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We consider the problem of a sphere rolling on a curved surface and solve it by mapping it to the
precession of a spin 1/2 in a magnetic field of variable magnitude and direction. The mapping can
be of pedagogical use in discussing both rolling and spin precession. As an interesting example we
show that the Landau-Zener problem corresponds to the rolling of a sphere on a Cornu spiral, and
derive the probability of a non-adiabatic transition using the rolling language. We also discuss the
adiabatic limit and the vanishing of geometric phases for rolling on curved surfaces.
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I. INTRODUCTION

In this paper we consider a question similar to that
posed in the title of Ref. [1]: How much does a sphere
rotate when rolling on a curved surface? In Ref. [1],
the old problem of the rotation of a torque free, non-
spherical body is reanalyzed. Here we consider a related
but different problem: a sphere is made to roll without
slipping on a given curve Γ on a surface. The question
is, if the sphere completes a circuit, what is the rotation
matrix connecting the initial and final configuration of
the sphere? The problem we are considering is therefore
a kinematic rather than a dynamic one: the trajectory
of the contact point of the sphere and the surface is dic-
tated externally and the rolling constraint is imposed.
We make contact with recent approaches that consider
the same problem [2, 3] (but on a plane), in particular,
we address a nice question posed by Brockett and Dai
[4]: a sphere lies on a table and is made to rotate by a
flat plane on top of it, parallel to the table. The question
is: if every point of the plane describes a circle, what is
the trajectory and motion of the sphere?

We treat the problem by exploiting its isomorphism to
the precession of a spin 1/2 in a time-dependent magnetic
field. In the mapping, the arc length of the curve plays
the role of time. For rolling on a plane the magnitude
of the magnetic field is 1/R with R the radius of the
sphere, and the direction of the magnetic field is that of
the instantaneous angular velocity of the rolling sphere.
For a curved surface the normal curvature and the torsion
of the curve affect the value of the effective magnetic
field. Closely related to the present paper is the use of
the isomorphism between classical dynamics and that of a
spin 1/2 by Berry and Robbins in Ref. [5], especially their
classical view of the Landau-Zener [7] problem. From
a pedagogical perspective, the novel contribution of this
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paper is to use the isomorphism to discuss rolling spheres
on an arbitrary surface.

The precession of a spin 1/2 is widely treated in the
literature and one can borrow those results to acquire
an intuition for the rolling sphere. Conversely, since a
rolling sphere is a tangible physical problem, the present
treatment can be useful pedagogically in presenting spin
precession, Berry’s phases and it’s classical counterpart,
Hannay’s angle [6].

As a nice application we show that the Landau-Zener
problem corresponds to the rolling of a sphere on a Cornu
spiral, and derive the probability of a non-adiabatic tran-
sition using the rolling language. We do so by a qualita-
tive argument and by an exact computation of the rota-
tion matrix in the non-adiabatic approximation.

II. ROLLING MOTION

Rolling motion is an example of motion subject to a
nonholonomic constraint – a constraint on the velocities
of a system but not its position.

More precisely constraints on mechanical systems are
linear in the velocity and take the form

n∑
k=1

aj
k(qk)q̇k = 0.

where the qk are the coordinates of the system.
If the set of constraints is such that they cannot be

rewritten as constraints on position (they are not inte-
grable) they are said to be nonholonomic. Otherwise
they are said to be holonomic.

Typical examples are a rolling disk, an ice skate and a
rolling ball, the last being the subject of this paper.

Perhaps the simplest nonholonomic constraint is that
of an ice skate moving on a plane where the constraint.
is of the form

ẋ cos θ − ẏ sin θ = 0 ,
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where the blade makes an angle θ with the x-axis. This
simply means that the blade connot move in the perpen-
dicular direction to its blade direction.

One can consider the kinematics or dynamics of such
systems. The dynamics is given by the Lagrange
D’Alembert principle, while for the kinematics, which
is what we are concerned with here, we are concerned
simply with possible kinematic motions subject to the
constraints. Physically this is equivalent of having direct
control of system velocities rather than inducing motion
by external forces or torques. Details msy be found in
[10]. Such kinematic motion is important in the study of
robotics.

