FINITE GROUP ACTIONS ON REDUCTIVE GROUPS AND BUILDINGS AND TAMELY-RAMIFIED DESCENT IN BRUHAT-TITS THEORY

By Gopal Prasad

Dedicated to Guy Rousseau

ABSTRACT. Let K be a discretely valued field with Henselian valuation ring and separably closed (but not necessarily perfect) residue field of characteristic p, H a connected reductive K-group, and Θ a finite group of automorphisms of H. We assume that p does not divide the order of Θ and Bruhat-Tits theory is available for H over K with $\mathcal{B}(H/K)$ the Bruhat-Tits building of H(K). We will show that then Bruhat-Tits theory is also available for $G:=(H^{\Theta})^{\circ}$ and $\mathcal{B}(H/K)^{\Theta}$ is the Bruhat-Tits building of G(K). (In case the residue field of K is perfect, this result was proved in [PY1] by a different method.) As a consequence of this result, we obtain that if Bruhat-Tits theory is available for a connected reductive K-group G over a finite tamely-ramified extension L of K, then it is also available for G over K and $\mathcal{B}(G/K) = \mathcal{B}(G/L)^{\mathrm{Gal}(L/K)}$. Using this, we prove that if G is quasi-split over K, then it is already quasi-split over K.

Introduction. This paper is a sequel to our recent paper [P2]. We will assume familiarity with that paper; we will freely use results, notions and notations introduced in it.

Let $\mathfrak O$ be a discretely valued Henselian local ring with valuation ω . Let $\mathfrak m$ be the maximal ideal of $\mathfrak O$ and K the field of fractions of $\mathfrak O$. We will assume throughout that the residue field κ of $\mathfrak O$ is separably closed. Let $\widehat{\mathfrak O}$ denote the completion of $\mathfrak O$ with respect to the valuation ω and \widehat{K} the completion of K. For any $\mathfrak O$ -scheme $\mathscr X$, $\mathscr X(\mathfrak O)$ and $\mathscr X(\widehat{\mathfrak O})$ will always be assumed to carry the Hausdorff-topology induced from the metric-space topology on $\mathfrak O$ and $\widehat{\mathfrak O}$ respectively. It is known that if $\mathscr X$ is smooth, then $\mathscr X(\mathfrak O)$ is dense in $\mathscr X(\widehat{\mathfrak O})$, [GGM, Prop. 3.5.2]. Similarly, for any K-variety $\mathfrak X$, $\mathfrak X(K)$ and $\mathfrak X(\widehat K)$ will be assumed to carry the Hausdorff-topology induced from the metric-space topology on K and $\widehat K$ respectively. In case $\mathfrak X$ is a smooth K-variety, $\mathfrak X(K)$ is dense in $\mathfrak X(\widehat K)$, [GGM, Prop. 3.5.2].

Throughout this paper H will denote a connected reductive K-group. In this introduction, and beginning with §2 everywhere, we will assume that Bruhat-Tits theory is available for H over K [P2, 1.9, 1.10]. Then Bruhat-Tits theory is also available for the derived subgroup $\mathcal{D}(H)$ of H over K [P2, 1.11]. Thus there is an affine building called the Bruhat-Tits building of H(K), that is a polysimplicial complex given with a metric, and H(K) acts on it by polysimplicial isometries.

This building is also the Bruhat-Tits building of $\mathcal{D}(H)(K)$ and we will denote it by $\mathcal{B}(\mathcal{D}(H)/K)$. It is known (cf. [P2, 3.11, 1.11]) that Bruhat-Tits theory is also available over K for the centralizer of any K-split torus in H and for the derived subgroup of such centralizers.

Let \mathfrak{Z} be the maximal K-split torus in the center of H. Let $V(\mathfrak{Z}) = \mathbb{R} \otimes_{\mathbb{Z}} \operatorname{Hom}_K(\operatorname{GL}_1,\mathfrak{Z}_K)$. Then there is a natural action of H(K) on this Euclidean space by translations, with $\mathscr{D}(H)(K)$ acting trivially. The *enlarged* Bruhat-Tits building $\mathfrak{B}(H/K)$ of H(K) is the direct product $V(\mathfrak{Z}) \times \mathfrak{B}(\mathscr{D}(H)/K)$. The apartments of this building, as well as that of $\mathfrak{B}(\mathscr{D}(H)/K)$, are in bijective correspondence with maximal K-split tori of H. Given a maximal K-split torus T of H, the corresponding apartment of $\mathfrak{B}(H/K)$ is an affine space under $V(T) := \mathbb{R} \otimes_{\mathbb{Z}} \operatorname{Hom}_K(\operatorname{GL}_1, T)$.

Given a nonempty bounded subset Ω of an apartment of $\mathcal{B}(\mathcal{D}(H)/K)$, there is a smooth affine \mathcal{O} -group scheme \mathscr{H}_{Ω} with generic fiber H, associated with Ω , such that $\mathscr{H}_{\Omega}(\mathcal{O})$ is the subgroup $H(K)^{\Omega}$ of H(K) consisting of elements that fix $V(\mathfrak{Z}) \times \Omega \subset \mathcal{B}(H/K)$ pointwise [P2,1.91.10]. The neutral component $\mathscr{H}_{\Omega}^{\circ}$ of \mathscr{H}_{Ω} is an open affine \mathcal{O} -subgroup scheme of the latter; it is by definition the union of the generic fiber H of \mathscr{H}_{Ω} and the identity component of its special fiber. The group scheme $\mathscr{H}_{\Omega}^{\circ}$ is called the Bruhat-Tits group scheme associated to Ω . The special fiber of $\mathscr{H}_{\Omega}^{\circ}$ will be denoted by $\widetilde{\mathscr{H}}_{\Omega}^{\circ}$.

Let Θ be a finite group of automorphisms of H. We assume that the order of Θ is not divisible by the characteristic of the residue field κ . Let $G = (H^{\Theta})^{\circ}$. This group is also reductive, see [Ri, Prop. 10.1.5] or [PY1, Thm. 2.1]. The goal of this paper is to show that Bruhat-Tits theory is available for G over K, and the enlarged Bruhat-Tits building of G(K) can be identified with the subspace $\mathcal{B}(H/K)^{\Theta}$ of $\mathcal{B}(H/K)$ consisting of points fixed under Θ (see §3). These results have been inspired by the main theorem of [PY1], which implies that if the residue field κ is algebraically closed (then every reductive K-group is quasi-split [P2, 1.7], so Bruhat-Tits theory is available for any such group over K), the enlarged Bruhat-Tits building of G(K) is indeed $\mathcal{B}(H/K)^{\Theta}$.

In §4, we will use the above results to obtain "tamely-ramified descent": (1) We will show that if a connected reductive K-group G is quasi-split over a finite tamely-ramified extension L of K, then it is quasi-split over K (Theorem 4.4); this result has been proved by Philippe Gille in [Gi] by an entirely different method. (2) The enlarged Bruhat-Tits building $\mathcal{B}(G/K)$ of G(K) can be identified with the subspace of points of the enlarged Bruhat-Tits building of G(L) that are fixed under the action of the Galois group $\operatorname{Gal}(L/K)$. This latter result was proved by Guy Rousseau in his unpublished thesis [Rou, Prop. 5.1.1]. It is a pleasure to dedicate this paper to him for his important contributions to Bruhat-Tits theory.

Acknowledgements. I thank Brian Conrad, Bas Edixhoven and Philippe Gille for their helpful comments. I thank the referee for carefully reading the paper and for her/his detailed comments and suggestions which helped me to improve the exposition. I was partially supported by NSF-grant DMS-1401380.

For a K-split torus S, let $X_*(S) = \text{Hom}(GL_1, S)$ and $V(S) := \mathbb{R} \otimes_{\mathbb{Z}} X_*(S)$. Then for a maximal K-split torus T of H, the apartment A(T) of $\mathcal{B}(H/K)$ corresponding to T is an affine space under V(T).

1. Passage to completion

We begin by proving the following well-known result.

Proposition 1.1. K-rank $H = \widehat{K}$ -rank H.

Proof. Let T be a maximal K-split torus of H and Z be its centralizer in H. Let Z_a be the maximal K-anisotropic connected normal subgroup of Z. Then

$$\widehat{K}$$
-rank $H = \widehat{K}$ -rank $Z = \dim(T) + \widehat{K}$ -rank $Z_a = K$ -rank $H + \widehat{K}$ -rank Z_a .

So to prove the proposition, it suffices to show that Z_a is anisotropic over \widehat{K} . But according to Theorem 1.1 of [P2], Z_a is anisotropic over \widehat{K} if and only if $Z_a(\widehat{K})$ is bounded. The same theorem implies that $Z_a(K)$ is bounded. As $Z_a(K)$ is dense in $Z_a(\widehat{K})$, we see that $Z_a(\widehat{K})$ is bounded.

Proposition 1.2. Bruhat-Tits theory for H is available over K if and only if it is available over \widehat{K} . Moreover, if Bruhat-Tits theory for H is available over K, then the enlarged Bruhat-Tits buildings of H(K) and $H(\widehat{K})$ are equal.

It was shown by Guy Rousseau in his thesis that the enlarged Bruhat-Tits buildings of H(K) and $H(\widehat{K})$ coincide [Rou, Prop. 2.3.5]. Moreover, every apartment in the building of H(K) is also an apartment in the building of $H(\widehat{K})$; however, the latter may have many more apartments.

Proof. We assume first that Bruhat-Tits theory is available for H over K and let $\mathcal{B}(H/K)$ denote the enlarged Bruhat-Tits building of H(K). We begin by showing that the action of H(K) on $\mathcal{B}(H/K)$ extends to an action of $H(\widehat{K})$ by isometries. For this purpose, we recall that H(K) is dense in $H(\widehat{K})$ and the isotropy at any point $x \in \mathcal{B}(H/K)$ is a bounded open subgroup of H(K). Now let $\{h_i\}$ be a sequence in H(K) which converges to a point $\widehat{h} \in H(\widehat{K})$, then given any open subgroup of H(K), for all large i and j, $h_i^{-1}h_j$ lies in this open subgroup. Thus for any point x of $\mathcal{B}(H/K)$, the sequence $h_i \cdot x$ is eventually constant, i.e., there exists a positive integer n such that $h_i \cdot x = h_n \cdot x$ for all $i \geq n$. We define $\widehat{h} \cdot x = h_n \cdot x$. This gives a well-defined action of $H(\widehat{K})$ on $\mathcal{B}(H/K)$ by isometries.

For a nonempty bounded subset Ω of an apartment of the Bruhat-Tits building $\mathcal{B}(\mathcal{D}(H)/K)$, let \mathscr{H}_{Ω} and $\mathscr{H}_{\Omega}^{\circ}$ be the smooth affine \mathbb{O} -group schemes as in the Introduction. Then as $\mathscr{H}_{\Omega}(\widehat{\mathbb{O}})$ is a closed and open subgroup of $H(\widehat{K})$ containing $\mathscr{H}_{\Omega}(\mathbb{O})$ as a dense subgroup, we see that $\mathscr{H}_{\Omega}(\widehat{\mathbb{O}})$ equals the subgroup $H(\widehat{K})^{\Omega}$ of $H(\widehat{K})$ consisting of elements that fix $V(\mathfrak{Z}) \times \Omega$ pointwise.

Let T be a maximal K-split torus of H, then by Proposition 1.1, $T_{\widehat{K}}$ is a maximal \widehat{K} -split torus of $H_{\widehat{K}}$. Let A be the apartment of $\mathfrak{B}(H/K)$, or of $\mathfrak{B}(\mathscr{D}(H)/K)$,

corresponding to T. Then every maximal \widehat{K} -split torus of $H_{\widehat{K}}$ is of the form $\widehat{h}T_{\widehat{K}}\widehat{h}^{-1}$ for an $\widehat{h} \in H(\widehat{K})$, and we define the corresponding apartment to be $\widehat{h} \cdot A$. We now declare $\mathfrak{B}(H/K)$ (resp. $\mathfrak{B}(\mathscr{D}(H)/K)$) to be the enlarged Bruhat-Tits building (resp. the Bruhat-Tits building) of $H(\widehat{K})$ with these apartments.

