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It is a great honor to deliver Myhill lectures. I thank Mohan Ramachandran,
David Hemmer and other colleagues here for the invitation to deliver these lectures
this year.

I had spent a month in spring of 1973 here to attend courses on Algebraic
Geometry and Algebraic Groups given by Alexander Grothendieck. I have very
fond memory of that stay and of my interaction with Grothendieck.

The topic of my talk is number theory in geometry. I will say a few words about
history of mathematics to show how geometry has played an important role in
the development of mathematics. I will also mention some contributions of Indian
Mathematicians of antiquity since these are not widely known. Humans, and
apparently some animals too, can and need to count. We count discrete objects,
such as siblings, animals, friends, trees, . . . . Therefore, integers have existed in
our consciousness for a very very long time.

Babylonians had discovered the place-value representation of integers over 3
millennia BCE; they used base 601, so they needed 60 distinct symbols to write
the numbers. Historians of mathematics believe that Indians independently came
up with place-value representation to base 10 during the Vedic period (c. 1500
BCE). It is not clear if Indus-valley civilization had numerals in their writing;
some experts have opined that they indeed had, and that they used 8 as the base.
In any case, base 10 is much simpler than base 60 – imagine a child memorizing the
multiplication table up to 59×59. Using decimal notation, elementary arithmetical
operations like addition and multiplication became quite easy. Division led to
rational numbers–the ratio of two integers. Subtraction was problematic until
negative numbers (and zero) were introduced. Paninin’s (c. 5th century BCE)
Sanskrit grammar uses the word “shunya” which means “void” or “nothing”; this
word may have inspired the numeral “0”. Via its Arabic translation “sifr” or
“sifar” we got the word “zero”. The Chinese and Indians arrived at the concept of
negative numbers very early on, but in Europe until the mid 19th century negative
numbers were looked-down with suspicion2. Complex numbers were introduced by
the Italian mathematician G. Cardono around 1545 in his quest for solutions of

1In measurement of time and angles multiples and submultiples of 60 appear. This testifies to the wide influence
of the Babylonians on astronomy.

2See David Mumford’s article “What’s so baffling about negative numbers?”
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equations of degree 3. But it was only with the vivid geometric interpretation of
complex numbers and their multiplication law in terms of points of a plane by
Gauss and Argand that such numbers became widely accepted in 19th century,
and later found use across numerous areas of science such as electrical engineering,
signal processing, and quantum mechanics.

With the introduction of negative numbers, Chinese could come up with solu-
tions of systems of linear equations in several unknowns. The classics of Chinese
mathematics “Nine Chapters in Mathematical Art” which began in the first mil-
lennium BCE, with new commentaries added by Lieu Hui in 263 CE, contains the
method of Gaussian elimination. Indians were interested in solutions of quadratic
equations in one variable. The standard solution by completing squares was given
by Sridhar in the 9th century. The Sanskrit name for “algebra” is “beeja-ganit”
that literally means the mathematics of roots (or solutions) of polynomial equa-
tions, so it is quite an appropriate name. The word “algebra” comes from the title
“Al-jabr w’al muqabala” of a book of Al-Khwarizimi (a Persian mathematician
born in the 8th century) which presented solutions of linear and quadratic equa-
tions. Al-Khwarizimi was familiar with Brahmagupta’s book “Brahma-sphuta-
siddhanta” on the topic written two centuries earlier. The word “algorithm”, used
so frequently these days, is derived from the title “Algoritmi de numero Indorum”
of the Latin translation of his book “ Calculation with Hindu numerals”.

Indians were also greatly interested in Diophantine problems early on–that is,
finding integral solutions of polynomial equations with integral coefficients in two
or more unknowns. For example, the “Chakravala” method to solve Pell’s equation
x2 − ny2 = 1, where n is a positive integer which is not a square, was discovered
by Brahmagupta in the 7th century. He also knew that two solutions can be
“multiplied” to obtain a third solution3. The solutions of a given Pell’s equation
thus form a group; however the concept of a group was introduced only in the
18th century. Bhaskara II in 1150 extended the Chakravala method and obtained
a general solution of Pell’s equation. For example, he found the smallest solution
for n = 61 to be x = 1766319049 and y = 226153980, quite a feat! Apparently a
reason for interest in Pell’s equation was to find rational approximations of

√
n.

If x = a and y = b is a solution of the equation, then a/b is a good approximation
of
√
n for large b.