III. ROLLING ON A PLANE AND QUANTUM
PRECESSION

Consider a sphere of radius R rolling on a curve Γ
on a plane. We define a local triad of unit vectors at
the contact point (the so called Darboux frame [8]): the
tangent t to Γ, the normal n to the surface, and u = n×t,
the tangent normal. For rolling on a plane n is a constant
vector, and the velocity of the center of the sphere is along
the tangent to the curve. This situation will change for
rolling on a curved surface, but, as we will see, the general
idea of the mapping to a precessing spin is the same.

The translational velocity of the sphere is V = tV (t)
and the rolling constraint means that the instantaneous
velocity at the contact point is zero [9]:

−→ω × (nR) = V = tV (t) (1)

with −→ω the angular velocity and R the radius of the
sphere. This equation is nonintegrable and constitutes a
paradigmatic nonholonomic constraint [10].

Taking the cross product with n on both sides of the
above equation we have

−→ω =
V (t)
R

n× t ≡ V (t)
R

u. (2)

Notice that in the above equation we have used the “no
twist” condition −→ω ·n = 0, that is, we are consider rolling
without an instantaneous rotation along the normal.

The instantaneous velocity Ẋ of a point of coordinate
X (with respect to the center of the sphere) on the surface
of the sphere is

Ẋ = −→ω ×X =
V (t)
R

u×X. (3)

Now we rewrite V (t) = ds/dt where s is the arc length
of the curve Γ(t), and (3) becomes

dX
ds

=
u
R
×X. (4)

If we regard X = (x, y, z) as a magnetic moment, the
above equation describes its precession in the presence of

a magnetic field B = − 1
R (ux, uy, uz) = −−→ω of constant

magnitude 1/R. The direction of B is −u, and varies
with s, the arc length, which plays the role of time. If
the rolling is on a horizontal plane, then Bz=0, but we
keep this notation to make contact with the rolling on an
arbitrary surface.

There is an isomorphism between the rolling sphere
written in this way with a spin 1/2 precessing in this
magnetic field. This isomorphism can be seen clearly if,
(using B = −−→ω ) we rewrite Equation (4) in the form

d

ds

 x
y
z

 =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

 x
y
z

 , (5)

which is the same as the following equation of motion for
two complex numbers a and b (we write s instead of t for
time in order to keep the analogy)

i
d

ds

(
a
b

)
= −1

2

(
Bz Bx − iBy

Bx + iBy −Bz

)(
a
b

)
, (6)

with the identification

x ≡ ab∗ + ba∗

y ≡ i (ab∗ − ba∗)
z ≡ aa∗ − bb∗. (7)

The real numbers (x, y, z) represent the coordinates
of a point on the surface of the sphere referred to a
coordinate system fixed in space (that is, not rotat-
ing), and whose origin is in the center of the sphere.
The above mapping is certainly possible because of the
SU(2)− SO(3) isomorphism [11].

Equation (6) is Schrödinger’s equation for the spinor
χ = (a, b) in the presence of a magnetic field B:

i
d

ds
χ = −B · Sχ ≡ Hχ, (8)

where ~ = 1 and H is the Hamiltonian. Also, the vector
S = 1

2 (σx, σy, σz) is the spin operator, and σi are Pauli’s
matrices. Notice that in this mapping, the magnetic
fields and the frequencies have units of inverse length,

Equation (7) implies that we can extract the behavior
of the rolling sphere as a function of arc length by solving
the motion of a spin 1/2 in a time-varying magnetic field.
To our knowledge the equivalence between the motion of
rigid body and a two-level system (a spin 1/2), in the
form of the mapping of Eq. (7) was first pointed out by
Feynman, Vernon and Hellwarth [12] and later discussed
several times [15]. Earlier, Bloch [13] had derived the
precession equation for the density matrix of spin 1/2 and
therefore the points (x, y, z) that result from the mapping
from spinors are called the Bloch sphere.

The pedagogical novelty of the present paper (an al-
ternative title of which could well have been “The rolling
of the Bloch sphere”) is to discuss the rolling using the
arc length as time and identifying the isomorphism be-
tween the rolling sphere and the quantum spin in exactly
solvable cases.
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FIG. 1: The lollipop, or a sphere rolling counterclockwise on
a circle of radius r corresponds to a spin 1/2 precessing on a
magnetic field that rotates in the xy plane.