Let A be an apartment of the Bruhat-Tits building of H(K) corresponding to a maximal K-split torus T of H and $\widehat{h} \in H(\widehat{K})$. Given a nonempty bounded subset $\widehat{\Omega}$ of $\widehat{A} := \widehat{h} \cdot A$, the subset $\Omega := \widehat{h}^{-1} \cdot \widehat{\Omega}$ is contained in A. The closed and open subgroup $\widehat{h}H(\widehat{K})^{\widehat{\Omega}}\widehat{h}^{-1} = \widehat{h}\mathscr{H}_{\Omega}(\widehat{\mathbb{O}})\widehat{h}^{-1}$ of $H(\widehat{K})$ is the subgroup $H(\widehat{K})^{\widehat{\Omega}}$ consisting of elements that fix $V(\mathfrak{Z}) \times \widehat{\Omega}$ pointwise. Now as H(K) is dense in $H(\widehat{K})$ and $H(\widehat{K})^{\widehat{\Omega}}$ is an open subgroup, $H(\widehat{K}) = H(\widehat{K})^{\widehat{\Omega}} \cdot H(K)$, so $\widehat{h} = h' \cdot h$, with $h' \in H(\widehat{K})^{\widehat{\Omega}}$ and $h \in H(K)$. Thus the apartment $\widehat{A} = \widehat{h} \cdot A = h' \cdot hA$, and hA is an apartment of the Bruhat-Tits building of H(K). As $h' \in H(\widehat{K})^{\widehat{\Omega}}$, the apartment hA contains $\widehat{\Omega}$. This shows that any bounded subset $\widehat{\Omega}$ of an apartment of the Bruhat-Tits building of $H(\widehat{K})$ is contained in an apartment of the Bruhat-Tits building of $H(\widehat{K})$ is contained in an apartment of the Bruhat-Tits building of H(K). We define the $\widehat{\mathbb{O}}$ -group schemes $\mathscr{H}_{\widehat{\Omega}}$ and $\mathscr{H}_{\widehat{\Omega}}^{\circ}$ associated to $\widehat{\Omega}$ to be the group schemes obtained from the corresponding \mathbb{O} -group schemes (given by considering $\widehat{\Omega}$ to be a nonempty bounded subset of an apartment of the building of H(K)) by extension of scalars $\mathbb{O} \hookrightarrow \widehat{\mathbb{O}}$.

Let us assume now that Bruhat-Tits theory is available for H over \widehat{K} . Then Bruhat-Tits theory is also available for $\mathcal{D}(H)$ over \widehat{K} [P2, 1.11]. The action of $H(\widehat{K})$ on its building $\mathcal{B}(\mathcal{D}(H)/\widehat{K})$ restricts to an action of H(K) by isometries. Let T be a maximal K-split torus of G and A be the apartment of $\mathcal{B}(\mathcal{D}(H)/\widehat{K})$ corresponding to $T_{\widehat{K}}$. We consider the polysimplicial complex $\mathcal{B}(\mathcal{D}(H)/\widehat{K})$, with apartments $h \cdot A$, $h \in H(K)$, as the building of H(K) and denote it by $\mathcal{B}(\mathcal{D}(H)/K)$.

Let $\widehat{\Omega}$ be a nonempty bounded subset of the apartment $\widehat{A} = \widehat{h} \cdot A$, $\widehat{h} \in H(\widehat{K})$, in the building $\mathcal{B}(\mathcal{D}(H)/\widehat{K})$. As H(K) is dense in $H(\widehat{K})$, the intersection $\mathscr{H}_{\widehat{\Omega}}(\widehat{\mathcal{O}})\widehat{h} \cap H(K)$ is nonempty. For any h in this intersection, $\widehat{\Omega}$ is contained in the apartment $h \cdot A$ of $\mathcal{B}(\mathcal{D}(H)/K)$. This implies, in particular, that any two facets lie on an apartment of $\mathcal{B}(\mathcal{D}(H)/K)$. We now note that the $\widehat{\mathcal{O}}$ -group schemes $\mathscr{H}_{\widehat{\Omega}}$ and $\mathscr{H}_{\widehat{\Omega}}^{\circ}$ admit unique descents to smooth affine \mathcal{O} -group schemes with generic fiber H, [BLR, Prop. D.4(b) in §6.1]; the affine rings of these descents are $K[H] \cap \widehat{\mathcal{O}}[\mathscr{H}_{\widehat{\Omega}}]$ and $K[H] \cap \widehat{\mathcal{O}}[\mathscr{H}_{\widehat{\Omega}}^{\circ}]$ respectively.

In view of the preceding proposition, we may (and do) replace $\mathfrak O$ and K with $\widehat{\mathfrak O}$ and \widehat{K} respectively to assume in the rest of this paper that $\mathfrak O$ and K are complete.

2. Fixed points in $\mathfrak{B}(H/K)$ under a finite automorphism group Θ of H

We will henceforth assume that Bruhat-Tits theory is available for H over K.

2.1. Let G be a smooth affine K-group and \mathscr{G} be a smooth affine \mathcal{O} -group scheme with generic fiber G. According to [BrT2, 1.7.1-1.7.2] \mathscr{G} is "étoffé" and hence by (ET) of [BrT2, 1.7.1] its affine ring has the following description:

$$\mathcal{O}[\mathscr{G}] = \{ f \in K[G] \mid f(\mathscr{G}(\mathcal{O})) \subset \mathcal{O} \}.$$

Let Ω be a nonempty bounded subset of an apartment of $\mathcal{B}(\mathcal{D}(H)/K)$. As the \mathcal{O} -group scheme \mathscr{H}_{Ω} is smooth and affine and its generic fiber is H, the affine ring of \mathscr{H}_{Ω} has thus the following description:

$$\mathcal{O}[\mathscr{H}_{\Omega}] = \{ f \in K[H] \, | \, f(H(K)^{\Omega}) \subset \mathcal{O} \}.$$

Proposition 2.2. Let Ω be a nonempty bounded subset of an apartment of $\mathbb{B}(\mathcal{D}(H)/K)$. Let \mathscr{H}_{Ω} and $\mathscr{H}_{\Omega}^{\circ}$ be as above. Let G be a smooth connected K-subgroup of H and \mathscr{G} be a smooth affine \mathbb{O} -group scheme with generic fiber G and connected special fiber. Assume that a subgroup \mathbb{G} of $\mathscr{G}(\mathbb{O})$ of finite index fixes Ω pointwise (i.e., $\mathbb{G} \subset H(K)^{\Omega}$). Then there is a \mathbb{O} -group scheme homomorphism $\varphi : \mathscr{G} \to \mathscr{H}_{\Omega}^{\circ}$ that is the natural inclusion $G \hookrightarrow H$ on the generic fibers. So the subgroup $\mathscr{G}(\mathbb{O})$ of G(K) is contained in $\mathscr{H}_{\Omega}^{\circ}(\mathbb{O})$ and hence it fixes Ω pointwise. If F is a facet of $\mathbb{B}(\mathscr{D}(H)/K)$ that meets Ω , then $\mathscr{G}(\mathbb{O})$ fixes F pointwise.

Let S be a K-split torus of H and \mathscr{S} the O-torus with generic fiber S. If a subgroup of the maximal bounded subgroup $\mathscr{S}(\mathfrak{O})$ of S(K) of finite index fixes Ω pointwise, then there is a maximal K-split torus T of H containing S such that Ω is contained in the apartment of $\mathfrak{B}(\mathscr{D}(H)/K)$ corresponding to T.

Proof. Since the fibers of the smooth affine group scheme \mathscr{G} are connected and the residue field κ is separably closed, the subgroup \mathscr{G} is Zariski-dense in G, and its image in $\mathscr{G}(\kappa)$ is Zariski-dense in the spacial fiber of \mathscr{G} . Using this observation, we easily see that the affine ring $\mathscr{O}[\mathscr{G}]$ ($\subset K[G]$) of \mathscr{G} has the following description (cf. [BrT2, 1.7.2]):

$$\mathfrak{O}[\mathscr{G}] = \{ f \in K[G] \mid f(\mathfrak{G}) \subset \mathfrak{O} \}.$$

This description of $\mathcal{O}[\mathcal{G}]$ implies at once that the inclusion $\mathcal{G} \hookrightarrow H(K)^{\Omega}$ induces a \mathcal{O} -group scheme homomorphism $\varphi : \mathcal{G} \to \mathscr{H}_{\Omega}$ that is the natural inclusion $G \hookrightarrow H$ on the generic fibers. Since \mathcal{G} has connected fibers, the homomorphism φ factors through $\mathscr{H}_{\Omega}^{\circ}$.

Any facet F of $\mathcal{B}(\mathcal{D}(H)/K)$ that meets Ω is stable under $\mathcal{G}(\mathcal{O})$ ($\subset H(K)$), so a subgroup of $\mathcal{G}(\mathcal{O})$ of finite index fixes it pointwise. Now applying the result of the preceding paragraph, for F in place of Ω , we see that there is a \mathcal{O} -group scheme homomorphism $\mathcal{G} \to \mathcal{H}_F^{\circ}$ that is the natural inclusion $G \hookrightarrow H$ on the generic fibers and hence $\mathcal{G}(\mathcal{O})$ fixes F pointwise.

Now we will prove the last assertion of the proposition. It follows from what we have shown above that there is a \mathcal{O} -group scheme homomorphism $\iota: \mathscr{S} \to \mathscr{H}_{\Omega}^{\circ}$ that is the natural inclusion $S \hookrightarrow H$ on the generic fibers (ι is actually a closed immersion, see [PY2, Lemma 4.1]). Applying [P2, Prop. 2.1(i)] to the centralizer of $\iota(\mathscr{S})$ (in $\mathscr{H}_{\Omega}^{\circ}$) in place of \mathscr{G} , and \mathscr{O} in place of \mathfrak{o} , we see that there is a closed \mathscr{O} -torus

 \mathscr{T} of $\mathscr{H}_{\Omega}^{\circ}$ that commutes with $\iota(\mathscr{S})$ and whose generic fiber T is a maximal K-split torus of H. The torus T clearly contains S, and [P2, Prop. 2.2(ii)] implies that Ω is contained in the apartment corresponding to T.

The following is a simple consequence of the preceding proposition.

Corollary 2.3. Let G, S, \mathcal{G} , and \mathcal{S} be as in the preceding proposition. Then the set of points of $\mathfrak{B}(\mathcal{D}(H)/K)$ that are fixed under $\mathcal{G}(\mathfrak{O})$ is the union of facets pointwise fixed under $\mathcal{G}(\mathfrak{O})$. The set of points of the enlarged building $\mathfrak{B}(H/K)$ that are fixed under a finite-index subgroup S of the maximal bounded subgroup $S(K)_b (= \mathcal{S}(\mathfrak{O}))$ of S(K) is the enlarged Bruhat-Tits building $\mathfrak{B}(Z_H(S)/K)$ of the centralizer $Z_H(S)(K)$ of S in H(K).

2.4. Let Θ be a finite group of automorphisms of the reductive K-group H. There is a natural action of Θ on the Bruhat-Tits building $\mathcal{B}(\mathcal{D}(H)/K)$ of H(K) by polysimplicial isometries such that for all $h \in H(K)$, $x \in \mathcal{B}(\mathcal{D}(H)/K)$ and $\theta \in \Theta$, we have $\theta(h \cdot x) = \theta(h) \cdot \theta(x)$.

Let Ω be a nonempty bounded subset of an apartment of $\mathcal{B}(\mathcal{D}(H)/K)$. Assume that Ω is stable under the action of Θ on $\mathcal{B}(\mathcal{D}(H)/K)$. Then $\mathscr{H}_{\Omega}(0)$ is stable under the action of Θ on H(K), so the affine ring $\mathcal{O}[\mathscr{H}_{\Omega}]$ is stable under the action of Θ on K[H]. This implies that Θ acts on the group scheme \mathscr{H}_{Ω} by \mathcal{O} -group scheme automorphisms. The neutral component $\mathscr{H}_{\Omega}^{\circ}$ of \mathscr{H}_{Ω} is of course stable under this action.

