\text{Mp}(V) \). Thus \((x, -\sigma) = (x, -\sigma \cdot c_{x,1}) = (x, \sigma)(1, -1) \in M\).

Since \(\text{Mp}(V) \) is a double cover of \(\text{Sp}(V) \) and \(\sigma \neq -\sigma \), it follows that \(\text{Mp}(V) = M \).

Thus, it suffices to show that \((1, -1) \in M\). Moreover, we need only show that \((1, \sigma) \in M\) for some \(\sigma : \Lambda(V) \longrightarrow \mathbb{C}^\times \) such that \(\sigma(\ell) = -1 \) for some \(\ell \in \Lambda(V) \). Hence, in a slight abuse of notation, we will fix a Lagrangian \(\ell \) and only keep track of the value for \(\ell \) in the second coordinate.

For each \(x, y \in \text{Sp}(V) \), denote \(\tau[x, y] := \tau(\ell, x\ell, xy\ell, xyx^{-1}\ell, [x, y]\ell) \).

The following will be useful later:

Lemma 2.2. For all \(x, y \in \text{Sp}(V) \),

\[([x, y], \gamma(\tau[x, y])) \in M. \]

Proof. Let \((x, s), (y, t) \in \text{Mp}(V)\) be arbitrary. Then

\[
[(x, s), (y, t)] = (x, s)(y, t)(x^{-1}, s^{-1})(y^{-1}, t^{-1})
\]

\[
= (xy, xstc_{xy})(x^{-1}, s^{-1})(y^{-1}, t^{-1})
\]

\[
= (xyx^{-1}, xstc_{xy}s^{-1}c_{xy,x^{-1}})(y^{-1}, t^{-1})
\]

\[
= (xyx^{-1}y^{-1}, xstc_{xy}s^{-1}c_{xy,x^{-1}}t^{-1}c_{xyx^{-1},y^{-1}})
\]

\[
= ([x, y], xstc_{xy}s^{-1}c_{xy,x^{-1}}c_{xyx^{-1},y^{-1}})
\]

\[
= ([x, y], \gamma(\tau(\ell, x\ell, xy\ell))\gamma(\tau(\ell, xy\ell, xyx^{-1}\ell))\gamma(\tau(\ell, xyx^{-1}\ell, [x, y]\ell)))
\]

\[
= ([x, y], \gamma(\tau[x, y]))
\]

by the chain condition. \(\square \)

2.2 Proof for \(n = 1 \)

First, we will show the \(n = 1 \) case, that is, that \((1, -1) \in M := [\text{Mp}(2, F), \text{Mp}(2, F)]\).

Let \(a \in F^\times \) be arbitrary, and let \(c \in F^\times \) such that \(c^2 \neq 1 \). By direct computation,

\[
\left[\begin{bmatrix} c^{-1} & 1 \\ 0 & 1 \end{bmatrix}, \left[\begin{bmatrix} 1 \\ 0 \end{bmatrix}, a/(c^2 - 1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right] \right] = \begin{bmatrix} 1 \\ a \end{bmatrix}. \]
Since \(\ell \) is the span of the first basis vector, \(A\ell \) only depends on the first column of \(A \) (for any \(A \in \text{Sp}(V) \)). So

\[
\gamma \left(\tau \left(\begin{bmatrix} c^{-1} & 1 \\ a/(c^2 - 1) & 1 \end{bmatrix} \right) \right) = \gamma \left(\tau \left(\begin{bmatrix} \ell & 1 \\ \ell & 1 \end{bmatrix} \right) \right)
\]

\[
= \gamma \left(\tau \left(\begin{bmatrix} \ell & 1 \\ \ell & 1 \end{bmatrix} \right) \right)
\]

\[
= \gamma \left(\tau \left(\begin{bmatrix} \ell & 1 \\ \ell & 1 \end{bmatrix} \right) \right)
\]

\[
= \gamma \left(\tau \left(\begin{bmatrix} \ell & 1 \\ \ell & 1 \end{bmatrix} \right) \right)
\]

\[
= \gamma \left(\tau \left(\begin{bmatrix} \ell & 1 \\ \ell & 1 \end{bmatrix} \right) \right)
\]

using Lemma 1.1 for the last step. Since the Weil index is invariant under multiplication by elements of \((F^\times)^2\), we have

\[
\gamma \left(\begin{bmatrix} a ac^2/c^2-1 & a - ac^2/c^2-1 \\ c^2/c^2-1 & c^2/c^2-1 \end{bmatrix} \right) = \gamma \left(\begin{bmatrix} a c^2/c^2-1 & c^2/c^2-1 \end{bmatrix} \right) = \gamma \left(\begin{bmatrix} c^2/c^2-1 & c^2/c^2-1 \end{bmatrix} \right) = \gamma(-a).
\]

