Model of an Orexin Neuron
Katie Williams August 21, 2008

Orexin (also known as hypocretin) neurons, located in the hypothalamus, promote arousal and consolidate wakefulness. Organisms without functioning orexin neurons show elements of the narcolepsy phenotype in humans (Sakurai, 2007). To complement the ongoing experimental characterization of orexin neurons, we developed a mathematical model of these cells. A model will allow a more detailed investigation of cell dynamics without some of the limitations of experimental work. In this paper, we describe a Hodgkin-Huxley model developed to study the currents and interactions of orexin neurons. Basing its foundation on the Hodgkin-Huxley models for currents, the model brings together the currents perceived to be present in orexin neurons.

Previous experimental work has identified evidence for seven currents (iNA, iK, iK2, ih, iCAN, iT, and iCal) that contribute to the properties of orexin neurons. In addition to these currents, we also included a general leak current. A fast sodium current, iNa, causes spiking by drawing up the membrane potential to a high level of depolarization (Li et al; 2002), (Hoang et al; 2003). When the neuron is depolarized, a fast-inactivating potassium current, iK, activates to send the electrical potential down into a hyperpolarization regime (Hoang et al; 2003). A slowly inactivating potassium current, iK2, which is found in thalamocortical neurons, shapes the spike by pulling it down after its peak and slowly inactivating to affect the frequency of spiking in the model (McCormick, Huguenard; 1992). There is also a hyperpolarization-activated current, ih, that draws the potential back into the regime of spiking; this results in a “sag” during appropriate hyperpolarization protocols (Eggermann et al., 2003), (Hoang et al; 2003).

Based on the research of Eggermann et al. (2003), there exists a nonspecific cation current, iCAN in orexin neurons that is calcium-dependent and assists in depolarization and spike shape. It is enhanced by iT, a low-voltage-activated (LVA) calcium current (McCormick, Bal; 1997). In addition to iT, a calcium leak current, iCal, provides a source of calcium for iCAN that persists when voltage-activated calcium currents are blocked (Eggermann et al; 2003).

However, iCAN is a challenge to investigate experimentally due to the absence of the necessary selective antagonists. Therefore, we have developed a novel Hodgkin-Huxley model for an orexin neuron to investigate the properties of iCAN in a theoretical framework.

METHODS:

To develop the model, we used a standard Hodgkin-Huxley model formalism consisting of an equation for voltage in summed current notation and equations describing the dynamics of the current gating variables. The respective currents followed models of differential equations with gating variables of activation and inactivation depending on the current. The equation for voltage in summed current notation:

\[\frac{dv}{dt} = (I_{\text{in}} - i_{\text{Na}}(v) - i_{\text{K}}(v) - i_{\text{K2}}(v) - i_T(v,[\text{Ca}^{2+}]) - i_{\text{CAN}}(v) - i_l(v) - i_{\text{Cal}}(v,[\text{Ca}^{2+}]))/c \]

\[i_{\text{Na}}(v) = g_{\text{Na}} h (v-v_{\text{Na}}) m^3 \]
\[i_{\text{K}}(v) = g_k (v-v_{\text{K}}) n^4 \]
\[i_{\text{ih}}(v) = g_{\text{h}} r (v-v_{\text{h}}) \]
\[i_T(v,[\text{Ca}^{2+}]) = p_{\text{Ca}} m^2 t^2 h (v-v_{\text{Ca}}([\text{Ca}^{2+}])) \]
\[i_{CAN}(v) = g_{can}z^2(v-v_{can}) \]
\[i_{K2}(v) = (mk2a*h_{k2a}*(v-v_k)g_{maxk2a}+mk2b*h_{k2b}*(v-v_k)g_{maxk2b}) \]
\[i_l(v) = g_l*(v-v_l) \]
\[i_{Cal}(v,[Ca^{2+}]) = g_{cal}*(v-v_{ca([Ca^{2+}])}) \]
\[v_{ca([Ca^{2+}])} = (RT/2F)*1000*ln(13000/[Ca^{2+}]) \]
and \(c = 1 \)

\[\frac{dcac}{dt} = (-300*(iT(v,cac)+i_{Cal}(v,cac))-360*cac+360*ca0) \]
\[iT(v,cac) = pca*mt^2*ht*(v-v_{ca(cac)}) \]