In the following we assume that the characteristic p of the residue field κ does not divide the order of Θ . Then $G := (H^{\Theta})^{\circ}$ is a reductive group, see [Ri, Prop. 10.1.5] or [PY1, Thm. 2.1]. We will prove that Bruhat-Tits theory is available for G over K and the enlarged Bruhat-Tits building of G(K), as a metric space, can be identified with the subspace $\mathfrak{B}(H/K)^{\Theta}$ of points of $\mathfrak{B}(H/K)$ fixed under Θ .

Let C be the maximal K-split central torus of G and H' be the derived subgroup of the centralizer of C in H. Then H' is a connected semi-simple subgroup of H stable under the group Θ of automorphisms of H; $(H'^{\Theta})^{\circ}$ ($\subset G$) contains the derived subgroup of G and its central torus is K-anisotropic. Replacing H with H' we assume in the sequel that H is semi-simple and the central torus of G is K-anisotropic (cf. [P2, 3.11, 1.11]).

For a subset X of a set given with an action of Θ , we denote by X^{Θ} the subset of points of X that are fixed under Θ . We will denote $\mathfrak{B}(H/K)^{\Theta}$ by \mathfrak{B} in the sequel.

If a facet of $\mathcal{B}(H/K)$ is stable under the action of Θ , then its barycenter is fixed under Θ . Conversely, if a facet F contains a point x fixed under Θ , then being the unique facet containing x, F is stable under the action of Θ .

2.5. We introduce the following partial order " \prec " on the set of nonempty subsets of $\mathcal{B}(H/K)$: Given two nonempty subsets Ω and Ω' , $\Omega' \prec \Omega$ if the closure $\overline{\Omega}$ of Ω contains Ω' . If F and F' are facets of $\mathcal{B}(H/K)$, with $F' \prec F$, or equivalently, $\mathscr{H}_F^{\circ}(0) \subset \mathscr{H}_{F'}^{\circ}(0)$, we say that F' is a face of F. In a collection \mathcal{C} of facets, thus a

facet is *maximal* if it is not a proper face of any facet belonging to C, and a facet is *minimal* if no proper face of it belongs to C.

Now let X be a convex subset of $\mathcal{B}(H/K)$ and \mathcal{C} be the set of facets of $\mathcal{B}(H/K)$, or facets lying in a given apartment A, that meet X. Then the following assertions are easy to prove (see Proposition 9.2.5 of [BrT1]): (1) All maximal facets in \mathcal{C} are of equal dimension and a facet $F \in \mathcal{C}$ is maximal if and only if $\dim(F \cap X)$ is maximal. (2) Let F be a facet lying in an apartment A. Assume that F is maximal among the facets of A that meet X, and let A_F be the affine subspace of A spanned by F. Then every facet of A that meets X is contained in A_F and $A \cap X$ is contained in the affine subspace of A spanned by $F \cap X$.

The subset $\mathcal{B} = \mathcal{B}(H/K)^{\Theta}$ of $\mathcal{B}(H/K)$ is closed and convex. Hence the assertions of the preceding paragraph hold for \mathcal{B} in place of X. We will show in this section that \mathcal{B} is an affine building with apartments described below. We begin with the following proposition which has been suggested by Proposition 1.1 of [PY1], and the proof given here is an adaptation of the proof of that proposition.

Proposition 2.6. Let A be an apartment of $\mathfrak{B}(H/K)$ and F a facet of A that meets \mathfrak{B} . Let Ω be a nonempty bounded subset of the affine subspace A_F of A spanned by F. We assume that Ω contains F and is stable under the action of Θ on $\mathfrak{B}(H/K)$. Let $\mathscr{H} := \mathscr{H}_{\Omega}^{\circ}$ be the Bruhat-Tits smooth affine \mathbb{O} -group scheme with generic fiber H, and connected special fiber $\overline{\mathscr{H}}$, associated with Ω . Let $\overline{\mathscr{H}}^{\operatorname{pred}} := \overline{\mathscr{H}}/\mathscr{R}_{u,\kappa}(\overline{\mathscr{H}})$ be the maximal pseudo-reductive quotient of $\overline{\mathscr{H}}$. Then there exist K-split tori $S \subset T$ in H such that

- (i) T is a maximal K-split torus of H and Ω is contained in the apartment A(T) corresponding to T;
- (ii) S is stable under Θ and the special fiber of the schematic closure $\mathscr S$ of S in $\mathscr H$ maps onto the central torus of $\overline{\mathscr H}^{\operatorname{pred}}$.

Proof. Let \mathfrak{T} be the set of maximal K-split tori T of H such that $\Omega \subset A(T)$. Then the automorphism group Θ clearly permutes \mathfrak{T} , and the subgroup $\mathfrak{P} := \mathscr{H}(\mathfrak{O})$ acts transitively on \mathfrak{T} [P2, Prop. 2.2(i)]. Hence, for every $T \in \mathfrak{T}$, Ω is contained in the affine subspace of A(T) spanned by the facet F.

For $T \in \mathcal{T}$, let S_T be the lift of the central torus of $\overline{\mathscr{H}}^{\operatorname{pred}}$ in T. It is clear that the pair (S,T) satisfy (i) and (ii) if S is Θ -stable. We consider $S := \{S_T \mid T \in \mathcal{T}\}$; Θ acts by permutation on S and \mathcal{P} acts transitively on it. We will find an element of S that is Θ -stable. We first prove the following lemma.

Lemma 2.7. Let $T \in \mathcal{T}$ and $S := S_T$ be as above. Then

- (i) The normalizer of S in \mathcal{P} centralizes S.
- (ii) $\mathcal{P} = \mathcal{P}_S \cdot \mathcal{U}$, where \mathcal{P}_S is the centralizer of S in \mathcal{P} and \mathcal{U} is the kernel of the natural homomorphism $\mathscr{H}(\mathcal{O}) \to \overline{\mathscr{H}}^{\operatorname{pred}}(\kappa)$.

- Proof. (i) The affine subspace $A(T)_F$ of A(T) spanned by F is an affine space under the \mathbb{R} -vector space V(S). So for any $x \in F$, $V(S) + x = A(T)_F$. Now let h be an element of \mathcal{P} that normalizes S. Then h takes $A(T)_F = V(S) + x (\subset A(T))$ to $V(S) + h \cdot x = V(S) + x (\subset A(hTh^{-1}))$ by an affine transformation whose derivative gives the action of h on V(S). As h fixes the open subset F of $A(T)_F$ pointwise, its derivative acts trivially on V(S) and hence h centralizes S.
- (ii) Let \mathscr{S} and \mathscr{T} be the closed \mathscr{O} -tori in \mathscr{H} with generic fibers S and T respectively. Then the centralizer $\mathscr{H}^{\mathscr{S}}$ of \mathscr{S} in \mathscr{H} is a smooth affine \mathscr{O} -subgroup scheme [CGP, Prop. A.8.10(2)]. Let $\overline{\mathscr{S}}$ be the special fiber of \mathscr{S} and $\overline{\mathscr{H}}^{\mathscr{T}}$ be the centralizer of $\overline{\mathscr{S}}$ in the special fiber $\overline{\mathscr{H}}$ of \mathscr{H} . Since \mathscr{O} is Henselian, the natural map $(\mathscr{P}_S =) \mathscr{H}^{\mathscr{S}}(\mathscr{O}) \to \overline{\mathscr{H}}^{\mathscr{T}}(\kappa)$ is surjective [EGA IV₄ 18.5.17]. As the image of $\overline{\mathscr{S}}$ in $\overline{\mathscr{H}}^{\operatorname{pred}}$ is central, the natural homomorphism $\overline{\mathscr{H}^{\mathscr{T}}} \to \overline{\mathscr{H}}^{\operatorname{pred}}$ is surjective (see [Bo, Prop. 9.6]). On the other hand, $\mathscr{R}_{u,\kappa}(\overline{\mathscr{H}}) \cap \overline{\mathscr{H}^{\mathscr{T}}} = \mathscr{R}_{u,\kappa}(\overline{\mathscr{H}^{\mathscr{T}}})$ ([CGP, Prop. A.8.14]; note that as $\overline{\mathscr{S}}$ is a torus, both $\overline{\mathscr{H}^{\mathscr{T}}}$ and $(\mathscr{R}_{u,\kappa}(\overline{\mathscr{H}}))^{\overline{\mathscr{T}}} = \mathscr{R}_{u,\kappa}(\overline{\mathscr{H}}) \cap \overline{\mathscr{H}^{\mathscr{T}}}$ are smooth and connected). So the natural map $\overline{\mathscr{H}^{\mathscr{T}}}/\mathscr{R}_{u,\kappa}(\overline{\mathscr{H}^{\mathscr{T}}}) \to \overline{\mathscr{H}^{\operatorname{pred}}}$ is an isomorphism. Since κ is separably closed, this implies that $\overline{\mathscr{H}^{\mathscr{T}}}(\kappa) \to \overline{\mathscr{H}^{\operatorname{pred}}}(\kappa)$ is surjective. Hence, the map $\mathscr{P}_S \to \overline{\mathscr{H}^{\operatorname{pred}}}(\kappa)$ is surjective too. From this we conclude that $\mathscr{P} = \mathscr{P}_S \cdot \mathscr{U}$.

We will now complete the proof of Proposition 2.6. As in the preceding lemma, let \mathcal{U} be the kernel of the natural homomorphism $\mathscr{H}(\mathfrak{O}) \to \overline{\mathscr{H}}^{\operatorname{pred}}(\kappa)$. Since Ω has been assumed to be stable under the action of Θ on $\mathfrak{B}(H/K)$, the group Θ acts on \mathcal{H} by 0-group scheme automorphisms. So \mathcal{U} is stable under the induced action of Θ on $\mathcal{P} = \mathcal{H}(\mathcal{O})$. We will now describe a descending Θ -stable filtration of the subgroup \mathcal{U} . For a non-negative integer i, let \mathcal{U}_i be the kernel of the homomorphism $\mathcal{P} = \mathcal{H}(0) \to \mathcal{H}(0/\mathfrak{m}^{i+1})$. Then each \mathcal{U}_i is a normal subgroup of \mathcal{P} and is stable under the action of Θ on the latter, $\mathcal{U}_i \supset \mathcal{U}_{i+1}$, and $\mathcal{U}_i/\mathcal{U}_{i+1}$ is a κ -vector space for all $i \geq 0$ [CGP, Prop. A.5.12]. The quotient $\mathcal{U}/\mathcal{U}_0$ is isomorphic to $\mathscr{R}_{u,\kappa}(\overline{\mathscr{H}})(\kappa)$. If p=0, we consider the ascending filtration of the nilpotent group $\mathcal{R}_{u,\kappa}(\overline{\mathcal{H}})(\kappa)$ given by its ascending central series, and if $p \neq 0$ we consider the ascending filtration of the unipotent group $\mathcal{R}_{u,\kappa}(\overline{\mathcal{H}})$ given by Corollary B.3.3 of [CGP] to obtain an ascending filtration of $\mathcal{U}/\mathcal{U}_0$. The inverse image in \mathcal{U} of this filtration of $\mathcal{U}/\mathcal{U}_0$ gives us a descending filtration $\mathcal{U} = \mathcal{U}_{-n} \supset \mathcal{U}_{-n+1} \supset \mathcal{U}_{-n+2} \cdots \supset \mathcal{U}_0$, where n is a non-negative integer. For all $j \ge -n$, \mathcal{U}_j is a normal subgroup of \mathcal{P} that is stable under the action of Θ on the latter, $\mathcal{U}_i/\mathcal{U}_{i+1}$ is a commutative group of exponent p if $p \neq 0$, and is a vector space over \mathbb{Q} if p = 0. For convenience, we will denote \mathcal{U}_i by $\mathcal{U}^{(j+n+1)}$ for all j. Thus we have a decreasing filtration $\mathcal{U} = \mathcal{U}^{(1)} \supset \mathcal{U}^{(2)} \supset \mathcal{U}^{(3)} \cdots$.