IV. WARMUP: CONSTANT MAGNETIC FIELD

Consider the simplest case of constant magnetic field.
We choose B = B0k̂, constant in the +z (vertical) direc-
tion. This corresponds to the sphere rolling on a vertical
plane. Eq (6) becomes:

i
d

ds

(
a
b

)
= −1

2

(
B0 0
0 −B0

)(
a
b

)
, (9)

with solutions:(
a(s)
b(s)

)
=
(

eisB0/2a(0)
e−isB0/2b(0)

)
. (10)

Substituting (10) in (7) we obtain:

x(s) = x(0) cos
(

B0s

2

)
+ y(0) sin

(
B0s

2

)
y(s) = y(0) cos

(
B0s

2

)
− x(0) sin

(
B0s

2

)
z(s) = z(0), (11)

which means that the sphere is rotating clockwise around
a constant axis in the z direction. This corresponds to −→ω
in the −z direction. In other words, a constant magnetic
field in the z direction corresponds to the sphere moving
in a straight line in the xy plane, rolling on a vertical
wall. The same situation applies if a constant field is
directed in any other orientation.

V. THE LOLLIPOP AND THE PLANAR FIELD

Consider a magnetic field varying on the xy plane as
B = B(cos αs, sinαs, 0). This corresponds to u rotat-
ing with the same frequency in the same plane, and
the rolling problem becomes that of a sphere of radius
R = 1/B rolling counterclockwise on a circle of radius
r = 1/α as will prove below (see Figure 1).

In turn, this corresponds to a time (or arc length) de-
pendent Hamiltonian H = −B · S, which can be solved
by noting that

2B · S =
(

0 Be−iαs

Beiαs 0

)
= U∗

(
0 B
B 0

)
U,(12)

with

U =
(

eiαs/2 0
0 e−iαs/2

)
. (13)

Substituting the above relations in (6) we obtain a con-
stant coefficient differential equation for the coefficients
χ̃(s) = (ã, b̃) = (eiαs/2a, e−iαs/2b)

i
d

ds

(
ã

b̃

)
= −1

2

(
α B
B −α

)(
ã

b̃

)
≡ H̃

(
ã

b̃

)
. (14)

Transformations (12) and (13) correspond to trans-
forming to a frame that rotates with angular velocity
α [18]. When transforming to the rotating frame, the
angular velocity acquires a component α = 1/r in the z
direction and the frequency of rotation in the rotating
frame is

Ω =
√

B2 + α2 =
1

rR

√
r2 + R2 (15)

This can be seen in the spinor language by noting that,
since H̃ in Eq. (14) is time-independent , the solutions
are

χ̃(s) = e

i
2 s

 
α B
B −α

!
χ̃(0)

= [cos (Ωs/2) + i~σ ·m sin (Ωs/2)] χ̃(0), (16)

with ±Ω =
√

B2 + α2 (twice) the eigenvalues of H̃ and
m a unit vector in the direction α/B = R/r. Notice
the presence of the factor of 2 in the relation between
the eigenvalues of H and the corresponding rotational
frequencies of the rolling problem. This comes from the
factor 1/2 that emerges naturally in the mapping to the
spin problem of Eq. (6). It is important to keep track
of this factor in switching to each side of the isomor-
phism. Equation (16) describes a rotation at a rate Ω
with respect to an axis in the direction of the “stick” of
the lollipop (the direction joining A to the center of the
sphere (see Fig. (1)). (Our “lollipop” is a sphere with a
stick through the center, as in a child’s sweet on a stick.)
Notice that solving for the evolution by exponentiating
H̃ is possible because H̃ does not depend on s. If there
is an s-dependence and the matrices H̃ at different s do
not commute the solution is a “time ordered” exponential
that in general cannot be simplified further.

After the lollipop completes a circle, the angle δ of
rotation is

δ =
2π

α
Ω = 2π

√
1 +

( r

R

)2

. (17)

Notice that, when R � r the angle of rotation is
δ 2πr/R, corresponding to rolling in a line of length equal
to the perimeter of the circle.
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We see that, after traveling on a circle the sphere is
rotated by 2πΩ/α with respect to an axis tilted with
respect to the plane; this is the nonholonomy treated in
[3] and [17].