It is amusing to note that in 1657, Fermat posed Pell’s equation as a challenge
to the mathematicians of Europe and England. A method to find solutions of
the equation in terms of the theory of continued fractions was found by the Swiss

3Given two solutions x = a1, y = b1 and x = a2, y = b2 of x2 − ny2 = 1, then as (a1 +
√
nb1)(a2 +

√
nb2) =

(a1a2 + nb1b2) +
√
n(a1b2 + a2b1), x = a1a2 + nb1b2, y = a1b2 + a2b1 is again a solution. This is the third solution

provided by Brahmagupta.
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mathematician Euler and presented in a polished form by Lagrange in 1766. Euler
was responsible for mistakenly naming the equation after Pell, one millennium
after Brahmagupta considered these equations

Rituals, geometry, and astronomy were prime motivators for the development
of early mathematics. Sulvasutra, from the late Vedic period (8th century BCE),
developed plane geometry in detail to construct altars for the fire rituals (yajnas).
Sulvasutra contains the Pythagoras theorem (and uses its converse to assert that if
c2 = a2+b2, then the triangle is right-angled). It follows that a square of side 1 has
diagonal of length

√
2, which is not an integer, in fact not even a rational number,

as unique factorization of integers implies. Thus arose nonrational numbers from
geometry. Note that for any positive integer n,

√
n is a solution of the equation

x2 − n = 0 with integral coefficients. More numbers arise as solutions of such
equations. All these numbers are called algebraic numbers.

Due to their symmetry and their occurrence in nature, circles and spheres held
special fascination. The circumference, the area, and the volume of circle, sphere,
and ball were known in various cultures. Archimedes was very proud of his com-
putation of the area of the surface of a sphere and volume of a ball. Such com-
putations later gave rise to integration (or integral calculus). These computations
involve a new number π. It was known to Aryabhata in the 6th century (and
most certainly to Nilakantha who in the 15th century wrote a commentary on
Aryabhata’s work) that π is not a rational number. Only much later in the 19th
century it was proved by Lindemann that π is a transcendental number (i.e., not
an algebraic number). This settled the problem, already considered in Sulvasutra,
and by early Greeks, whether a circle can be squared. The answer is “no”. From
early on, there were attempts to find good rational approximations to the value of
π and in the 14th century Madhava found the value correct to 11 decimal places.

Mathematics is the only science which rigorously treats actual and potential
infinity. Since the time of Georg Cantor (in the 19th century) we know that there
are different kinds of infinities. The smallest one is called the countable infinity. It
is the cardinality of the set of integers. As there are only countably many equations
with integral coefficients, there are only countably many algebraic numbers. On
the other hand, it was shown by Cantor that the cardinality of the set of real
numbers is a larger infinity. So “most” real numbers are transcendental. However,
given a real number, it is usually very hard to decide whether it is transcendental.

Early interest in astronomy and spherical geometry gave rise to trigonometric
functions: sine, cosine, tan, arctan etc. The rate of change and the second-order
differences of the trigonometric functions and the notion of instant velocity of
planets (as opposed to the mean velocity) were studied by Indian mathematicians
in the 1st millennium CE. Inspired by these, the notion of derivative as a limit
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of rate of change was introduced by Madhava’s school. This school flourished in
southern Indian state of Kerala for about 200 years beginning in the 14th century
and it came up with the Taylor expansion of sine, cosine, and arctan. In particular,
they discovered the series (1− 1

3 + 1
5− ...) for π/4 which is called the Gregory series

these days. All this happened almost three hundred years before Newton and
Leibniz. The mathematicians of Madhava’s school were aware that the Gregory
series converges very slowly, so they, and much later Ramanujan, found several
rapidly converging series.

Gauss used geometry in his investigations of binary quadratic forms–that is,
homogeneous quadratic polynomials in two variables. Dirichlet and Minkowski
used geometry to study the structure of number fields and the ring of integers
and group of units in such fields. Thus, a new branch of mathematics known
as “Geometry of Numbers” was born. Many spectacular advances in number
theory during the last 30 years, such as Wiles’ solution of Fermat’s Last Theorem,
would have been impossible without advances in at the interface of geometry and
algebra due to such great mathematicians as Grothendieck and Langlands. Manjul
Bhargava’s work for which he has been awarded a Fields’ Medal two years ago,
uses geometry extensively to obtain results in number theory.