For $S \in \mathcal{S}$, let $\mathcal{Z}_S^{(j)}$ be the centralizer of S in $\mathcal{U}^{(j)}$. If for $\theta \in \Theta$, there exists $u(\theta) \in \mathcal{U}^{(j)}$ such that $\theta(S) = u(\theta)^{-1} S u(\theta)$, then $\mathcal{Z}_S^{(j)} \mathcal{U}^{(j+1)}$ is Θ -stable. To

see this, let $\theta \in \Theta$, and pick $u(\theta) \in \mathcal{U}^{(j)}$ such that $\theta(S) = u(\theta)^{-1}Su(\theta)$. Then $\theta(\mathcal{Z}_S^{(j)}) = u(\theta)^{-1}\mathcal{Z}_S^{(j)}u(\theta)$. So $\theta(\mathcal{Z}_S^{(j)}\mathcal{U}^{(j+1)}) = u(\theta)^{-1}\mathcal{Z}_S^{(j)}u(\theta)\mathcal{U}^{(j+1)} = \mathcal{Z}_S^{(j)}\mathcal{U}^{(j+1)}$ since $\mathcal{U}^{(j)}/\mathcal{U}^{(j+1)}$ is commutative. This shows that $\mathcal{Z}_S^{(j)}\mathcal{U}^{(j+1)}$ is Θ -stable. Now as Θ is a finite group of order prime to p if $p \neq 0$, and $\mathcal{U}^{(j)}/\mathcal{Z}_S^{(j)}\mathcal{U}^{(j+1)}$ is a commutative divisible group if p = 0, we conclude that $H^1(\Theta, \mathcal{U}^{(j)}/\mathcal{Z}_S^{(j)}\mathcal{U}^{(j+1)}) = 0$ for all p.

Now we fix an $S_0 \in \mathcal{S}$. Then for $\theta \in \Theta$, clearly $\theta(S_0) \in \mathcal{S}$, and since \mathcal{P} acts transitively on \mathcal{S} , we see using Lemma 2.7(ii) (for S_0 in place of S) that $\theta(S_0) = u_1(\theta)^{-1}S_0u_1(\theta)$ with $u_1(\theta) \in \mathcal{U}^{(1)}(=\mathcal{U})$. As $\mathcal{Z}_{S_0}^{(1)}$ is the normalizer of S_0 in $\mathcal{U}^{(1)}$ (Lemma 2.7(i)), we see that $\theta \mapsto u_1(\theta) \pmod{\mathcal{Z}_{S_0}^{(1)}\mathcal{U}^{(2)}}$ is a 1-cocycle on Θ with values in $\mathcal{U}^{(1)}/\mathcal{Z}_{S_0}^{(1)}\mathcal{U}^{(2)}$, and hence it is a 1-coboundary. This means that there is a $v_1 \in \mathcal{U}^{(1)}$ such that $u_1'(\theta) := v_1^{-1}u_1(\theta)\theta(v_1) \in \mathcal{Z}_{S_0}^{(1)}\mathcal{U}^{(2)}$ for all $\theta \in \Theta$.

Let $S_1 = v_1^{-1} S_0 v_1$. Then for $\theta \in \Theta$, we have $\theta(S_1) = u_1'(\theta)^{-1} S_1 u_1'(\theta)$. Observe that $u_1'(\theta) \in \mathcal{Z}_{S_0}^{(1)} \mathcal{U}^{(2)} = v_1 \mathcal{Z}_{S_1}^{(1)} v_1^{-1} \mathcal{U}^{(2)} = \mathcal{Z}_{S_1}^{(1)} \mathcal{U}^{(2)}$ as $\mathcal{U}^{(1)} / \mathcal{U}^{(2)}$ is commutative. So for each $\theta \in \Theta$, there is an element $u_2(\theta)$ of $\mathcal{U}^{(2)}$ such that $\theta(S_1) = u_2(\theta)^{-1} S_1 u_2(\theta)$. Now, as above, using the fact that the normalizer of S_1 in $\mathcal{U}^{(2)}$ is the centralizer $\mathcal{Z}_{S_1}^{(2)}$, we see that $\theta \mapsto u_2(\theta) \pmod{\mathcal{Z}_{S_1}^{(2)} \mathcal{U}^{(3)}}$ is a 1-cocycle on Θ with values in $\mathcal{U}^{(2)} / \mathcal{Z}_{S_1}^{(2)} \mathcal{U}^{(3)}$, and hence it is a 1-coboundary. Therefore, there is a $v_2 \in \mathcal{U}^{(2)}$ such that $u_2'(\theta) := v_2^{-1} u_2(\theta) \theta(v_2) \in \mathcal{Z}_{S_1}^{(2)} \mathcal{U}^{(3)}$ for all $\theta \in \Theta$.

Repeating the above argument, we construct a sequence $\{S_i\}$ of tori in S, and a sequence of elements $v_i \in \mathcal{U}^{(i)}$, such that

• $S_i = v_i^{-1} S_{i-1} v_i$, and for each $\theta \in \Theta$, there is an element $u_{i+1}(\theta)$ of $\mathcal{U}^{(i+1)}$ such that $\theta(S_i) = u_{i+1}(\theta)^{-1} S_i u_{i+1}(\theta)$, and $\theta \mapsto u_{i+1}(\theta) \pmod{\mathfrak{Z}_{S_i}^{(i+1)} \mathcal{U}^{(i+2)}}$ is a 1-cocycle on Θ with values in $\mathcal{U}^{(i+1)}/\mathcal{Z}_{S_i}^{(i+1)} \mathcal{U}^{(i+2)}$.

For $i \geq 1$, let $w_i = v_1 v_2 \cdots v_i$. Then $S_i = w_i^{-1} S_0 w_i$. Since $v_j \in \mathcal{U}^{(j)}$, and \mathcal{O} has been assumed to be complete, $w := \lim_{i \to \infty} w_i$ exists in \mathcal{U} . Let $S = w^{-1} S_0 w$. For $\theta \in \Theta$, as $\theta(S_i) = u_{i+1}(\theta)^{-1} S_i u_{i+1}(\theta)$, we see that $u_1(\theta) \theta(w_i) u_{i+1}(\theta)^{-1} w_i^{-1}$ normalizes S_0 . Since the normalizer of S_0 in H(K) is closed, taking $i \to \infty$, we conclude that $u_1(\theta) \theta(w) w^{-1}$ normalizes S_0 . This implies that $\theta(S) = S$ for all $\theta \in \Theta$.

2.8. Let $x, y \in \mathcal{B} = \mathcal{B}(H/K)^{\Theta}$. Let F be a facet of $\mathcal{B}(H/K)$ which contains x in its closure and is maximal among the facets that meet \mathcal{B} , and let $\Omega = F \cup \{y\}$. Let $S \subset T$ be a pair of K-split tori with properties (i) and (ii) of Proposition 2.6, and S_G and T_G be the maximal subtori of S and T respectively contained in G. Let A be the apartment of $\mathcal{B}(H/K)$ corresponding to the maximal K-split torus T of H. Then A contains y and the closure of F, and so it also contains x. Moreover, A is an affine space under V(T), the affine subspace V(S) + x of A contains F and is spanned by it. The affine subspaces $V(S_G) + x \subset V(T_G) + x$ of A are clearly

contained in $\mathcal{B} = \mathcal{B}(H/K)^{\Theta}$. As $V(S)^{\Theta} = V(S_G)$ and $F \subset V(S) + x$, we see that F^{Θ} is contained in $V(S_G) + x$. But since the facet F is maximal among the facets that meet \mathcal{B} , $A^{\Theta} (= A \cap \mathcal{B})$ is contained in the affine subspace of A spanned by F^{Θ} . Therefore, $A^{\Theta} = V(S_G) + x$. This implies that $V(S_G) + x = V(T_G) + x$ and hence $S_G = T_G$. We will now show that S_G is a maximal K-split torus of G.

Let S' be a maximal K-split torus of G containing S_G . Then the centralizer $M:=Z_H(S')$ of S' in H is stable under Θ . The enlarged Bruhat-Tits building $\mathcal{B}(M/K)$ of M(K) is identified with the union of apartments of $\mathcal{B}(H/K)$ that correspond to maximal K-split tori of M (these are precisely the maximal K-split tori of H that contain S'), cf. [P2, 3.11]. Let z be a point of $\mathcal{B}(M/K)^{\Theta}$ and T' be a maximal K-split torus of M such that the corresponding apartment A' of $\mathcal{B}(M/K)$ contains z. Then A' = V(T') + z and hence $A'^{\Theta} = A' \cap \mathcal{B} = V(T')^{\Theta} + z = V(S') + z$ is an affine subspace of A' of dimension $\dim(S')$. Let F' be a facet of A' that contains the point z in its closure and is maximal among the facets of A' meeting \mathcal{B} . Then A'^{Θ} is contained in the affine subspace of A' spanned by F'^{Θ} , so $\dim(F'^{\Theta}) = \dim(S') \geqslant \dim(S_G)$. But $\dim(F^{\Theta}) = \dim(S_G) \geqslant \dim(F'^{\Theta})$. This implies that $\dim(S_G) = \dim(S')$ and hence $S' = S_G$. So S_G is a maximal K-split torus of G.

Thus we have established the following proposition:

Proposition 2.9. Given points $x, y \in \mathbb{B}$, there exists a maximal K-split torus S_G of G, and a maximal K-split torus T of H containing S_G and hence contained in $Z_H(S_G)$, such that the apartment A of $\mathbb{B}(Z_H(S_G)/K)$ corresponding to T contains x and y. Moreover, $A^{\Theta} = A \cap \mathbb{B}$ is the affine subspace $V(S_G) + x$ of A of dimension $\dim(S_G)$.

We will now derive the following proposition which will give us apartments in the Bruhat-Tits building of G(K). In the sequel, we will use S, instead of S_G , to denote a maximal K-split torus of G. As $M := Z_H(S)$ is stable under Θ , the enlarged Bruhat-Tits building $\mathcal{B}(M/K)$ of M(K) contains a Θ -fixed point.

Proposition 2.10. Let S be a maximal K-split torus of G and let T be a maximal K-split torus of H containing S such that the apartment A of $\mathfrak{B}(H/K)$ corresponding to T contains a Θ -fixed point x. Then $\mathfrak{B}(Z_H(S)/K)^{\Theta} = V(S) + x = A^{\Theta}$. So $\mathfrak{B}(Z_H(S)/K)^{\Theta}$ is an affine space under the \mathbb{R} -vector space V(S).

Proof. Let C be the central torus of $Z_H(S)$ and $Z_H(S)'$ the derived subgroup. Then C, $Z_H(S)$ and $Z_H(S)'$ are stable under Θ ; $G' := (Z_H(S)'^{\Theta})^{\circ}$ is anisotropic over K since S is a maximal K-split torus of G, and so also of $(Z_H(S)^{\Theta})^{\circ} (\subset G)$. Now applying Proposition 2.9 to $Z_H(S)'$ in place of H, we see that the Bruhat-Tits building $\mathcal{B}(Z_H(S)'/K)$ of $Z_H(S)'(K)$ contains only one point fixed under Θ . For if $y, z \in \mathcal{B}(Z_H(S)'/K)^{\Theta}$, then there is an apartment A' of $\mathcal{B}(Z_H(S)'/K)$ that contains these points. Moreover, the dimension of the affine subspace A'^{Θ} of A' is 0 as A' is anisotropic over A'. Therefore, A' is A' is A' is an affine space under A' is A' in a fine space under A' is A' in a fine space under A' in A' is an affine space under A' in A' in A' in A' in A' is an affine space under A' in A'

2.11. Let S be a maximal K-split torus of G. Let $N := N_G(S)$ and $Z := Z_G(S)$ be respectively the normalizer and the centralizer of S in G. As N (in fact, the normalizer $N_H(S)$ of S in H) normalizes the centralizer $Z_H(S)$ of S in H, there is a natural action of N(K) on $\mathcal{B}(Z_H(S)/K)$ and N(K) stabilizes $\mathcal{B}(Z_H(S)/K)^{\Theta}$ under this action. For $n \in N(K)$, the action of n carries an apartment A of $\mathcal{B}(Z_H(S)/K)$ to the apartment $n \cdot A$ by an affine transformation.