Table 1: Parameters for Current Equations

<table>
<thead>
<tr>
<th>Conductance</th>
<th>Maximum Conductance (µS)</th>
<th>Reversal Potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iNa</td>
<td>gna=290</td>
<td>vNa=50</td>
</tr>
<tr>
<td>iK</td>
<td>gk=20</td>
<td>vK=-77</td>
</tr>
<tr>
<td>ih</td>
<td>gh=0.037</td>
<td>vH=-10</td>
</tr>
<tr>
<td>iK2</td>
<td>gmaxk2a=16, gmaxk2b=10</td>
<td>vK=-77</td>
</tr>
<tr>
<td>il</td>
<td>gl=0.3</td>
<td>vL=-54.4</td>
</tr>
<tr>
<td>iCAN</td>
<td>gcan=3</td>
<td>vcan=-20</td>
</tr>
<tr>
<td>iT</td>
<td>pca=3</td>
<td>vCa(Ca2+)</td>
</tr>
<tr>
<td>iCal</td>
<td>gcal=0.3</td>
<td>vCa(Ca2+)</td>
</tr>
</tbody>
</table>

Each gating variable is governed by a differential equation written in the form

\[\frac{di}{dt} = \left(i_\infty(v) - i_i(v) \right)/\tau_i(v) \]

(equation 1)

with \(i_\infty(v) \) controlling the activation/inactivation of the variable and \(\tau_i(v) \) controlling the speed of change of the current.

Transient Sodium Current, iNa (Ermentrout, 2002)

This current is the main one responsible for spiking in the neuron. It has two gating variables, \(m \) and \(h \), that control activation and inactivation respectively. The equations for iNa are:

Activation (m)

\[m_\infty(v) = (.1*(v+40)/(1-exp(-(v+40)/10)))/(.1*(v+40)/(1-exp(-(v+40)/10))+4*exp(-(v+65)/18)) \]
\[\tau_m(v) = ((.1*(v+40)/(1-exp(-(v+40)/10))+4*exp(-(v+65)/18))^{-1} \]

Inactivation (h)

\[h_\infty(v) = (.07*exp(-(v+65)/20))/(.07*exp(-(v+65)/20)+1/(1+exp(-(v+35)/10))) \]
\[\tau_h(v) = ((.07*exp(-(v+65)/20)+1/(1+exp(-(v+35)/10)))^{-1} \]

The neuron is able to spike due to the difference in speeds of activation and inactivation: \(\tau_m(v) \) is smaller than \(\tau_h(v) \) at the beginning of the spike, so \(m \) activates more quickly than \(h \) inactivates, and the spike occurs.
Depolarization-Activated Potassium Current, i_K (Ermentrout, 2002)
The potassium current is activated by its gating variable, n, at depolarized levels attained by the
membrane during a spike. The active current pulls the membrane potential back down to
terminate the spike.

Activation (n)
\[
\begin{align*}
n_\infty(v) &= 0.01 * (v+55)/(1 - \exp(-(v+55)/10)) / (0.01 * (v+55)/(1 - \exp(-(v+55)/10)) + 0.125 * \exp(-(v+65)/80)) \\
\tau_n(v) &= (0.01 * (v+55)/(1 - \exp(-(v+55)/10)) + 0.125 * \exp(-(v+65)/80)) ^{-1}
\end{align*}
\]

Slowly-Inactivating Potassium Current, i_{K2} (Huguenard, McCormick; 1992)
This current, activated at negative voltages, helps keep the potential down. There are two parts
to the current with separate activation and inactivation dynamics:

Activation ($mk2a, mk2b$)
\[
\begin{align*}
mk2a,b_\infty(v) &= 1/(1 + \exp(-(v+43)/17)) \\
\tau_{mk2a,b}(v) &= 1/(\exp((-v-81)/25.6) + \exp((-v+132)/18)) + 9.9
\end{align*}
\]

Inactivation ($hk2a,b$)
\[
\begin{align*}
hk2a,b_\infty(v) &= 1/(1 + \exp((v+58)/10.6)) \\
\tau_{hk2a}(v) &= 1/(\exp((-v-1329)/200) + \exp((-v+130)/7.1)) + 120 \\
\tau_{hk2b}(v) &= \tau_{hk2a}(v) * \text{heav}(-70-v) + 8900 * \text{heav}(v+70)
\end{align*}
\]

The dynamics of i_{K2} are unusual the current is the sum of two currents with slightly different
dynamics in their τ functions. These separate tau’s cause the current to function at varying rates
depending on the voltage.

Hyperpolarization-Activated Current, i_h (Buchholtz et al; 1992)
ih activates at hyperpolarized potentials and is a strong current that allows the cell to recover
from hyperpolarization by pulling the membrane back up to threshold. Its dynamics are such
that it is only active when $v < -80$mV, so it is inactive during the normal spiking regime.

Activation (r)
\[
\begin{align*}
r_\infty(v) &= 1/(1 + \exp((v+70)/7)) \\
\tau_r(v) &= 3/(1 + \exp(-(v+110)/13))
\end{align*}
\]
Nonspecific Cation Current, iCAN

Eggermann et al. (2003) hypothesize that there exists a calcium-dependent cation current that helps pull the potential up into a spiking regime. We modeled this current with a calcium-dependent activation variable, z, similar to the iCAN current described by Destexhe and Sejnowski (1993), but we modified the steady-state activation and time constant of z to fit the calcium concentrations present in our model.

Activation (z)

$$z_\infty([Ca^{2+}]) = 0.5 + 0.5 \times \tanh(0.01([Ca^{2+}]-38))$$

$$\tau_z([Ca^{2+}]) = (20^{4([Ca^{2+}])^2+0.002})^{-1}$$

Low Voltage-Activated Calcium Channel, iT (Huguenard, McCormick; 1992)

This reversal potential of this current is based on the concentration of calcium in the cell, but its gating variables are voltage-dependent. It has both activation and inactivation dynamics.

Activation (m_t)

$$m_t_\infty(v) = 1/(1+\exp(-(v+70)/4))$$

$$\tau_{m_t}(v) = (10,000)/(\exp(-(v+10)/10)+\exp((v+90)/6))$$

Inactivation (h_t)

$$h_t_\infty(v) = 1/(1+\exp((v+70)/5))$$

$$\tau_{h_t}(v) = (15,000)(22.7 + 0.27)/\exp((v+48)/4)+\exp((v+407)/50))$$

General Leak Current, il

This leak current is a simple equation to account for natural inefficiency of the cell. It does not involve activation or inactivation variables.

Calcium Leak Current, iCal

The currents that rely on calcium concentration need a source of calcium to function. This calcium can either come from voltage-dependent or -independent calcium currents or from internal stores of calcium in the environment of the cell. Experiments suggest that iT contributes to ICAN activation, but the hypothesized participation of ICAN in depolarizing the resting membrane potential continues when voltage-dependent calcium currents are blocked (Eggermann et al; 2003). Therefore, we included a calcium leak current to provide calcium for ICAN. We also compared the results obtained with ICal to results obtained with intracellular calcium concentrations modeled as increasing at a constant rate, consistent with constant release from intracellular stores.

Partitioning

In order to better understand the currents acting on the membrane potential in different voltage regimes, we partitioned the currents in the neuron according to the magnitude of their tau functions. The partitions determined sets of tau functions acting on a similar time scale in a given region. These similar functions were studied together while the functions much larger were approximated as constant functions in that partition and the small tau functions were deemed approximately zero in that regime (instantaneous). When the tau function is assumed to be instantaneous, the gating variable is equal to its steady state activation function because there
is no delay that the tau function would otherwise have caused. The partitioning reveals the most active currents during hyperpolarization, in the interspike interval, and at depolarized voltages during the spike.