The angle of rotation δ (of both the spin and the lol-
lipop) has a simple geometric interpretation: when the
lollipop rolls, the point of contact C moves on the cir-
cular rim of the cone ABC (see Figure 1). At the same
time, the point C “paints” on the sphere a circle of di-
ameter BC = 2rR/

√
r2 + R2. (This is easily calculated

with simple geometrical considerations from Figure 1.)
This means that after a revolution of length 2πr the an-
gle rotated is 2πr/(BC/2) from which Eq. (17) follows
immediately.

At this point we consider Brockett’s question men-
tioned in the Introduction. Notice first that, as the
sphere rolls on a circle, the velocity at the top of the
sphere is twice the velocity V at the center of the sphere.
Since each point of the plane on top of the sphere de-
scribes a circle of radius R1, the velocity VP of the plane
also describes a circle. Therefore, since the sphere has a
rolling condition with the upper plane, then VP = 2V,
meaning that, as the plane describes a circle of radius R1

the sphere describes a circle of radius R1/2.
We showed this with a nice classroom demo: on a piece

of paper draw a circle of radius 5 inches (twice that of
a tennis ball). Orient the label of the tennis ball at 45
degrees with the vertical (the sphere is going to roll on a
circle of radius r = R, and therefore the axis of rotation
is going to be at 45 degrees and the precession frequency
will be, from (15),

√
2). Paint a mark on a transparent

glass, which in turn will serve as the upper plane. Also
mark three points on the circle separated by β = 127
degrees (π/

√
2). Looking through the glass, guide the

mark on the glass over the circle on the paper, and notice
that, each time the glass rotates by β, the tennis ball
rotates by π with respect to a moving axis at 45 degrees.

Notice also that for s = 2π/α the spinor χ changes sign
due to the 1/2 factor in the transformation. Nevertheless,
since the mapping of (7) is quadratic in a and b, changing
their signs corresponds to the same values (x, y, z) for
the orientations. More specifically, the quantities a and
b determine univocally x, y and z, but the reverse is not
valid: the quantum evolution determines univocally the
classical evolution but there is some ambiguity in going
from the classical to the quantum case. For example if we
perform the “gauge transformation” (a, b) → eiφ(s)(a, b)
the mapping to the X coordinate remains unchanged.

VI. ROLLING ON A CORNU SPIRAL AND
THE LANDAU-ZENER PROBLEM

In this section we consider a “magnetic field” of con-
stant magnitude B0 varying on the xy plane as

B = B0(cos φ(s), sinφ(s), 0) = −−→ω , (18)

which corresponds to the angular frequency rotating with
the (varying) frequency φ(s) in the plane. The rolling
problem becomes that of a sphere of radius R = 1/B0

rolling on a planar curve of local curvature given by

κ(s) = φ̇ ≡ dφ

ds
(19)

.
This corresponds to a time (or arc length) dependent

Hamiltonian H = −B ·S, which can be solved by noting
that

B · S =
(

0 B0e
−iφ(s)

B0e
iφ(s) 0

)
= U∗

(
0 B0

B0 0

)
U, (20)

with

U =
(

eiφ(s)/2 0
0 e−iφ(s)/2

)
. (21)

Substituting the above relations in (6), and using (19)
we obtain a time independent equation for the coefficients
χ̃(s) = (ã, b̃) = (eiφ/2a, e−iφ/2b)

i
d

ds

(
ã

b̃

)
= −1

2

(
κ(s) B0

B0 −κ(s)

)(
ã

b̃

)
≡ H̃

(
ã

b̃

)
.

(22)
We have obtained the nice result that rolling on a pla-

nar curve is isomorphic to spin precession on a magnetic
field that is constant in (some direction of) the xy plane,
and with a z component that varies in time according to
the local curvature. For example, this means that rolling
on a Cornu spiral (a curve whose curvature is propor-
tional to the arc length), defined as

φ(s) = as2/2, (23)

with a a constant, corresponds to the Landau-Zener[7]
problem of a spin in a magnetic field whose z component
varies linearly with time Bz = as and a constant xy cou-
pling of magnitude 1/R. The prototypical question in
the Landau-Zener problem is the flipping of a spin that
starts, for t → −∞, in a well defined orientation in the z
direction. In the language of section III this means that
|a(−∞)| = 1, and |b(−∞)| = 0. In the sphere isomor-
phism, the level splitting ∆E (See Figure 2) increases in
time (arc length s) as ∆E = as and the level coupling is
B0 = 1/R, constant in time. The problem is also called
the avoided level crossing. The name comes from the fact
that, when B0 = 0 the levels for spin up and down cross
at s = 0. The remarkable result obtained by Zener is
that the probability of the spin remaining up after the
evolution is, in our notation

|a(∞)| = e−π/2aR2
. (24)
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FIG. 2: Equivalence between a) rolling on a Cornu spiral and
b) the Landau-Zener problem of the spin flip probability on a
time dependent field.