Though mathematics is largely a creation of human mind, it has been used
to accurately model natural phenomena and to formulate laws governing them.
This led the physicist Eugene Wigner to talk about “unreasonable effectiveness”
of mathematics in physical sciences. Now math has found many practical appli-
cations in our day-to-day life. From security and privacy of financial transactions
using prime factorization of integers, encryption, weather prediction and analysis
of the stock market, in digitalization of music and movies on CDs, in medical imag-
ing and in many more things. It is also being used in biology and genetics. But
nature may have been using very sophisticated mathematics much longer than us.
My daughter, who is a neuroscientist, has explained to me that to keep the visual
image of the world fixed during body and head motion, the part of the brain that
controls eye position performs calculus, integrating motion and counter-rotating
the eyes. Also, insects and mammals can keep a continuous tally of their geo-
graphical position as they move around; this also involves integrating motion into
an updated position estimate so that on their way back they are able to take the
shortest path. Just like in CDs, where scratches do not destroy the ability of the
music to be read out, the brain also appears to use sophisticated codes related to
number theory and algebra, to correct errors during these updates.

Due to the increasing use of mathematics in different areas, the need to learn
it well is growing. So it is not surprising that the mathematics departments offer
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the largest number of service courses and the largest number of undergraduates
are taught by mathematicians.

Now after these historical remarks in which I described how geometry played an
important role in the development of mathematics in general and number theory
in particular, I will describe briefly two interesting geometric problems in which
number theory has been used in my recent work.

Mathematicians like to classify things: to make a complete list in a suitable form
or find ways to distinguish objects in terms of numbers and invariants attached to
them. Let us see a concrete example of difficulties in giving a usable classification.
Let us say that we want to classify people. We can try to classify by the following
easily determined “invariants”: gender, name, nationality, age, height, profession,
.... But none of these by themselves are adequate: There are too many Prasad’s,
in fact many exactly with the same name as mine, too many 41 year olds... We
may try to classify people by a combination of the above “invariants”, but as is
obvious, unless we use a long list of invariants we will not be able to determine
a person uniquely from the list of invariants under consideration. Of course, one
hopes that a finer invariant like finger-print, or DNA-map does identify a person.

In topology, which studies properties of geometric objects (called “spaces”)
which do not change under bending and stretching, an invariant defined by Euler
(in the 18th century), and refined by Poincaré, is the Euler-Poincaré character-
istic (to be abbreviated Euler characteristic in the following). For a simplicial
complex, it is the alternating sum of the number of n-dimensional simplices. It
is clear that for simplicial complexes, the Euler characteristic is an easily com-
putable integer. For other geometric objects, Euler characteristic may not be so
easily computable. But still among all the known topological invariants, the Eu-
ler characteristic appears to be the simplest to compute. Algebraic geometry is
an area of mathematics which studies geometric objects described by polynomial
equations, for example circles, ellipses, parabola, hyperbolas encountered in a high
school geometry course, and their higher dimensional generalizations called alge-
braic varieties. By algebraic variety I will mean its points whose coordinates are
complex numbers, not just points whose coordinates are real numbers. In algebraic
geometry we have a good classification of algebraic curves (that is, 1-dimensional
objects). For example, the Euler characteristic completely classifies the topolog-
ical type of an algebraic curve (an algebraic curve is a Riemann surface!). It is
a remarkable fact, for which Gerd Faltings got a Fields Medal in 1986, that the
properties of the set of points of an algebraic curve whose coordinates are rational
numbers are controlled by its Euler characteristic.

The curves with Euler characteristic zero are called elliptic curves. They are
topologically a torus, and are defined by an equation of the form y2 = x3−ax− b.
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Elliptic curves carry an additional structure, that of a commutative group. In
Manjul Bhargava’s Fields Medal lecture, he focused on his recent work concerning
number-theoretic problems about elliptic curves, done in collaboration with several
others, including my former colleague – and U of M graduate – Chris Skinner.

Algebraic varieties of next dimension, that is of dimension 2, are called algebraic
surfaces. The great Italian mathematicians of the 19th and early 20th century
gave a short list of invariants that provided a crude but useful classification of
algebraic surfaces. The widest collection in their classification are called surfaces
“of general type”, and for those surfaces it is known that the Euler characteristic
has to be at least 3. An example of a surface which achieves this minimum is
the so-called complex projective plane, an analogue of the real projective plane
which was discovered by Renaissance artists who developed the first principles
of perspective drawing. Only in 1979 was another such example found, by the
great algebraic geometer David Mumford. Mumford called his example a “fake
projective plane” (fpp) because it shares certain additional topological invariants
with the usual complex projective plane (it has the same Betti numbers, namely,
1, 0, 1, 0, 1).