Figure 2: Tau Functions for Partitioning

The figures above depict the changes in the different currents during a spike.

Table 2: Partitions

<table>
<thead>
<tr>
<th>Partition</th>
<th>Small tau’s $\Rightarrow i=I_c(v)$</th>
<th>Large tau’s $\Rightarrow i=constant$</th>
<th>Medium</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>-80 to -60</td>
<td>$\tau_{auh}(v)$ $\tau_{taun}(v)$</td>
<td>$\tau_{auhk2b}(v)$ $\tau_{auht}(v)$</td>
<td>$\tau_{auhk2a}(v) = (27.55)$ $\tau_{auhtm}(v) = (10.30)$</td>
<td>Interspike Interval</td>
</tr>
<tr>
<td>-60 to -45</td>
<td>$\tau_{tam}(v)$ $\tau_{auhk2b}(v)$</td>
<td>$\tau_{auh}(v)$ $\tau_{taun}(v)$</td>
<td>$\tau_{auhk2a}(v) = (55.75)$ $\tau_{auhtm}(v) = (35.7)$ $\tau_{auh}(v) = (7.7,4.5)$ $\tau_{taun}(v) = (5.4,5)$ $\tau_{taun}(v) = 3$</td>
<td>Hyperpolarization</td>
</tr>
<tr>
<td>-45 to 0</td>
<td>$\tau_{auh}(v)$ $\tau_{taun}(v)$</td>
<td>$\tau_{auhk2b}(v)$ $\tau_{taun}(v)$</td>
<td>$\tau_{auht}(v) = (250,2)$ $\tau_{auhk2a}(v) = (85,33)$</td>
<td>Spiking Regime</td>
</tr>
<tr>
<td>0 to 40</td>
<td>$\tau_{tau}(v)$ $\tau_{auh}(v)$</td>
<td>$\tau_{taun}(v)$ $\tau_{taun}(v)$ $\tau_{tau}(v)$</td>
<td>$\tau_{auhk2a}(v) = (33,19)$ $\tau_{auhk2b}(v) = (900,800)$</td>
<td>Peak of Spike</td>
</tr>
<tr>
<td>40 to 80</td>
<td>$\tau_{tau}(v)$ $\tau_{taun}(v)$</td>
<td>$\tau_{auhk2b}(v)$</td>
<td>$\tau_{auhk2a}(v) = (15,12)$ $\tau_{tau}(v) = (3,3)$ $\tau_{auh}(v) = (1,1,01)$ $\tau_{tau}(v) = (1,0,75)$</td>
<td>Depolarization</td>
</tr>
</tbody>
</table>

RESULTS:

Our preliminary Hodgkin-Huxley-type model orexin neurons reproduced several important features of orexin neuron electrophysiology.
Intrinsic properties of model orexin neuron

One characteristic of orexin neurons that started off the model was their spontaneous activity. The neuron reportedly spikes spontaneously at a rate of 3-4 Hz (Li et al; 2002), which would be in response to the depolarized resting membrane potential and the interactions between the various currents in the cell. The resting membrane potential of $v=-57$ mV in the model neuron was consistent with that reported from orexin neuron slice recordings (Li et al., 2002). Other groups have reported even more depolarized resting membrane potentials for orexin neurons (Eggermann et al., 2003). However, we found that the model neuron’s ability to spike at high resting membrane potentials was very sensitive to the activation and inactivation profiles of the Na+ current. As in experimental reports, the resting membrane potential for the model was determined by blocking iNa (setting gna to zero), and observing the activity of the neuron. The currents that contributed to the resting membrane potential included iNa, iCAN, iCal, iT, and iK2. iK activates at depolarized levels, and ih is active at hyperpolarized levels, so neither is working at the resting membrane potential. iNa, iK2, iCAN, iCal all bring the potential up, while iK2 and iT push the potential down.