We now show that the non-adiabatic limit when the
levels are crossed very fast (which for rolling corresponds
to a sphere much larger than the size of the Cornu spiral)
can be obtained in a simple way using the rolling picture.

A. Landau-Zener expression in rolling language

We start by a qualitative derivation of the non–
adiabatic limit which reveals the power of the rolling
picture. Consider the rolling from P to Q (See Figure
2) of a sphere of radius R much larger than the “size”
` = PQ of the spiral. We want to estimate the angle θ of
rotation of the North pole when the sphere rolls from P
to Q, and, from this, obtain the change in the probability
of finding the spin up |a(∞)|2 sing the equivalence stated
in Equation (7). Qualitatively, since the sphere is very
large, the rotation following the Cornu spiral is roughly
that of a rolling on a straight line from P to Q. After
the rolling the zN coordinate of the North pole changes

from R to

zN (∞) ' R

(
1− 1

2
θ2

)
' R

(
1− 1

2

(
`

R

)2
)

The length ` of the segment PQ is:

` =
√

2
∫ ∞

∞
ds sin

as2

2
=

√
2π

a
. (25)

Noting that |a|2 + |b|2 = 1, we have (see Eq (7))

|a(∞)|2 =
zN (∞)/R + 1

2
= 1− π

2aR2
, (26)

which [see Eq.(24)] is the exact expression for the
Landau-Zener effect in the non-adiabatic limit.

Next we use our isomorphism to re-derive this result
calculating the rotation matrix exactly to the same order
in 1/aR2. The Landau-Zener problem is described by the
following evolution:

i
d

ds

(
ã

b̃

)
= −1

2

(
as 1/R

1/R −as

)(
ã

b̃

)
. (27)

From our previous discussion, in the rolling language
this matrix corresponds to the following evolution for a
point in the sphere of radius R:

d

ds

 x
y
z

 =
1
R

 0 0 − sin as2

2

0 0 cos as2

2

sin as2

2 − cos as2

2 0


 x

y
z


≡ M(s)

 x
y
z

 , (28)

or equivalently Ẋ = M(s)X. Since the matrices do not
commute at different values of s, the formal solution of
this equation is

X(s) = Te
R s

s0
ds′M(s′)X(s0), (29)

with T the normal ordering operator. We are interested
in s0 = −∞ and s0 = ∞. Also, we are interested in large
values of R compared to the size 1/

√
a of the spiral (or

the non-adiabatic limit for spins) we consider the lowest
orders of the expansion of the time ordered exponential

Te
R∞
−∞ dsM(s) ' 1 +

∫ ∞

−∞
dsM(s)

+
∫ ∞

−∞
ds

∫ ∞

s

ds′M(s)M(s′). (30)

We are interested in the “permanence”, after the evo-
lution, in a particular initial state (spin up) which cor-
responds, in the rolling language, to X(−∞) = (0, 0, 1).
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This means that we only need to consider the (3, 3) el-
ement of the matrix of the time ordered exponential:
U33 =

[
T exp

∫∞
−∞ dsM(s)

]
33

= z(∞). Multiplying the
two M matrices we get

z(∞) ' 1− 1
R2

∫ ∞

−∞
ds

∫ ∞

s

ds′
(

cos
as2

2
cos

as′2

2

+ sin
as2

2
sin

as′2

2

)
= 1− π

aR2
. (31)

Now we connect to the spin problem using the equiv-
alence Equation (7) and we obtain:

|a(∞)|2 =
z(∞) + 1

2
= 1− π

2aR2
, (32)

which, again coincides with the exact expression for the
Landau-Zener effect in the non-adiabatic limit.