It remained a challenging problem for almost three decades to determine all alge-
braic surfaces with Euler characteristic equal to 3. It was proved with much effort
that any such surface is covered by the “complex unit 2-ball” B2

C = {(z1, z2) ∈
C2 | |z1|2 + |z2|2 < 1}, the analogue for complex numbers of the familiar 2-
dimensional open unit disc in the real plane, which in turn is just the “complex
unit 1-ball” in the complex plane of Argand-Gauss. What does one mean by
such a covering? The complex 2-ball has evident symmetries in the form of ro-
tations around the origin, but from the perspective of hyperbolic geometry it has
an abundant supply of additional symmetries which form a continuous group de-
noted PU(2, 1). Number theoretic structures on this group identify distinguished
classes of collections of symmetries, called arithmetic lattices. There are infinitely
many such lattices. When we choose such a lattice of symmetries and create a
new space by identifying points which can be moved from one to the other by
applying a symmetry in the chosen lattice, this new space is called the “quotient”
of the complex 2-ball by the chosen lattice of symmetries and the complex 2-ball
is a “cover” of this quotient space. It was proved independently by Bruno Klin-
gler and Sai-Kee Yeung that any fake projective plane (i.e., a smooth complex
algebraic surface with Betti numbers 1, 0, 1, 0, 1) arises as the quotient of complex
2-ball B2

C by a torsion-free arithmetic lattice. Sai-Kee Yeung later proved that
in fact any smooth complex algebraic surface with Euler characteristic 3 is such
a quotient. But this begs the question: how many such lattices actually give rise
to a surface with Euler characteristic 3? If one picks a lattice of symmetries of
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the 2-ball at random then it generally does not yield a surface with this Euler
characteristic. Some years ago in a seminar talk at the University of Michigan,
the speaker Sai-Kee Yeung presented his result, based on geometry alone (by con-
sideration of Hilbert schemes), that the number of such possible lattices is at most
105.5 million. This is quite a large number, considering that the universe is believed
to have only around 1080 electrons. This seminar talk got me interested in the
question.

A major difficulty in determining all the smooth complex projective algebraic
surfaces with Euler characteristic 3 is that we do not know how to concretely visu-
alize and triangulate every surface which is obtained as a quotient of the complex
2-ball by an arithmetic lattice Γ. These surfaces do not imbed in three dimensions!
But my volume formula for arithmetic quotients allows one to compute the Euler
characteristic without an explicit knowledge of the surface and its triangulation.
The formula involves several number-theoretic and group-theoretic invariants. The
Euler characteristic is an integral multiple of

D
5/2
` ζk(2)L`|k(3)

3x(16π5)dDkh`,3

∏
e′(Pv),

where k is a totally real number field of degree d, ` is a totally complex quadratic
extension of k, Dk and D` are the absolute discriminants of k and ` respectively,
h`,3 is the 3-component of the class number of `, x is a nonnegative integer, the
group G is a k-form of SU(2, 1), the Pv’s are parahoric subgroups of G(kv) and
e′(Pv) are positive integers determined by using the Bruhat-Tits theory. The data
k, `, G and the Pv are uniquely determined by Γ, and conversely they determine
the “class” of Γ; each class consists of fundamental groups of finitely many surfaces
under consideration.

By using deep results in number theory and Bruhat-Tits theory, Sai-Kee Ye-
ung and I showed that there are 28 classes of fpp’s, and one more class with
(k, `) = C11 = (Q(

√
3),Q(eπi/6)), which may give a surface with Euler charac-

teristic equal to 3. We exhibited at least one fpp in each of the 28 classes and
outlined a procedure to determine each class completely by computation. The de-
sired computations were carried out jointly by Donald Cartwright (in Australia)
and Tim Steger (in Italy), at times using over 50 computers. They found that the
28 classes altogether contain 100 fpp’s, and as they are now explicitly given, we
know many geometric properties of these surfaces. The class attached to the pair
C11 mentioned earlier gave a completely unexpected smooth projective algebraic
surface with Euler characteristic equal to 3, and the first Betti number (which is
2) distinguishes it from all the others. As this is a unique surface of its kind, it is
attracting considerable attention. An interesting consequence of our work is that
the complex projective plane is determined by the topological invariant known as
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integral homology. Now we also know that for every positive integral multiple 3n
of 3, there is a smooth projective complex algebraic surface with Euler character-
istic 3n. Using inputs from number theory, we have also found fake P4

C and fake
Grassmannian Gr2,3.

The geometric problem which I want to describe next, and in whose solution
arithmetic has played a crucial role, is the problem formulated by Marc Kac in
the following interesting way: “Can one hear the shape of a drum?” To explain
the geometric meaning of the problem, let us assume that we are given a nice geo-
metric object, say a compact Riemannian manifold–Einstein worked with these
in his theory of general relativity which is now being used in GPS technology.
The surface of an idealized drum is such a geometric object. There is a partial
differential equation called the wave equation which encodes the modes of vibra-
tions of the manifold. The partial differential equation is given in terms of an
operator called the Laplace-Beltrami operator which is determined by the geom-
etry (in fact, just the metric) of the Riemannian manifold and the frequencies
(or the wave-lengths) of the pure-tones are determined by the eigenvalues of the
Laplace-Beltrami operator.