Based on experimental results, an orexin neuron spontaneously spikes with an average frequency of 3-4 Hz (Li et al; 2002) that suggests at least one slow current is involved in pulling the membrane potential up to the firing threshold. In the model orexin neuron, spiking occurs as a result of increasingly large subthreshold oscillations (STOs). These STOs are created by the interactions between iNa and iK2. iNa pulls the potential up a bit, but iK2 pushes back toward hyperpolarization at the same time. This seesaw effect eventually results in a spike when v is
depolarized enough to enter the spiking regime. This mechanism is explained in more detail below.

Bifurcation structure of the model

In order to better understand the dynamics of the model orexin neuron under different applied currents, we constructed a bifurcation diagram using i_0 as our parameter. Consistent with bifurcation diagrams for other neuronal models, the voltage of the model orexin neuron goes to a steady state when the neuron is strongly hyperpolarized or depolarized. At $i_0=-1.7$, the system undergoes a Hopf bifurcation and begins spiking. This allows the neuron to spike intrinsically (when $i_0=0$). As i_0 increases between 0 and 81.85, the regime is unstable and spiking continues at an increasing rate. When i_0 hits 81.85, though, the neuron is too depolarized to continue spiking and enters a stable depolarized regime at a second Hopf bifurcation.

![Bifurcation Diagram](image)

Model response to external stimuli

In an experiment by Eggermann et al. (2003), three different experimental protocols were used to explore the intrinsic properties of orexin neurons in slice (Figure 3):

1. The neuron spontaneously spikes, and the frequency of spiking increases with a depolarizing pulse.
2. The neuron is hyperpolarized and then given a depolarizing pulse that allows it to spike after first producing a low-threshold spike.
3. The neuron is hyperpolarized to the point that even with a depolarizing current, it cannot produce a calcium spike.

We reproduced these protocols in our model orexin neurons and obtained similar behavior (Figure 4). A1 shows an increased spiking frequency, A2 has a low-threshold calcium spike, a sodium spike, and ADP, and A3 shows that additional hyperpolarization can prevent the LTS and ADP.

![Figure 3](image)
Figure 4. In A1, the model is given a pulse of 15mV from 100-700mS. The model spikes more quickly in response to this pulse. A2 depicts a calcium spike and then one sodium spike with a sag after the spike in response to being hyperpolarized by -80mV and given a pulse of 23mV. A3 shows the LTS and the recovery hyperpolarized by -140mV and with a pulse of 59mV.

Depolarizing current ($i_0 = 50mV$) generates fast spiking in the neuron by pushing the neuron farther up into the spiking regime, shortening the time the neuron takes to recover from a spike and reach the spiking regime again. When a depolarizing current is applied to the model at a hyperpolarized level, calcium spikes are produced when the pull of i_{CAN} and iT that are both activated by the applied current and drag the neuron up to its spiking regime. i_{CAN} is also responsible for the after depolarization (ADP) created under some conditions in this trial. When the neuron does not reach its spiking regime after a spike, ADP levels off the voltage.

i_{CAN} and calcium dynamics in the model

Eggermann and colleagues reported the presence of a calcium-dependent nonspecific cation current (i_{CAN}) based on the present of an ADP following the LTS, and they speculated that this current could contribute to the depolarized resting membrane potential of orexin neurons (Eggermann et al., 2003). We modeled intracellular calcium concentration as a combination of two active calcium-based currents, iT and $iCal$. The calcium that $iCal$ provides activates i_{CAN} to function initially in the model even when the voltage-based currents are turned off. In more hyperpolarized regimes, iT activates and contributes even more calcium to i_{CAN} for further activity and ADP. In order to get the depolarized RMP we wanted in the neuron, we used the i_{CAN} to further depolarize the neuron at rest. We included i_{CAN} in our model orexin neuron,
and we chose the steady-state activation profile of its calcium-dependent gating variable, z, and time constant, τ_z, to be consistent with these roles.