VII. ROLLING ON A CURVED SURFACE

In this section we extend the treatment of rolling on
a plane to rolling on a curved surface (See Figure 3).
If we call XP the coordinate of the contact point, the
coordinate Xc of the center of the sphere is:

Xc = XP + Rn, (33)

and its velocity is given by

Ẋc = ẊP + Rṅ,

=
(
t + R

dn
ds

)
ds

dt
. (34)

The rolling condition is that the velocity of a point of
the sphere in contact with the surface is zero (See Eq.(1)):

−→ω × (nR) = Ẋc. (35)

Again, taking the cross product with n on both sides
of the equation above we obtain

−→ω =
1
R

n× Ẋc. (36)

We now replace (34) in (36), and use the fact that, for
a curved surface, the variation of the normal is given by

dn
ds

= −κnt− τru, (37)

with κn the normal curvature and τr the torsion of the
curve, both evaluated at the contact point. We obtain

−→ω =
[

1
R

(1− κnR)u + τrt
]

ds

dt
. (38)

= ×u n t

t

v

n

( )tΓ

ω

FIG. 3: Sphere rolling along a curve Γ of zero torsion (mean-
ing that the velocity of the center of the sphere is parallel to
the tangent of the curve at the contact point).

The discussion for the planar case extends to the
curved surface, and the rolling of the sphere is equiva-
lent to a spin 1/2 precessing on a magnetic field B(s)
given by

B(s) = −
[

1
R

(1− κnR)u + τrt
]

, (39)

with the arc length s playing the role of time. In the
following section, as an example of this formulation we
consider rolling on a spherical surface.

VIII. SPHERE ROLLING ON A SPHERICAL
SURFACE

In this section we consider a sphere of radius R rolling
on a second sphere of radius r. The rolling line will be
a parallel of latitude π/2− θ (see Figure 4). This means
that the normal curvature is constant 1/r, and also that
the torsion is zero. The magnetic field for the correspond-
ing spin problem is therefore:

B±(s) = −(±)
[

1
R

(
1± R

r

)
u
]

= −(±)
1

R̃±
u, (40)

with R̃± = rR/(r±R) a reduced radius and the plus and
minus signs refer to the rolling outside and inside of the
sphere of radius r respectively.

For a sphere rolling on a parallel, the instantaneous
angular velocity (and the magnetic field) describes a cone
forming an angle θ with the vertical. The total arc length
of the parallel is r sin θ meaning that the vector u rotates
with angular frequency α given by α = 1/(r sin θ). The
corresponding magnetic field is therefore

B±(s) = (Bx, By, Bz)±

= (±)
1

R̃±
(cos θ cos αs, cos θ sinαs,− sin θ)(41)

with the term B · S in the corresponding Hamiltonian
given in this case by

B · S = ±1
2

1

R̃±

(
− sin θ cos θe−iαs

cos θeiαs sin θ

)
. (42)
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FIG. 4: Sphere rolling on a sphere.

This again is an exactly solvable Hamiltonian that was
first studied by Rabi

Using the same transformation matrix of Eq. (13) the
above Hamiltonian can be rendered time independent.
We write it in the following form

H̃ = −1
2

(
−B± sin θ + α B±cos θ

B±cos θ B±sin θ − α

)
, (43)

with B± = 1/R̃±.
The eigenvalues of H̃ are E± = Ω±/2 with

Ω± = (±)
1

R̃±

√√√√1− 2R̃±

r
+

(
R̃±

r sin θ

)2

, (44)

with the spinor precessing, in the rotating frame, around
an axis that forms an angle β (see Figure 4) with the xy
plane, with

tanβ = tan θ − R

r + R

1
sin θ cos θ

(45)

The second term in (45) reflects the fact that the small
sphere rotates instantaneously on the tangent plane that
contains BC (see Figure 4). Equation (45) can be easily
derived by simple geometric considerations from Figure
(4).

After a complete revolution the angle of rotation δ is

δ± = 2πr sin θΩ±. (46)

After a little algebra we obtain

δ± = ±2π cos θ

√
1 +

(
r tan θ

R

)2

(47)

In Section A we derive this same result in the rolling
language. Notice that, if we compare with the rotation
in a plane from Eq. (15), the rotation corresponds to
rolling on a circle of radius equal to that of the unfolded
cone tangent to the parallel (See Fig. 4). The angle of
rotation along that circle is not 2π but 2π cos θ. This
geometric factor is the same that appears in Foucault’s
pendulum and in Berry’s phase for a spin precessing on
a cone (we will come back to this point below). Also,
notice that when r = R the angle of rotation is always
2π independent of latitude.