So a precise mathematical formulation of Mark Kac’s question is whether the
shape of a drum is determined by the eigenvalues of the Laplace-Beltrami oper-
ator. Now the same Laplace-Beltrami operator comes-up in many situations: in
diffusion equation for heat and fluid flow, studies of waves, and in quantum me-
chanics. Therefore, it is interesting to ask Kac’s question in a more general setting,
namely whether a compact Riemannian manifold can be recovered by knowing its
spectrum, that is by the set of eigenvalues of the Laplace-Beltrami operator to-
gether with their multiplicities. Two manifolds are called isospectral if they have
the same spectra. It was shown by the venerable mathematician Hermann Weyl
that two manifolds with same spectrum have equal dimension, equal volume, and
equal scalar curvature. However, later examples provided by John Milnor (in di-
mension 16) and Marie-France Vigneras (in dimension 2, of compact Riemann
surfaces) showed that the answer is in general “no”. A Japanese mathematician,
T. Sunada, gave a general construction of isospectral manifolds M1 and M2. His
construction had the special property that the manifolds M1 and M2 he produced
could be obtained from a single manifold M by forming quotients by two finite
groups of isometries. Two manifolds obtained this way are called commensurable.
So a more reasonable formulation of Kac’s question is whether commensurability
is a consequence of isospectrality, at least for some “nice” class of manifolds.

Andrei Rapinchuk and I have investigated this question for the most symmetric
of Riemannian manifolds, so-called Riemanniam locally symmetric spaces. We im-
pose the condition that a topological invariant known as the fundamental group



9

is “arithmetic” (this condition holds automatically for spaces of rank > 1 by
Margulis’ arithmeticity theorem!). This condition opens the door to applying
number-theoretic tools and obtain results which are out of reach by purely geo-
metric methods.

In fact, we focused on a more general question than that posed by Kac: it is
known that when spectra of two compact locally symmetric spaces are equal then
the sets of lengths of closed geodesics must coincide. We say that two such man-
ifolds are isolength when they share the same sets of lengths of closed geodesics.
In the special case of the locally symmetric spaces studied in my work with Rap-
inchuk, the closed geodesics correspond to “semi-simple” elements in the funda-
mental group, and given such an element γ there is an explicit formula for the
length `(γ) of the corresponding geodesic:

`(γ)2 =
∑
α∈Φ

(log |α(γ)|)2

where Φ is a finite set encoding the nature of the continuous symmetries of the
space and the numbers α(γ) are algebraic (i.e., not transcendental) in view of the
arithmeticity condition imposed on the fundamental group. So the logarithms of
the |α(γ)|’s must be transcendental, by the theorem of Gelfond and Schneider on
Hilbert’s 7th problem, which Hilbert thought would be one of the most difficult
in his famous list of 23 problems posed at the 1900 International Congress of
Mathematicians (but which was among the first to be solved!).

Using transcendental number theory (the solution of Hilbert seventh problem
by Gel’fond and Schneider in the rank 1 case and Schanuel’s4 conjecture in higher
rank), Rapinchuk and I showed that the isolength hypothesis on a pair of locally
symmetric spaces implies a new algebraic property relating their fundamental
groups, a property we call “weak commensurability” (it is a-priori weaker than the
geometric condition of commensurability discussed earlier). By using deep results
in number theory, we showed that this weak commensurability property has very
strong consequences for isolength locally symmetric spaces. For example, in the
case of hyperbolic spaces whose dimension is even or one less than a multiple of 4
we showed that weak commensurability implies commensurability! In particular,
for such spaces the modified form of Kac’s question in terms of commensurability
has a positive answer. This was very surprising, and prior to our work using
input from number theory there were no techniques to prove such results beyond
dimension 3.

It is crucial that in our work we considered lengths of closed geodesics rather
than eigenvalues of the Laplace-Beltrami operator, since the former is given by a

4Stephen Schanuel was a professor here at SUNY, Buffalo.
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concrete formula (shown above) with direct connection to number theory whereas
eigenvalues of the Laplace-Beltrami operator are notoriously difficult to compute,
even for 2-dimensional spaces. So it was very fortunate that we could get far
by focusing on the isolength property. In our work, there was even pay-back to
number theory in the form of new local-global principles for algebraic structures
of interest to number theorists.

Thank you!