The z_{inf} function we chose for iCAN encourages maximum activity as the potential increases into a spiking regime. iCAN must be actively pulling the neuron potential into the spiking regime as the calcium concentration increases. The z_{inf} function, therefore, increases right away and stays near maximum levels throughout the calcium range.

The τ_z function we chose fits specifically with iCAN because it enables the current to be almost instantaneous. The function of iCAN is to depolarize the neuron into a spiking regime, so as the calcium concentration increases over its range, τ_z makes iCAN react faster to shifts in the neuron.

![Figure 9: Dynamics of iCAN](image)

Partitioning helps identify mechanism for subthreshold oscillation

Some dynamics appeared through the construction of the model that have not been reported experimentally. Subthreshold oscillations caused by the interactions of i_{Na} and i_{K2} help pull the slowly-spiking model up to a spike. Such results suggest canard behavior.

To better understand the role of each current during different parts of the spike, we partitioned the spike into 5 sub-regimes and studied the time courses of model variables during each sub-regime (see Figures 1 and 2, Table 2). In each regime, the currents whose tau functions took on values far larger than the other functions were deemed to approximately unchanging because the overall differential equations for the respective currents would be approximately zero when the tau function was approximately infinite. Similarly, the currents whose tau functions are very small compared to the other functions in the regime are approximately equal to their $\text{inf}(v)$ functions because the currents’ differential equations are approximately infinite when the tau functions are approximately zero. Thus the currents that are changing in a given regime are the ones whose tau functions are on the same scale as the neighboring taus.

The results of the partitioning showed that in the interspike interval, the currents most active are likely i_T and i_{K2} because the inactivation taus of i_T and i_{K2} are among the largest functions in that regime and so are not inhibiting the current very much. In the hyperpolarized interval, the i_{Na}, i_K, and i_h activation tau functions decrease and so the currents move into a faster regime that activates their respective currents. The inactivation gating variables of i_T and i_{K2} are still slow in the hyperpolarized regime, and the tau’s for i_K and i_h are decreasing toward zero. $\tau_{\text{um}}(v)$, the tau function for the i_{Na} activation variable, is still very fast, and thus i_{Na} has the potential for becoming active very quickly. In the beginning of the spike, the currents involved in spiking are moving very quickly as would i_K and i_h if their respective $\text{inf}(v)$ functions were active in this regime. The inactivation current for i_{K2} is still not working very
fast, though the inactivation current for i\(T\) is speeding up through this interval. At the top of the spike, the activation tau function of iK2 is moving more quickly than the inactivation tau function allowing iK2 to remain active. The rest of the tau’s are acting close to instantaneously in this regime. The depolarization regime shows that only iK2 is changing, and the tau functions that are shifting are the activation tau function for one part of iK2 and the inactivation tau function for the other iK2 variable.

The partitions have useful implications for the model of the neuron. Because iK2 and iNa have tau functions that indicate the currents are active during the interspike interval, they likely control the potential in this regime. The positive reversal potential for iNa causes it to pull the potential up. As the potential moves upward, though, it distances itself from iK2’s negative reversal potential and thus iK2 pulls on the potential to get it back down. This pushing by iKa and, in turn, the pulling by iK2 could create the subthreshold osciallations observed in the interspike interval.

DISCUSSION:

The model orexin neuron is based on Hodgkin Huxley-type modeling formalism and is consistent with several important properties of orexin neuron electrophysiology. Eight currents contribute to the overall neuron modeled, which has a resting membrane potential of -57mV, spikes spontaneously at 3-4Hz, and produces spikes of approximately 80mV. The discrepancy we found in the resting membrane potential of orexin neurons in experimental results can be explained largely by the type of bath used. In this model, the resting membrane potential of -45 causes depolarization block that prevents all neuron activity.