Now let T be a maximal K-split torus of $Z_H(S)$ such that the corresponding apartment $A := A_T$ of $\mathcal{B}(Z_H(S)/K)$ contains a Θ -fixed point x. According to the previous proposition, $\mathcal{B}(Z_H(S)/K)^\Theta = V(S) + x = A^\Theta$. So we can view $\mathcal{B}(Z_H(S)/K)^\Theta$ as an affine space under V(S). We will now show, using the proof of the lemma in 1.6 of [PY1], that $\mathcal{B}(Z_H(S)/K)^\Theta$ has the properties required of an apartment corresponding to the maximal K-split torus S in the Bruhat-Tits building of G(K) if such a building exists. We need to check the following three conditions.

A1: The action of N(K) on $\mathfrak{B}(Z_H(S)/K)^{\Theta} = A^{\Theta}$ is by affine transformations and the maximal bounded subgroup $Z(K)_b$ of Z(K) acts trivially.

Let $\mathrm{Aff}(A^{\Theta})$ be the group of affine automorphisms of A^{Θ} and $\varphi:N(K)\to\mathrm{Aff}(A^{\Theta})$ be the action map.

A2: The group Z(K) acts by translations, and the action is characterized by the following formula: for $z \in Z(K)$,

$$\chi(\varphi(z)) = -\omega(\chi(z))$$
 for all $\chi \in X_K^*(Z) (\hookrightarrow X_K^*(S))$,

here we regard the translation $\varphi(z)$ as an element of V(S).

A3: For $g \in Aff(A^{\Theta})$, denote by $dg \in GL(V(S))$ the derivative of g. Then the map $N(K) \to GL(V(S))$, $n \mapsto d\varphi(n)$, is induced from the action of N(K) on $X_*(S)$ (i.e., it is the Weyl group action).

Moreover, as the central torus of G is K-anisotropic, these three conditions determine the affine structure on $\mathcal{B}(Z_H(S)/K)^{\Theta}$ uniquely; see [T, 1.2].

Proposition 2.12. Conditions A1, A2 and A3 hold.

Proof. The action of $n \in N(K)$ on $\mathcal{B}(Z_H(S)/K)$ carries the apartment $A = A_T$ via an affine isomorphism $f(n): A \to A_{nTn^{-1}}$ to the apartment $A_{nTn^{-1}}$ corresponding to the torus nTn^{-1} containing S. As $(A_{nTn^{-1}})^{\Theta} = \mathcal{B}(Z_H(S)/K)^{\Theta} = A^{\Theta}$, we see that f(n) keeps A^{Θ} stable and so $\varphi(n) := f(n)|_{A^{\Theta}}$ is an affine automorphism of A^{Θ} .

The derivative $df(n): V(T) \to V(nTn^{-1})$ is induced from the map

$$\operatorname{Hom}_K(\operatorname{GL}_1, T) = X_*(T) \to X_*(nTn^{-1}) = \operatorname{Hom}_K(\operatorname{GL}_1, nTn^{-1}),$$

 $\lambda \mapsto \operatorname{Int} n \cdot \lambda$, where $\operatorname{Int} n$ is the inner automorphism of H determined by $n \in N(K) \subset H(K)$. So, the restriction $d\varphi(n): V(S) \to V(S)$ is induced from the homomorphism $X_*(S) \to X_*(S)$, $\lambda \mapsto \operatorname{Int} n \cdot \lambda$. This proves A3.

Condition A3 implies that $d\varphi$ is trivial on Z(K). Therefore, Z(K) acts by translations. The action of the bounded subgroup $Z(K)_b$ on A^{Θ} admits a fixed point

by the fixed point theorem of Bruhat-Tits. Therefore, $Z(K)_b$ acts by the trivial translation. This proves A1.

Since the image of S(K) in $Z(K)/Z(K)_b \simeq \mathbb{Z}^{\dim(S)}$ is a subgroup of finite index, to prove the formula in A2, it suffices to prove it for $z \in S(K)$. But for $z \in S(K)$, $zTz^{-1} = T$, and f(z) is a translation of the apartment A ($\varphi(z)$ is regarded as an element of V(T)) which satisfies (see 1.9 of [P2]):

$$\chi(f(z)) = -\omega(\chi(z))$$
 for all $\chi \in X_K^*(T)$.

This implies the formula in A2, since the restriction map $X_K^*(T) \to X_K^*(S)$ is surjective and the image of the restriction map $X_K^*(Z) \to X_K^*(S)$ is of finite index in $X_K^*(S)$.

2.13. Apartments of \mathcal{B} . By definition, the apartments of \mathcal{B} are the affine spaces $\mathcal{B}(Z_H(S)/K)^\Theta$ under the \mathbb{R} -vector space V(S) (of dimension = K-rank G) for maximal K-split tori S of G. For any apartment A of $\mathcal{B}(Z_H(S)/K)$ that contains a Θ -fixed point, $\mathcal{B}(Z_H(S)/K)^\Theta = A^\Theta$ (Proposition 2.10). The subgroup $N_G(S)(K)$ of G(K) acts by affine transformations on the apartment $\mathcal{B}(Z_H(S)/K)^\Theta$ and $Z_G(S)(K)$ acts on it by translations (Proposition 2.12). Conjugacy of maximal K-split tori of G under G(K) implies that this group acts transitively on the set of apartments of \mathcal{B} .

Propositions 2.9 and 2.10 imply the following proposition at once:

Proposition 2.14. Given any two points of \mathbb{B} , there is a maximal K-split torus S of G such that the corresponding apartment of \mathbb{B} contains these two points.

Proposition 2.15. Let \mathcal{A} be an apartment of \mathcal{B} . Then there is a unique maximal K-split torus S of G such that $\mathcal{A} = \mathcal{B}(Z_H(S)/K)^{\Theta}$. So the stabilizer of \mathcal{A} in G(K) is $N_G(S)(K)$.

Proof. We fix a maximal K-split torus S of G such that $\mathcal{A} = \mathcal{B}(Z_H(S)/K)^{\Theta}$. We will show that S is uniquely determined by \mathcal{A} . For this purpose, we observe that the subgroup $N_G(S)(K)$ of G(K) acts on \mathcal{A} and the maximal bounded subgroup $Z_G(S)(K)_b$ of $Z_G(S)(K)$ acts trivially (Proposition 2.12). So the subgroup \mathcal{Z} of G(K) consisting of elements that fix \mathcal{A} pointwise is a bounded subgroup of G(K), normalized by $N_G(S)(K)$, and it contains $Z_G(S)(K)_b$. Now, using the Bruhat decomposition of G(K) with respect to S, we see that every bounded subgroup of G(K) that is normalized by $N_G(S)(K)$ is a normal subgroup of the latter. Hence the identity component of the Zariski-closure of \mathcal{Z} is $Z_G(S)$. As S is the unique maximal K-split torus of G contained in $Z_G(S)$, both the assertions follow. \square

2.16. The affine Weyl group of G. Let $G(K)^+$ denote the (normal) subgroup of G(K) generated by K-rational elements of the unipotent radicals of parabolic K-subgroups of G. Let S be a maximal K-split torus of G, N and Z respectively be the normalizer and centralizer of S in G. Let $N(K)^+ := N(K) \cap G(K)^+$. Then $N(K)^+$ maps onto the Weyl group W := N(K)/Z(K) of G (this can be seen using, for example, [CGP, Prop. C.2.24(i)]).

Let \mathcal{A} be the apartment of \mathcal{B} corresponding to S. As in 2.11, let $\varphi : N(K) \to \text{Aff}(\mathcal{A})$ be the action map, then the affine Weyl group W_{aff} of G/K is by definition the subgroup $\varphi(N(K)^+)$ of $\text{Aff}(\mathcal{A})$.

3. Bruhat-Tits theory for G over K

- 3.1. Bruhat-Tits group schemes $\mathscr{G}_{\Omega}^{\circ}$. Let Ω be a nonempty Θ -stable bounded subset of an apartment of $\mathcal{B}(H/K)$. Let \mathscr{H}_{Ω} be the smooth affine \mathcal{O} -group scheme associated to Ω in 2.1. There is a natural action of Θ on \mathscr{H}_{Ω} by \mathcal{O} -group scheme automorphisms (2.4). Define the functor $\mathscr{H}_{\Omega}^{\Theta}$ of Θ -fixed points that associates to a commutative \mathcal{O} -algebra C the subgroup $\mathscr{H}_{\Omega}(C)^{\Theta}$ of $\mathscr{H}_{\Omega}(C)$ consisting of elements fixed under Θ . The functor $\mathscr{H}_{\Omega}^{\Theta}$ is represented by a closed smooth \mathcal{O} -subgroup scheme of \mathscr{H}_{Ω} (see Propositions 3.1 and 3.4 of [E], or Proposition A.8.10 of [CGP]); we will denote this closed smooth \mathcal{O} -subgroup scheme also by $\mathscr{H}_{\Omega}^{\Theta}$. Its generic fiber is H^{Θ} , and so the identity component of the generic fiber is G. The neutral component $(\mathscr{H}_{\Omega}^{\Theta})^{\circ}$ of $\mathscr{H}_{\Omega}^{\Theta}$ is by definition the union of the identity components of its generic and special fibers; it is an open (so smooth) affine \mathcal{O} -subgroup scheme [PY2, §3.5] with generic fiber G. The index of the subgroup $(\mathscr{H}_{\Omega}^{\Theta})^{\circ}(\mathcal{O})$ in $\mathscr{H}_{\Omega}^{\Theta}(\mathcal{O})$ is known to be finite [EGA IV3, Cor. 15.6.5]. It is obvious that $(\mathscr{H}_{\Omega}^{\Theta})^{\circ} = ((\mathscr{H}_{\Omega}^{\circ})^{\Theta})^{\circ}$. We will denote $(\mathscr{H}_{\Omega}^{\Theta})^{\circ}$ by $\mathscr{G}_{\Omega}^{\circ}$ in the sequel and call it the Bruhat-Tits \mathcal{O} -group scheme associated to G and Ω . The special fiber of $\mathscr{G}_{\Omega}^{\circ}$ will be denoted $\overline{\mathscr{G}_{\Omega}^{\circ}}$. As $\mathscr{G}_{\Omega}^{\circ}(\mathcal{O}) \subset \mathscr{H}_{\Omega}(\mathcal{O})$, $\mathscr{G}_{\Omega}^{\circ}(\mathcal{O})$ fixes Ω pointwise.
- **3.2.** Let $\Omega' \prec \Omega$ be nonempty bounded subsets of an apartment of $\mathcal{B}(H/K)$. We assume that both Ω and Ω' are stable under the action of Θ on $\mathcal{B}(H/K)$. The 0-group scheme homomorphism $\mathscr{H}_{\Omega} \to \mathscr{H}_{\Omega'}$ of [P2, 1.10] restricts to a homomorphism $\rho_{\Omega',\Omega}: \mathscr{H}_{\Omega}^{\circ} \to \mathscr{H}_{\Omega'}^{\circ}$, and by [E, Prop. 3.5], or [CGP, Prop. A.8.10(2)], it induces a 0-group scheme homomorphism $\mathscr{H}_{\Omega}^{\Theta} \to \mathscr{H}_{\Omega'}^{\Theta}$. The last homomorphism gives a 0-group scheme homomorphism $\rho_{\Omega',\Omega}^G: (\mathscr{H}_{\Omega}^{\Theta})^{\circ} = \mathscr{G}_{\Omega}^{\circ} \to \mathscr{G}_{\Omega'}^{\circ} = (\mathscr{H}_{\Omega'}^{\Theta})^{\circ}$ that is the identity homomorphism on the generic fiber G.
- **3.3.** Let \mathcal{A} be the apartment of \mathcal{B} corresponding to a maximal K-split torus S of G and Ω be a nonempty bounded subset of \mathcal{A} . The apartment \mathcal{A} is contained in an apartment A of $\mathcal{B}(H/K)$ that corresponds to a maximal K-split torus T of H containing S and $A = A \cap \mathcal{B} = A^{\Theta}$ (2.13). So Ω is a bounded subset of A. The group scheme \mathscr{H}_{Ω} contains a closed split \mathbb{O} -torus \mathscr{T} with generic fiber T, see [P2, 1.9]. Let \mathscr{S} be the \mathbb{O} -subtorus of \mathscr{T} whose generic fiber is S (\mathscr{S} is the schematic closure of S in \mathscr{T}). The automorphism group Θ of \mathscr{H}_{Ω} acts trivially on the \mathbb{O} -torus \mathscr{F} (since $S \subset G \subset H^{\Theta}$) and hence this torus is contained in $\mathscr{G}_{\Omega}^{\circ}$. The special fiber $\overline{\mathscr{F}}$ of \mathscr{F} is a maximal torus of $\overline{\mathscr{F}}_{\Omega}^{\circ}$ since S is a maximal K-split torus of G.