Therefore, for any \(a \in F^\times \), by Lemma 2.2,

\[
\left(\begin{bmatrix} 1 \\ a \\ 1 \end{bmatrix} , \gamma(-a) \right) \in M. \tag{2.2.1}
\]

Using analogous commutators for unit-diagonal upper-triangular matrices, we find that

\[
\left(\begin{bmatrix} 1 \\ a \\ 1 \end{bmatrix} , 1 \right) \in M, \tag{2.2.2}
\]

because any upper-triangular matrix in \(\text{Sp}(V) \) leaves \(\ell \) fixed.

Let \(\alpha \in F^\times \) be arbitrary, and denote

\[
g_\alpha := \begin{bmatrix} \alpha & \alpha^{-1} \\ \alpha^{-1} & \alpha \end{bmatrix}.
\]

By direct computation,

\[
g_\alpha = \begin{bmatrix} \alpha & \alpha^{-1} \\ \alpha^{-1} & \alpha \end{bmatrix} = \begin{bmatrix} 1 & \alpha \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.
\]

By multiplying the commutators from (2.2.1) and (2.2.2), we obtain

\[
(g_\alpha, \sigma_\alpha) \in M,
\]

where

\[
\sigma_\alpha(\ell) = 1 \cdot \gamma(\alpha^{-1}) \cdot 1 \cdot 1 \cdot \gamma(-1) \cdot 1 \cdot \gamma(T) = \gamma(\alpha)\gamma(-1)\gamma(T),
\]

\[
T = \tau \left(\begin{bmatrix} 1 & \alpha \\ 1 & 1 \end{bmatrix} \ell, \begin{bmatrix} \alpha & \alpha^{-1} \\ \alpha^{-1} & \alpha \end{bmatrix} \ell, \begin{bmatrix} \alpha & \alpha^{-1} \\ \alpha^{-1} & \alpha \end{bmatrix} \ell, \begin{bmatrix} \alpha & \alpha^{-1} \\ \alpha^{-1} & \alpha \end{bmatrix} \ell, \begin{bmatrix} \alpha & \alpha^{-1} \\ \alpha^{-1} & \alpha \end{bmatrix} \ell \right)
\]

\[
= \tau \left(\begin{bmatrix} \ell & \ell \\ \ell & 1 \end{bmatrix} \right) = 0.
\]
So $\sigma_\alpha(\ell) = \gamma(\alpha)\gamma(-1)$.

By (1.1.1), for any $\alpha, \beta \in F^\times$,
\[
\frac{\gamma(\alpha)\gamma(\beta)\gamma(-1)}{\gamma(\alpha\beta)} = \frac{\gamma(\alpha)\gamma(\beta)}{\gamma(\alpha\beta)\gamma(1)} = (\alpha, \beta),
\]
and so
\[
\gamma(\alpha)\gamma(\beta)\gamma(-1) = (\alpha, \beta)\gamma(\alpha\beta) = (\alpha, \beta)\gamma(\alpha\beta).
\]

Hence
\[
(g_{\alpha\beta}, \sigma_\alpha \sigma_\beta \cdot c_{g_{\alpha\beta}}) = (g_\alpha, \sigma_\alpha) \cdot (g_\beta, \sigma_\beta) \in M.
\]

Since g_α, g_β are upper triangular,
\[
c_{g_{\alpha\beta}}(\ell) = \gamma(\tau(\ell, g_\alpha \ell, g_\alpha g_\beta \ell)) = \gamma(\tau(\ell, \ell, \ell)) = \gamma(0) = 1.
\]

Moreover,
\[
\sigma_\alpha(\ell)\sigma_\beta(\ell) = \gamma(\alpha)\gamma(-1)\gamma(\beta)\gamma(-1) = (\alpha, \beta)\gamma(\alpha\beta)\gamma(-1) = (\alpha, \beta)\sigma_\alpha(\ell).
\]

Thus, denoting $g := g_{\alpha\beta}$,
\[
(g, \sigma_\alpha\beta), (g, (\alpha, \beta)\sigma_\alpha\beta) \in M.
\]

So
\[
(1, (\alpha, \beta)) = \left(gg^{-1}, (\alpha, \beta)\sigma_\alpha\beta\sigma_\alpha^{-1} g g^{-1} \right) = (g, \sigma_\alpha\beta) \cdot (g, (\alpha, \beta)\sigma_\alpha\beta)^{-1} \in M.
\]

Since F has nontrivial Hilbert symbol, there exist $\alpha, \beta \in F^\times$ such that $(\alpha, \beta) = -1$, completing the proof for $\dim V = 2$.