The spiking of the model follows closely to the experimentation of Eggermann et al. as the spike slowly draws upward into a realm of depolarization and then spikes once it reaches the spiking threshold. In our model, a sub-threshold oscillation involving iNa and iK2 helps draw the potential up to threshold. This activity is consistent with a canard mechanism (Jalics et al, 2008).

Canards

Canard trajectories define thresholds for neurons. Though very rare in nature, it is possible that a canard exists in neuron activity (Izhikevich, 1976). Canards function in oscillating systems that change by large amounts when perturbed by some parameter (Murray, 2002). Jalics and colleagues recently reported the involvement of a slow K++-current in a canard-like mechanism for mixed-mode oscillations in a model of a neuron from entorhinal cortex. The sub-threshold oscillations in our model depend on iK2 and may reflect a similar mechanism. These oscillations are caused by the interactions between iNa and iK2, and they seem to assist in pulling the membrane potential up to a spiking regime. This canard structure could make the neuron more robust to noise and facilitate relatively slow intrinsic spiking.

Calcium Dynamics

Calcium dynamics are important for the behavior of this model. Currents exist in the neuron that are calcium-dependent instead of voltage-dependent. The initial calcium currents in place failed to allow continued spiking of the neuron when calcium currents were turned off as in the experimentation by Eggermann et al. Thus a calcium leak current was implemented as a source of calcium for iCAN. In addition, the low-voltage activated iT channels provide the
additional push of calcium for iCAN once iCal has provided its calcium stores. iCAN, in turn, is dependent on both voltage and calcium, and its reversal potential is not constant but a function of calcium concentration.

Limitations
The model created shows a new understanding of the dynamics present in orexin neurons. There still are, however, many angles that have yet to be understood. Firstly, the neuron modeled lacks any synaptic interactions. The true dynamics of the neuron cannot be studied without the interactions it has with neighboring neurons that activate some of its currents. Therefore, further study is necessary to understand the true orexin neuron. In addition, it has been shown in experimental data that orexin neurons fire in clusters under certain circumstances. We did not address the mechanism involved in creating a rise in potential topped with sodium spikes.

Calcium
The source of Ca2+ for iT and iCAN could be either a non-LVA current or a leak current from internal stores. We reviewed these possibilities and compared them with the activation of iCAN. The difference between the calcium from internal stores and calcium from leak is that the leak is consistently providing calcium regardless of the neuron’s potential. iCAN needs to be more active at levels of lower potential so that iCAN can increase the neuron’s potential to the point of spiking. It is possible that a na/ca exchanger is also present in the neuron, but this possibility will require further study. The studies done on the sodium-calcium exchanger suggest that it is present not only in cardiac cells but in most cells in the body (Blaustein, Lederer, 1999). A calcium-sodium exchanger would fit in the model of orexin due to the presence of both sodium and calcium and also because it would provide another source of calcium for iCAN and iT while also using some of the large quantity of sodium present. A na/ca exchanger in orexin neurons would show interactions between two ions present in the neuron and would likely affect the resting membrane potential of the cell. However, the implementation of a na/ca exchanger would require a more complex study of the dynamics of both the cell and the exchanger.

Future Study
The model as it stands supports vast growth in the study of orexin neurons. First, it is possible that the resting membrane potential is in fact more depolarized than we present here. How, though, would the depolarization block be lifted off a neuron so depolarized? Experimental results determining exactly which RMP is accurate would better allow modelers to pursue the correct dynamics of the system. Additionally, the graphs presented by Eggermann et al. are similar in shape to the ones created by the model, but it is difficult to match the two when it is not completely clear what the axes are on the graphs. With some tests, new graphs that are clearer would assist in modeling the activities of the neuron under various circumstances.

The canard oscillations introduce some interesting questions about the system. Is the spiking of an orexin neuron really an example of a canard? Careful measurements of IK2 and iNa could further describe what is happening during the interspike interval. This model is helpful for the future of working with orexin neuron because it provides a stepping stone for further experimentation.
Works Cited