Proposition 3.4. Let \mathcal{A} and \mathcal{A}' be apartments of \mathcal{B} and Ω a nonempty bounded subset of $\mathcal{A} \cap \mathcal{A}'$. Then there exists an element $g \in \mathscr{G}_{\Omega}^{\circ}(\mathcal{O})$ that maps \mathcal{A} onto \mathcal{A}' . Any such element fixes Ω pointwise.

Proof. We will use Proposition 2.1(ii) of [P2], with \mathcal{O} in place of \mathfrak{o} , and denote $\mathscr{G}_{\Omega}^{\circ}$ by \mathscr{G} , and its special fiber by $\overline{\mathscr{G}}$, in this proof. Let S and S' be the maximal K-split tori of G corresponding to the apartments \mathscr{A} and \mathscr{A}' respectively and \mathscr{S} and \mathscr{S}' be the \mathcal{O} -tori of \mathscr{G} with generic fibers S and S' respectively. The special fibers $\overline{\mathscr{F}}$ and $\overline{\mathscr{F}}'$ of \mathscr{F} and \mathscr{F}' are maximal split tori of $\overline{\mathscr{G}}$, and hence according to a result of Borel and Tits there is an element \overline{g} of $\overline{\mathscr{G}}(\kappa)$ which conjugates $\overline{\mathscr{F}}$ onto $\overline{\mathscr{F}}'$ [CGP, Thm. C.2.3]. Now [P2, Prop. 2.1(ii)] implies that there exists a $g \in \mathscr{G}(\mathcal{O})$ lying over \overline{g} that conjugates \mathscr{F} onto \mathscr{F}' . This element fixes Ω pointwise and conjugates S onto S' and hence maps \mathscr{A} onto \mathscr{A}' .

- **3.5.** Given a point $x \in \mathcal{B}$, for simplicity we will denote $\mathscr{G}_{\{x\}}^{\circ}$, $\mathscr{H}_{\{x\}}$, $\mathscr{H}_{\{x\}}^{\circ}$ and $\mathscr{H}_{\{x\}}^{\Theta}$ by \mathscr{G}_{x}° , \mathscr{H}_{x} , \mathscr{H}_{x}° and \mathscr{H}_{x}^{Θ} respectively, and the special fibers of these group schemes will be denoted by $\overline{\mathscr{G}}_{x}^{\circ}$, $\overline{\mathscr{H}}_{x}$, $\overline{\mathscr{H}}_{x}^{\circ}$ and $\overline{\mathscr{H}}_{x}^{\Theta}$ respectively. The subgroup of H(K) (resp. G(K)) consisting of elements that fix x will be denoted by $H(K)^{x}$ (resp. $G(K)^{x}$). The subgroup $\mathscr{G}_{x}^{\circ}(\mathfrak{O})$ ($\subset G(K)^{x}$) is of finite index in $G(K)^{x}$.
- **3.6.** Parahoric subgroups of G(K). For $x \in \mathcal{B}$, \mathscr{G}_x° and $P_x := \mathscr{G}_x^{\circ}(\mathcal{O})$ will respectively be called the *Bruhat-Tits parahoric* \mathcal{O} -group scheme and the parahoric subgroup of G(K) associated with the point x. Let S be a maximal K-split torus of G such that x lies in the apartment \mathcal{A} of \mathcal{B} corresponding to S. Then the group scheme \mathscr{G}_x° contains a closed split \mathcal{O} -torus \mathscr{S} whose generic fiber is S(3.3). The parahoric subgroups of G(K) are by definition the subgroups P_x for $x \in \mathcal{B}$. For a given parahoric subgroup P_x , the associated Bruhat-Tits parahoric \mathcal{O} -group scheme is \mathscr{G}_x° .
- (i) Let P be a parahoric subgroup of G(K), \mathscr{G}° the associated Bruhat-Tits parahoric \mathcal{O} -group scheme, $\overline{\mathscr{G}}^{\circ}$ the special fiber of \mathscr{G}° , and \mathcal{P} be a subgroup of P of finite index. Then the image of \mathcal{P} in $\overline{\mathscr{G}}^{\circ}(\kappa)$ is Zariski-dense in the connected group $\overline{\mathscr{G}}^{\circ}$, so the affine ring of \mathscr{G}° is:

$$\mathbb{O}[\mathscr{G}^\circ] = \{ f \in K[G] \, | \, f(\mathcal{P}) \subset \mathbb{O} \}.$$

Thus the subgroup \mathcal{P} "determines" the group scheme \mathscr{G}° , and hence P is the unique parahoric subgroup of G(K) containing \mathcal{P} as a subgroup of finite index.

(ii) Let P and \mathscr{G}° be as in the preceding paragraph. Let Ω be a nonempty Θ -stable bounded subset of an apartment of $\mathcal{B}(H/K)$ and $\mathscr{G}_{\Omega}^{\circ}$ be as in 3.1. We assume that Ω is fixed pointwise by P. Then the inclusion of P in $H(K)^{\Omega}$ (= $\mathscr{H}_{\Omega}(0)$) gives a \mathbb{C} -group scheme homomorphism $\mathscr{G}^{\circ} \to \mathscr{H}_{\Omega}^{\circ}$ (Proposition 2.2). This homomorphism obviously factors through $\mathscr{G}_{\Omega}^{\circ}$ to give a \mathbb{C} -group scheme homomorphism $\mathscr{G}^{\circ} \to \mathscr{G}_{\Omega}^{\circ}$ that is the identity on the generic fiber G.

Suppose $x, y \in \mathcal{B}(H/K)$ are fixed by P, and [xy] is the geodesic joining x and y. Then P fixes every point z of [xy]. Let $\mathscr{G}_{[xy]}^{\circ}$ be as in 3.1 (for $\Omega = [xy]$). There are \mathbb{C} -group scheme homomorphisms $\mathscr{G}^{\circ} \to \mathscr{G}_{[xy]}^{\circ}$ and $\mathscr{G}^{\circ} \to \mathscr{G}_{z}^{\circ}$ that are the identity on the generic fiber G.

3.7. Polysimplicial structure on \mathcal{B} . Let P be a parahoric subgroup of G(K) and \mathscr{G}° be the Bruhat-Tits parahoric \mathcal{O} -group scheme associated with P(3.6). Let $\mathcal{B}(H/K)^P$ denote the set of points of $\mathcal{B}(H/K)$ fixed by P. According to Corollary 2.3, $\mathcal{B}(H/K)^P$ is the union of facets pointwise fixed by P. Let $\overline{\mathcal{F}}_P := \mathcal{B}(H/K)^P \cap \mathcal{B}$. This closed convex subset is by definition the closed facet of \mathcal{B} associated with the parahoric subgroup P. The \mathcal{O} -group scheme \mathscr{G}° contains a closed split \mathcal{O} -torus \mathscr{S} whose generic fiber S is a maximal K-split torus of G(3.3). The subgroup $\mathscr{S}(\mathcal{O})$ (of S(K)) is the maximal bounded subgroup of S(K) and it is contained in $P(=\mathscr{G}^{\circ}(\mathcal{O}))$, so, according to Corollary 2.3, $\overline{\mathcal{F}}_P$ is contained in the enlarged building $\mathcal{B}(Z_H(S)/K)$ of $Z_H(S)(K)$. This implies that the closed facet $\overline{\mathcal{F}}_P$ is contained in the apartment $\mathcal{A} := \mathcal{B}(Z_H(S)/K)^{\Theta} (= \mathcal{B}(Z_H(S)/K) \cap \mathcal{B})$ of \mathcal{B} corresponding to the maximal K-split torus S of G.

Let \mathcal{F}_P be the subset of points of $\overline{\mathcal{F}}_P$ that are not fixed by any parahoric subgroup of G(K) larger than P. Then $\mathcal{F}_P = \overline{\mathcal{F}}_P - \bigcup_{Q \supseteq P} \overline{\mathcal{F}}_Q$. Given another parahoric subgroup subgroup Q of G(K), if $\overline{\mathcal{F}}_Q = \overline{\mathcal{F}}_P$, then Q = P. (To see this, we choose points $x, y \in \mathcal{B}$ such that $\mathscr{G}_x^{\circ}(\mathcal{O}) = P$ and $\mathscr{G}_y^{\circ}(\mathcal{O}) = Q$. Then $y \in \overline{\mathcal{F}}_Q = \overline{\mathcal{F}}_P$. So P fixes y. Now using 3.6 (ii) we see that $P \subset Q$. We similarly see that $Q \subset P$.) Hence if $Q \supseteq P$, then $\overline{\mathcal{F}}_Q$ is properly contained in $\overline{\mathcal{F}}_P$. By definition, \mathcal{F}_P is the facet of \mathcal{B} associated with the parahoric subgroup P of G(K), and as P varies over the set of parahoric subgroups of G(K), these are are all the facets of \mathcal{B} . We will show below (Propositions 3.11 and 3.13) that \mathcal{F}_P is convex and bounded.

For a parahoric subgroup Q of G(K) containing P, obviously, $\mathcal{F}_Q \subset \overline{\mathcal{F}}_Q \subset \overline{\mathcal{F}}_P$, thus $\mathcal{F}_Q \prec \mathcal{F}_P$ and hence \mathcal{F}_P is a maximal facet if and only if P is a minimal parahoric subgroup of G(K). The maximal facets of \mathcal{B} are called the *chambers* of \mathcal{B} . It is easily seen using the observations contained in 2.5 that all the chambers are of equal dimension. We say that a facet \mathcal{F}' of \mathcal{B} is a *face* of a facet \mathcal{F} if $\mathcal{F}' \prec \mathcal{F}$, i.e., if \mathcal{F}' is contained in the closure of \mathcal{F} .

In the following three lemmas (3.8, 3.9 and 3.10), k is any field of characteristic $p \ge 0$. We will use the notation introduced in [CGP, §2.1].

Lemma 3.8. Let \mathcal{H} be a smooth connected affine algebraic k-group and \mathcal{Q} be a pseudo-parabolic k-subgroup of \mathcal{H} . Let \mathcal{S} be a k-torus of \mathcal{Q} whose image in the maximal pseudo-reductive quotient $\mathcal{M} := \mathcal{Q}/\mathcal{R}_{u,k}(\mathcal{Q})$ of \mathcal{Q} contains the maximal central torus of \mathcal{M} . Then any 1-parameter subgroup $\lambda : \mathrm{GL}_1 \to \mathcal{H}$ such that $\mathcal{Q} = P_{\mathcal{H}}(\lambda)\mathcal{R}_{u,k}(\mathcal{H})$ has a conjugate under $\mathcal{R}_{u,k}(\mathcal{Q})(k)$ with image in \mathcal{S} .

Proof. Let $\lambda: \operatorname{GL}_1 \to \mathcal{H}$ be a 1-parameter subgroup such that $\Omega = P_{\mathcal{H}}(\lambda)\mathscr{R}_{u,k}(\mathcal{H})$. The image \mathcal{T} of λ is contained in Ω and it maps into the central torus of \mathcal{M} . Therefore, \mathcal{T} is contained in the solvable subgroup $\mathscr{SR}_{u,k}(\Omega)$ of Ω . Note that as \mathcal{S} is commutative, the derived subgroup of $\mathscr{SR}_{u,k}(\Omega)$ is contained in $\mathscr{R}_{u,k}(\Omega)$, so the maximal k-tori of $\mathscr{SR}_{u,k}(\Omega)$ are conjugate to each other under $\mathscr{R}_{u,k}(\Omega)(k)$ [Bo, Thm. 19.2]. Hence, there is a $u \in \mathscr{R}_{u,k}(\Omega)(k)$ such that $u\mathcal{T}u^{-1} \subset \mathcal{S}$. Then the image of the 1-parameter subgroup $\mu: \operatorname{GL}_1 \to \mathcal{S}$, defined as $\mu(t) = u\lambda(t)u^{-1}$, is contained in \mathcal{S} .