We finish this section with a discussion of the differ-
ences and similarities between the Berry phase for a pre-
cessing spin 1/2 in the adiabatic approximation and the
rolling of two spheres.

The Hamiltonian for a spin in a magnetic field that
precesses along the z axis at frequency α is given by (43),
where in principle α and B0 are independent parameters.
If α � B0 (the adiabatic approximation) the eigenvalues
(eigenfrequencies) of H̃ are

Ω '
√

B2
± − 2αB± sin θ ' B± − (±)α sin θ. (48)

After a period of time 2π/α the change ∆φ in the phase
of the spin is

∆φ = 2π
B±

α
− (±)2π sin θ. (49)

The first term is the dynamical phase and the second is
a purely geometrical one, independent of the parameters
B0 and α, and given by (half) the solid angle described
by the field.

For the rolling sphere we can also study an “adiabatic
approximation” since α � B0 corresponds to r � R.
In other words, in general the adiabatic approximation
will correspond to the radius of the rolling sphere much
smaller than the radius of curvature of the surface. On
the other hand, in contrast with the spin case, the fre-
quency of rotation α = 1/r sin θ “knows” about the
latitude and the curvature. So we expect some differ-
ences and some similarities. Replacing the values of
B± = ±1/R̃± ≡ (±)1/R ± 1/r in (49) we obtain the
angle of rotation of the sphere in each case (in the adia-
batic approximation)

∆φ± = ±2πr sin θ

(
1
R
± 1

r

)
− (±)2π sin θ.

= ±2π
r sin θ

R
(50)

Notice that there is a cancelation of the geometric
phase for rolling. In the spin problem, the frequency ω
of rotation of the field (α for rolling) and the magnitude
of the field B± are independent and therefore the total
angle of rotation is given by Eq.(49), with the second
term a purely geometric term independent of the param-
eters of the problem. In the rolling case the frequency
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and the field are not independent, and the “dynamical”
phase contains a term that cancels the geometric one. As
a result, the total rotation is given by a magnitude that
depends on the parameters of the problem, which, in the
spin language corresponds to the dynamical phase only.
This cancelation is a general result that we will visit in
the next section.

In the next section we discuss the general connection
between rolling and the Berry phase for spins in the adi-
abatic approximation.

IX. THE ADIABATIC APPROXIMATION AND
ROLLING ON A CURVED SURFACE

In this section we compare the equivalence between
the adiabatic approximation for a spin precessing in a
magnetic field that changes direction at a slow rate and
rolling on a surface. In the spin case, the dimensionless
parameter controlling the approximation is the ratio of
the instantaneous frequency (proportional to the instan-
taneous magnitude of the field) with the rate at which
it’s direction is changing.

In the rolling case the instantaneous frequency corre-
sponds to the magnitude of B(s) and the rate of change
in its direction is related to the normal curvature and to
the curve’s torsion.

In the adiabatic approximation for spins [20], one
works in an “instantaneous” basis, treating first s (time)
as a parameter and solving the eigenvalue equation as
though the problem were static:

H(s)χ(s) = E(s)χ(s) ≡ Ω(s)
2

χ(s). (51)

Then the general solution is written as linear combina-
tions of the instantaneous eigenstates. As a result, in the
adiabatic approximation, the spinor at time s is given by

χ(s) = eiγ(s)ei
R s
0 ds′E(s′)χ(0). (52)

The argument of the second exponential above repre-
sents the dynamic phase, which involves the integral of
(half) the following angular frequency:

Ω(s) = |B(s)| = 1
R

√
[1− κn(s)R]2 + [τ(s)R]2

' 1
R
− κn(s) (53)

This can be seen, for example from Equation (42): the
eigenvalues of B · S with s treated as a parameter are
±|B(s)|/2.