2.3 Proof of the general case

The general case easily follows. Let $(p_1, \ldots, p_n, q_1, \ldots, q_n)$ be a symplectic basis for V. Then $\text{Sp}(2, F)$ embeds as a subgroup of $\text{Sp}(V)$ by
\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto [A_{i,j}]_{i,j=1}^{2n}, \quad (2.3.1)
\]

where $A_{1,1} = a$, $A_{1,n+1} = b$, $A_{n+1,1} = c$, $A_{n+1,n+1} = d$, and $A_{i,j} = \delta_{ij}$ for all other i, j.

Let $\ell = \text{span}(p_1, \ldots, p_n)$. Since any matrices A, B as in Equation (2.3.1) act trivially on the subspace $\text{span}(p_2, \ldots, p_n)$, the Maslov index $\tau(\ell, A\ell, B\ell)$ is 1-dimensional, and the same proof used for Lemma 1.1 applies.

Observe that the proof that $(1, -1)$ is in the commutator subgroup of $\text{Mp}(2, F)$ only relies on Lemma 1.1 and multiplication in $\text{Sp}(2, F)$. So, using the same argument, but replacing each 2×2 matrix with the associated $2n \times 2n$ matrix given by Equation (2.3.1), we see that $(1, -1)$ is in the commutator subgroup of $\text{Mp}(V)$.

3 Implications for the Weil representation

A key property of the Weil representation follows from the above result.

Corollary 3.1. The central extension
\[
1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \text{Mp}(V) \longrightarrow \text{Sp}(V) \longrightarrow 1
\]
does not split.
Proof. Suppose the extension splits. Then $Mp(V)$ is isomorphic to a semidirect product of $\mathbb{Z}/2\mathbb{Z}$ and $Sp(V)$. Since the extension is central, $Sp(V)$ acts trivially on $\mathbb{Z}/2\mathbb{Z}$, and so $Mp(V) \cong \mathbb{Z}/2\mathbb{Z} \times Sp(V)$. But $\mathbb{Z}/2\mathbb{Z}$ is abelian, so this contradicts the fact that $Mp(V)$ is equal to its commutator subgroup.

Corollary 3.2. The projective Weil representation $\omega : Sp(V) \rightarrow PGL(W)$ does not lift to a linear representation of $Sp(V)$.

Proof. We have the following commutative diagram with exact rows:

$$
\begin{array}{cccccc}
1 & \rightarrow & \mathbb{C}^\times & \rightarrow & \widehat{Sp}_\psi(V) & \xrightarrow{\pi} & Sp(V) & \rightarrow & 1 \\
\| & & \downarrow{\sim} & & \downarrow{\omega} & & \downarrow{\omega} & & \downarrow{1} \\
1 & \rightarrow & \mathbb{C}^\times & \rightarrow & GL(W) & \rightarrow & PGL(W) & \rightarrow & 1
\end{array}
$$

Here, $\widehat{Sp}_\psi(V)$ is as defined in [2] (§4.1.1, p. 45). Suppose there exists a homomorphism $\eta : Sp(V) \rightarrow GL(W)$ lifting ω. Since \sim is the projection onto the second coordinate of $\widehat{Sp}_\psi(V) \subset Sp(V) \times GL(W)$, the map

$$
Sp(V) \rightarrow \widehat{Sp}_\psi(V) \\
g \mapsto (g, \eta(g))
$$

is a homomorphism splitting π. Then $\widehat{Sp}_\psi(V) \cong Sp(V) \times \mathbb{C}^\times$. But by [2] (§4.3.4, p. 52), $Mp(V)$ embeds as a subgroup of $\widehat{Sp}_\psi(V)$, so this contradicts Corollary 3.1. Hence ω does not lift to a linear representation of $Sp(V)$.

References