Lemma 3.9. Let \mathcal{H} be a smooth connected affine algebraic k-group given with an action by a finite group Θ and \mathcal{U} be a smooth connected Θ -stable unipotent normal k-subgroup of \mathcal{H} . We assume that p does not divide the order of Θ . Let $\overline{\mathbb{S}}$ be a Θ -stable k-torus of $\overline{\mathcal{H}} := \mathcal{H}/\mathcal{U}$. Then there exists a Θ -stable k-torus \mathbb{S} in \mathcal{H} that maps isomorphically onto $\overline{\mathbb{S}}$. In particular, there exists a Θ -stable k-torus in \mathcal{H} that maps isomorphically onto the maximal central torus of $\overline{\mathcal{H}}$.

Proof. Let \mathcal{T} be a k-torus of \mathcal{H} that maps isomorphically onto $\overline{\mathcal{S}}$ ($\subset \overline{\mathcal{H}}$). Considering the Θ -stable solvable subgroup TU; using conjugacy under U(k) of maximal k-tori of this solvable group [Bo, Thm. 19.2], we see that for $\theta \in \Theta$, $\theta(\mathfrak{I}) = u(\theta)^{-1} \mathfrak{I} u(\theta)$ for some $u(\theta) \in \mathcal{U}(k)$. Let $\mathcal{U}(k) =: \mathcal{U}_0 \supset \mathcal{U}_1 \supset \mathcal{U}_2 \cdots \supset \mathcal{U}_n = \{1\}$ be the descending central series of the nilpotent group $\mathcal{U}(k)$. Each subgroup \mathcal{U}_i is Θ -stable and $\mathcal{U}_i/\mathcal{U}_{i+1}$ is a commutative p-group if $p \neq 0$, and a Q-vector space if p = 0. Now let $i \leq n$, be the largest integer such that there exists a k-torus S in TU that maps onto \overline{S} , and for every $\theta \in \Theta$, there is a $u(\theta) \in \mathcal{U}_i$ such that $\theta(S) = u(\theta)^{-1}Su(\theta)$. Let \mathcal{N}_i be the normalizer of S in \mathcal{U}_i . Then, for $\theta \in \Theta$, $\theta(\mathcal{N}_i) = u(\theta)^{-1} \mathcal{N}_i u(\theta)$ and hence as $\mathcal{U}_i / \mathcal{U}_{i+1}$ is commutative, we see that $\theta(\mathcal{N}_i \mathcal{U}_{i+1}) = \mathcal{N}_i \mathcal{U}_{i+1}$, i.e., $\mathcal{N}_i \mathcal{U}_{i+1}$ is Θ -stable. It is easy to see that $\theta \mapsto u(\theta) \mod (\mathcal{N}_i \mathcal{U}_{i+1})$ is a 1-cocycle on Θ with values in $\mathcal{U}_i/\mathcal{N}_i \mathcal{U}_{i+1}$. But $H^1(\Theta, \mathcal{U}_i/\mathcal{N}_i\mathcal{U}_{i+1})$ is trivial since the finite group Θ is of order prime to p if $p \neq 0$, and $\mathcal{U}_i/\mathcal{N}_i\mathcal{U}_{i+1}$ is divisible if p = 0. So there exits a $u \in \mathcal{U}_i$ such that for all $\theta \in \Theta$, $u^{-1}u(\theta)\theta(u)$ lies in $\mathcal{N}_i\mathcal{U}_{i+1}$. Now let $\mathcal{S}'=u^{-1}\mathcal{S}u$. Then the normalizer of S' in \mathcal{U}_i is $u^{-1}\mathcal{N}_i u$ and again as $\mathcal{U}_i/\mathcal{U}_{i+1}$ is commutative, $u^{-1}\mathcal{N}_i u \cdot \mathcal{U}_{i+1} = \mathcal{N}_i \mathcal{U}_{i+1}$. For $\theta \in \Theta$, we choose $u'(\theta) \in \mathcal{U}_{i+1}$ such that $u^{-1}u(\theta)\theta(u) \in u^{-1}\mathcal{N}_i u \cdot u'(\theta)$. Then $\theta(S') = u'(\theta)^{-1}S'u'(\theta)$ for all $\theta \in \Theta$. This contradicts the maximality of i unless i = n.

Lemma 3.10. Let \mathcal{H} be a smooth connected affine algebraic k-group given with an action by a finite group Θ . We assume that p does not divide the order of Θ . Let $\mathcal{G} = (\mathcal{H}^{\Theta})^{\circ}$. Then

- (i) $\mathscr{R}_{u,k}(\mathfrak{G}) = (\mathfrak{G} \cap \mathscr{R}_{u,k}(\mathfrak{H}))^{\circ} = (\mathscr{R}_{u,k}(\mathfrak{H})^{\Theta})^{\circ}$; moreover, $\mathfrak{G}/(\mathfrak{G} \cap \mathscr{R}_{u,k}(\mathfrak{H}))$ is pseudo-reductive, and if k is perfect then $\mathfrak{G} \cap \mathscr{R}_{u,k}(\mathfrak{H}) = \mathscr{R}_{u,k}(\mathfrak{G})$.
- (ii) Given a Θ -stable pseudo-parabolic k-subgroup Ω of \mathcal{H} , $\mathcal{P} := \mathcal{G} \cap \Omega$ is a pseudo-parabolic k-subgroup of \mathcal{G} , so \mathcal{P} is connected and it equals $(\Omega^{\Theta})^{\circ}$.
- (iii) Conversely, given a pseudo-parabolic k-subgroup \mathcal{P} of \mathcal{G} , and a maximal k-torus $\mathcal{S} \subset \mathcal{P}$, there is a Θ -stable pseudo-parabolic k-subgroup \mathcal{Q} of \mathcal{H} , \mathcal{Q} containing the centralizer $Z_{\mathcal{H}}(\mathcal{S})$ of \mathcal{S} in \mathcal{H} , such that $\mathcal{P} = \mathcal{G} \cap \mathcal{Q} = (\mathcal{Q}^{\Theta})^{\circ}$.

Proof. The first assertion of (i) immediately follows from [CGP, Prop. A.8.14(2)]. Now we observe that as $\mathcal{R}_{u,k}(\mathfrak{G}) = (\mathfrak{G} \cap \mathcal{R}_{u,k}(\mathfrak{H}))^{\circ}$, $(\mathfrak{G} \cap \mathcal{R}_{u,k}(\mathfrak{H}))/\mathcal{R}_{u,k}(\mathfrak{G})$ is a finite étale (unipotent) normal subgroup of the pseudo-reductive quotient $\mathfrak{G}/\mathcal{R}_{u,k}(\mathfrak{G})$ of \mathfrak{G} so it is central. Thus the kernel of the quotient map $\pi: \mathfrak{G}/\mathcal{R}_{u,k}(\mathfrak{G}) \to \mathfrak{G}/(\mathfrak{G} \cap \mathcal{R}_{u,k}(\mathfrak{H}))$ is an étale unipotent central subgroup. Hence, $\mathfrak{G}/(\mathfrak{G} \cap \mathcal{R}_{u,k}(\mathfrak{H}))$ is pseudo-reductive as $\mathfrak{G}/\mathcal{R}_{u,k}(\mathfrak{G})$ is. Moreover, if k is perfect then every pseudo-reductive k-group is

reductive and such a group does not contain a nontrivial étale unipotent normal subgroup. This implies that if k is perfect, then $\mathscr{R}_{u,k}(\mathfrak{F}) = \mathfrak{F} \cap \mathscr{R}_{u,k}(\mathfrak{F})$.

Since $\mathcal{R}_{u,k}(\mathfrak{G}) \subset \mathfrak{G} \cap \mathcal{R}_{u,k}(\mathfrak{H}) \subset \mathfrak{G} \cap \mathfrak{Q}$, to prove (ii), we can replace \mathfrak{H} by its pseudoreductive quotient $\mathcal{H}/\mathcal{R}_{u,k}(\mathcal{H})$ and assume that \mathcal{H} is pseudo-reductive. Then \mathcal{G} is also pseudo-reductive by (i). Let $\mathcal{U} = \mathcal{R}_{u,k}(\mathcal{Q})$ be the k-unipotent radical of \mathcal{Q} ; \mathcal{U} is Θ -stable. Let S be a Θ -stable k-torus in Ω that maps isomorphically onto the maximal central torus of the pseudo-reductive quotient $\overline{\mathbb{Q}} := \mathbb{Q}/\mathcal{U}$ (Lemma 3.9). By Lemma 3.8, there exists a 1-parameter subgroup $\lambda : GL_1 \to S$ such that $\Omega = P_{\mathcal{H}}(\lambda)$. Let $\mu = \sum_{\theta \in \Theta} \theta \cdot \lambda$. Then μ is invariant under Θ and so it is a 1-parameter subgroup of \mathfrak{G} . We will now show that $\mathfrak{Q} = P_{\mathfrak{H}}(\mu)$. Let Φ (resp. Ψ) be the set of weights in the Lie algebra of Q (resp. $P_{\mathcal{H}}(\mu)$) with respect to the adjoint action of S. Then since Ω , $P_{\mathcal{H}}(\mu)$ and S are Θ -stable, the subsets Φ and Ψ (of X(S)) are stable under the action of Θ on X(S). Hence, for all $a \in \Phi$, as $\langle a, \lambda \rangle \geqslant 0$, we conclude that $\langle a, \mu \rangle \geqslant 0$. Therefore, $\Phi \subset \Psi$. On the other hand, for $b \in \Psi$, $\langle b, \mu \rangle \geqslant 0$. If $b \in \Psi$ does not belong to Φ , then for $\theta \in \Theta$, $\theta \cdot b \notin \Phi$, so for all $\theta \in \Theta$, $\langle \theta \cdot b, \lambda \rangle < 0$, which implies that $\langle b, \mu \rangle < 0$. This is a contradiction. Therefore, $\Phi = \Psi$ and so $\Omega = P_{\mathcal{H}}(\mu)$. Now observe that $(Q^{\Theta})^{\circ} \subset \mathcal{G} \cap \mathcal{Q} \subset \mathcal{Q}^{\Theta}$. As Q^{Θ} is a smooth subgroup ([E, Prop. 3.4] or [CGP, Prop. A.8.10(2)]), $\mathcal{G} \cap \mathcal{Q}$ is a smooth k-subgroup, and since it contains the pseudo-parabolic k-subgroup $P_{\mathfrak{G}}(\mu)$, it is a pseudo-parabolic k-subgroup of \mathfrak{G} [CGP, Prop. 3.5.8, hence in particular it is connected. Therefore, $\mathcal{G} \cap \mathcal{Q} = (\mathcal{Q}^{\Theta})^{\circ}$.

Now we will prove (iii). Let $\lambda: \operatorname{GL}_1 \to \mathcal{S}$ be a 1-parameter subgroup such that $\mathcal{P} = P_{\mathcal{G}}(\lambda)\mathscr{R}_{u,k}(\mathcal{G})$. Then $\Omega:=P_{\mathcal{H}}(\lambda)\mathscr{R}_{u,k}(\mathcal{H})$ is a pseudo-parabolic k-subgroup of \mathcal{H} that is Θ -stable (since λ is Θ -invariant) and it contains \mathcal{P} as well as $Z_{\mathcal{H}}(\mathcal{S})$. According to (ii), $\mathcal{G} \cap \Omega = (\Omega^{\Theta})^{\circ}$ is a pseudo-parabolic k-subgroup of \mathcal{G} containing \mathcal{P} . The Lie algebras of \mathcal{P} and $(\Omega^{\Theta})^{\circ}$ are clearly equal. This implies that $\mathcal{P} = \mathcal{G} \cap \Omega = (\Omega^{\Theta})^{\circ}$ and we have proved (iii).

Proposition 3.11. Let P be a parahoric subgroup of G(K) and \mathfrak{F}_P and $\overline{\mathfrak{F}}_P$ be as in 3.7.