The (instantaneous) direction of the field is in the di-
rection uB given by

uB =
B(s)
|B(s)|

= − (1− κnR)u + τrt√
(1− κnR)2 + τ2

r

(54)

In general, the eigenvalues of a Pauli matrix in an ar-
bitrary direction uB · ~σ given by the unit vector uB =
(ux, uy, uz) are ±1. This is verified by noting that (defin-
ing ux + iuy = ρeiφ)

(uB · ~σ) χ±(uB) =
(

uz ρe−iφ

ρeiφ −uz

)
χ±(uB) = ±χ±(uB),

(55)
with χ±(uB) = (1,±(1 − uz)e±iφ/ρ). Notice that the
dependence of χ on s is through the orientation of u.

The first term of (52), the geometric phase γ, is the
Berry phase, and is given by [21]

γ̇(s) = iχ(uB(s))†
d

ds
χ(uB(s)). (56)

Without loss of generality we express uB in polar co-
ordinates uB = (cos θ cos φ, cos θ cos φ, sin θ), where the
quantization axis z is perpendicular to the instantaneous
plane of motion of the center of mass of the rolling sphere.
This means that the normalized spinor is:

χ(uB(s)) =

(
cos θ(s)√
1+sin θ(s)√

1 + sin θ(s)e−iφ(s)

)
. (57)

From the above expression and (56) we can compute
the geometric phase:

χ̇ = iχ†
d

ds
χ =

1 + sin θ

2
dφ

ds
. (58)

Here dφ is the angle of rotation of the center of mass
of the sphere with respect to an instantaneous axis of
rotation. The first term of the right hand side is 2π after
integration on a closed circuit. And the second term
cancels the curvature term from Eq. (53). This results
from the identity[25]

dφ

ds
=

κn

sin θ
. (59)

Our final result is that, as anticipated in the two
spheres case, in general there is no Berry phase for rolling
as a result of the above cancelation:

δ± = ±
(∫ s

0

ds′Ω(s′) + 2γ(s)
)

= ±L

R
+ 2π (60)

Note that, if we specify this result to the sphere rolling on
the parallel of a sphere of radius r, we have L = 2πr sin θ.
Replacing these in Eq. (53) we obtain the result of Eq.
(50) as expected. The discrepancy of the (unimportant)
factor 2π results from the fact that the treatment in the
present section is in the rest frame and that of section
VIII is in the rotating frame. The plus and minus signs
correspond both to the two senses of traveling the circuit
and the two sides of the surface on which the sphere can
roll.
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APPENDIX A: KINEMATICS OF ROLLING ON
A SPHERE

Consider the rolling of a sphere of radius R on a sphere
of radius r along a parallel of latitude θ.

In Figure (5) we show the instantaneous motion in the
xz plane, where the two spheres (inner and outer) are
moving into the plane.

The speed of the center of mass of each sphere is con-
stant along the rolling and given by

Vo,i =
1
T

2π(r ±R) sin θ,

where T is the time to complete a full rolling. For the
picture shown in Figure 5, V is directed into the page.

R

r

( )sinR r θ+

( )sinR r θ−

Oω
r

iω
r

θ

FIG. 5: Kinematics of rolling spheres

The rolling condition for the angular velocity in each
case is

ωo,iR = Vo,i,

where ωo,i are the magnitudes if the instantaneous ro-
tational angular velocity. Notice that the directions are
opposed.

The instantaneous components of the angular velocity
are

−→ω o =
2π

T

( r

R
+ 1
)

sin θ(− cos θ, 0, sin θ)

−→ω i =
2π

T

( r

R
− 1
)

sin θ(cos θ, 0,− sin θ)

Since the angular velocities are time dependent, we
transform to a moving frame, where they are constant.
The moving frame is rotating at angular frequency 2π/T
around the vertical (z) axis. This means that, in the
moving frame M the corresponding angular frequencies
are

−→ω M,o =
2π

T

[
−
( r

R
+ 1
)

sin θ cos θ, 0,
( r

R
+ 1
)

sin2 θ − 1
]

−→ω M,i =
2π

T

[( r

R
− 1
)

sin θ cos θ, 0,−
( r

R
− 1
)

sin2 θ − 1
]

The corresponding angle of rotation δ = |−→ω M,o|T | =
−→ω M,i|T , after a complete circle is

δ = 2π cos θ

√( r

R

)2

tan2 θ + 1,

which corresponds to the result obtained using the spin
language.
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