- (i) Given $x \in \mathcal{F}_P$ and $y \in \overline{\mathcal{F}}_P$, for every point z of the geodesic [xy], except possibly for z = y, $\mathscr{G}_z^{\circ}(0) = P$.
- (ii) Let F be a facet of $\mathfrak{B}(H/K)$ that meets $\overline{\mathfrak{F}}_P$ and is maximal among such facets. Then $\mathscr{G}_F^{\circ}(\mathfrak{O}) = P$. Thus $F \cap \mathfrak{B} \subset \mathfrak{F}_P$.

The first assertion of this proposition implies that \mathcal{F}_P is convex. The second assertion implies that \mathcal{F}_P is an open-dense subset of $\overline{\mathcal{F}}_P$, hence the closure of \mathcal{F}_P is $\overline{\mathcal{F}}_P$.

Proof. To prove the first assertion, let [xy] be the geodesic joining x and y. Let F_0, F_1, \ldots, F_n be the facets of $\mathcal{B}(H/K)$ containing a segment of positive length of the geodesic [xy] (so each F_i is Θ -stable and is fixed pointwise by P, hence $P \subset \mathscr{G}_{F_i}^{\circ}(0)$, cf. 3.6(ii)). Then $[xy] \subset \bigcup_i \overline{F}_i$. We assume the facets $\{F_i\}$ indexed so that x lies in \overline{F}_0, y lies in \overline{F}_n , and for each $i < n, \overline{F}_i \cap \overline{F}_{i+1}$ is nonempty. Let $z_0 = x$. For every

positive integer $i (\leq n)$, $\overline{F}_{i-1} \cap \overline{F}_i$ contains a unique point of [xy]; we will denote this point by z_i .

To prove the second assertion of the proposition along with the first, we take x to be a point of \mathcal{B} such that $\mathscr{G}_x^{\circ}(\mathcal{O}) = P$ (so $x \in \mathcal{F}_P$) and take y to be any point of $F \cap \mathcal{B}$. Let [xy], and for $i \leq n$, F_i and z_i be as in the preceding paragraph. Then $F_n = F$.

Since $x \in \overline{F}_0$, there is a \mathbb{O} -group scheme homomorphism $\mathscr{G}_{F_0}^{\circ} \to \mathscr{G}_x^{\circ}$ that is the identity on the generic fiber G. Thus, $\mathscr{G}_{F_0}^{\circ}(\mathbb{O}) \subset P$. But $P \subset \mathscr{G}_{F_0}^{\circ}(\mathbb{O})$, so $\mathscr{G}_{z_0}^{\circ}(\mathbb{O}) = \mathscr{G}_{F_0}^{\circ}(\mathbb{O}) = P$. Let $j \in \mathbb{O}$ be a positive integer such that for all i < j, $\mathscr{G}_{z_i}^{\circ}(\mathbb{O}) = \mathscr{G}_{F_i}^{\circ}(\mathbb{O}) = P$. The inclusion of $\{z_j\}$ in $\overline{F}_{j-1} \cap \overline{F}_j$ gives rise to \mathbb{O} -group scheme homomorphisms $\mathscr{H}_{F_{j-1}} \xrightarrow{\sigma_j} \mathscr{H}_{z_j} \xleftarrow{\rho_j} \mathscr{H}_{F_j}$ that are the identity on the generic fiber H. The images of the induced homomorphisms $\overline{\mathscr{H}}_{F_{j-1}}^{\circ} \xrightarrow{\overline{\sigma}_j} \overline{\mathscr{H}}_{z_j}^{\circ} \xleftarrow{\overline{\rho}_j} \overline{\mathscr{H}}_{F_j}^{\circ}$ are pseudo-parabolic κ_s -subgroups of $\overline{\mathscr{H}}_{z_j}^{\circ}([P2, 1.10(2)])$. We conclude by Lie algebra consideration that $\overline{\sigma}_j(\overline{\mathscr{G}}_{F_{j-1}}^{\circ}) = (\overline{\sigma}_j(\overline{\mathscr{H}}_{F_{j-1}}^{\circ})^{\Theta})^{\circ}$ and $\overline{\rho}_j(\overline{\mathscr{G}}_{F_j}^{\circ}) = (\overline{\rho}_j(\overline{\mathscr{H}}_{F_j}^{\circ})^{\Theta})^{\circ}$, and Lemma 3.10(ii) implies that both of these subgroups are pseudo-parabolic subgroups of $\overline{\mathscr{G}}_{z_j}^{\circ}$. As $\mathscr{G}_{F_{j-1}}^{\circ}(\mathbb{O}) = P$, whereas, $P \subset \mathscr{G}_{F_j}^{\circ}(\mathbb{O}) \subset \mathscr{G}_{z_j}^{\circ}(\mathbb{O})$, we see that $\overline{\sigma}_j(\overline{\mathscr{G}}_{F_{j-1}}^{\circ})$ is contained in $\overline{\rho}_j(\overline{\mathscr{G}}_{F_j}^{\circ})$. Let \overline{Q} and \overline{Q}' respectively be the images of $\overline{\sigma}_j(\overline{\mathscr{G}}_{z_j}^{\circ})$ of $\overline{\mathscr{G}}_{z_j}^{\circ}$. Then $\overline{Q} \subset \overline{Q}'$, and both of them are pseudo-parabolic subgroups of $\overline{G}_{z_j}^{\operatorname{pred}}$.

Now let S be a maximal K-split torus of G such that the apartment of $\mathfrak B$ corresponding to S contains the geodesic [xy] and let $v\in V(S)$ so that v+x=y. Then for all sufficiently small positive real number $\epsilon, -\epsilon v+z_j\in F_{j-1}$ and $\epsilon v+z_j\in F_j$. Using [P2,1.10(3)] we infer that the images of the pseudo-parabolic subgroups $\overline{\sigma}_j(\overline{\mathscr{H}}_{F_{j-1}}^\circ)$ and $\overline{\rho}_j(\overline{\mathscr{H}}_{F_j}^\circ)$ (of $\overline{\mathscr{H}}_{z_j}^\circ$) in the maximal pseudo-reductive quotient $\overline{H}_{z_j}^{\operatorname{pred}}:=\overline{\mathscr{H}}_{z_j}^\circ/\mathscr{R}_{u,\kappa_s}(\overline{\mathscr{H}}_{z_j}^\circ)$ of $\overline{\mathscr{H}}_{z_j}^\circ$ are opposite pseudo-parabolic subgroups. Therefore, the image $\mathfrak H$ of $\overline{\sigma}_j(\overline{\mathscr{H}}_{F_{j-1}}^\circ)\cap \overline{\rho}_j(\overline{\mathscr{H}}_{F_j}^\circ)$ in $\overline{H}_{z_j}^{\operatorname{pred}}$ is pseudo-reductive. Proposition A.8.14 (2) of $[\operatorname{CGP}]$ implies then that $(\mathfrak{H}^\Theta)^\circ$ is pseudo-reductive. It is obvious that under the natural homomorphism $\pi:\overline{G}_{z_j}^{\operatorname{pred}}\to \overline{H}_{z_j}^{\operatorname{pred}}$, the image of $\overline{Q}=\overline{Q}\cap \overline{Q}'$ is $(\mathfrak{H}^\Theta)^\circ$. As the kernel of the homomorphism π is a finite (étale unipotent) subgroup (Lemma 3.10(i)), and $(\mathfrak{H}^\Theta)^\circ$ is pseudo-reductive, we see that \overline{Q} is a pseudo-reductive subgroup of $\overline{G}_{z_j}^{\operatorname{pred}}$. But since \overline{Q} is a pseudo-parabolic subgroup of the latter, we must have $\overline{Q}=\overline{G}_{z_j}^{\operatorname{pred}}$, and hence, $\overline{Q}'=\overline{G}_{z_j}^{\operatorname{pred}}$. So, $\overline{\sigma}_j(\overline{\mathscr{G}}_{F_{j-1}}^\circ)=\overline{\mathscr{G}}_{z_j}^\circ=\overline{\rho}_j(\overline{\mathscr{G}}_{F_j}^\circ)$.

Since the natural homomorphism $\mathscr{G}_{F_{j-1}}^{\circ}(\mathcal{O}) \to \overline{\mathscr{G}}_{F_{j-1}}^{\circ}(\kappa)$ is surjective (as \mathcal{O} is henselian and $\mathscr{G}_{F_{j-1}}^{\circ}$ is smooth, [EGA IV₄, 18.5.17]), and $\overline{\sigma}_{j}(\overline{\mathscr{G}}_{F_{j-1}}^{\circ}) = \overline{\mathscr{G}}_{z_{j}}^{\circ}$, the image

of $\mathscr{G}_{F_{j-1}}^{\circ}(\mathfrak{O})$ ($\subset \mathscr{G}_{z_{j}}^{\circ}(\mathfrak{O})$) in $\overline{\mathscr{G}}_{z_{j}}^{\circ}(\kappa)$ is Zariski-dense in $\overline{\mathscr{G}}_{z_{j}}^{\circ}$. From this we see that $\mathfrak{O}[\mathscr{G}_{z_{j}}^{\circ}] = \{ f \in K[G] \, | \, f(\mathscr{G}_{F_{j-1}}^{\circ}(\mathfrak{O})) \subset \mathfrak{O} \} = \mathfrak{O}[\mathscr{G}_{F_{j-1}}^{\circ}],$

cf. [BrT2, 1.7.2] and 2.1. Therefore, $\sigma_j|_{\mathscr{G}_{F_{j-1}}^{\circ}}:\mathscr{G}_{F_{j-1}}^{\circ}\to\mathscr{G}_{z_j}^{\circ}$ is a 0-group scheme isomorphism. We similarly see that $\rho_j|_{\mathscr{G}_{F_j}^{\circ}}:\mathscr{G}_{F_j}^{\circ}\to\mathscr{G}_{z_j}^{\circ}$ is a 0-group scheme isomorphism. Now since $\mathscr{G}_{F_{j-1}}^{\circ}(0)=P,$ we conclude that $P=\mathscr{G}_{z_j}^{\circ}(0)=\mathscr{G}_{F_j}^{\circ}(0).$ By induction it follows that $P=\mathscr{G}_{z_i}^{\circ}(0)=\mathscr{G}_{F_i}^{\circ}(0)$ for all $i\leqslant n$. In particular, for all $z\in[xy],$ except possibly for $z=y,\mathscr{G}_z^{\circ}(0)=P,$ and $\mathscr{G}_{F_n}^{\circ}(0)=P.$

For parahoric subgroups P and Q of G(K), if $\mathcal{F}_P \cap \mathcal{F}_Q$ is nonempty, then for any z in this intersection, $P = \mathscr{G}_z^{\circ}(\mathfrak{O}) = Q$ (Proposition 3.11). Thus every point of \mathcal{B} is contained in a unique facet.

We will use the following simple lemma in the proof of the next proposition.

Lemma 3.12. Let S be a maximal K-split torus of G, A the corresponding apartment of B, and C be a noncompact closed convex subset of A. Then for any point $x \in C$, there is an infinite ray originating at x and contained in C.

Proof. Recall that \mathcal{A} is an affine space under the vector space $V(S) = \mathbb{R} \otimes_{\mathbb{Z}} X_*(S)$. We identify \mathcal{A} with V(S) using translations by elements in the latter, with x identified with the origin 0, and use a positive definite inner product on V(S) to get a norm on \mathcal{A} . With this identification, \mathcal{C} is a closed convex subset of V(S) containing 0. Since \mathcal{C} is noncompact, there exist unit vectors $v_i \in V(S)$, $i \geq 1$, and positive real numbers $s_i \to \infty$ such that $s_i v_i$ lies in \mathcal{C} . After replacing $\{v_i\}$ by a subsequence, we may (and do) assume that the sequence $\{v_i\}$ converges to a unit vector v. We will now show that for every nonnegative real number t, tv lies in \mathcal{C} , this will prove the lemma. To see that tv lies in \mathcal{C} , it suffices to observe that for a given t, the sequence $\{tv_i\}$ converges to tv, and for all sufficiently large i (so that $s_i \geq t$), tv_i lies in \mathcal{C} . \square

Proposition 3.13. For any parahoric subgroup P of G(K), the associated closed facet $\overline{\mathcal{F}}_P$ of \mathcal{B} , and so also the associated facet $\mathcal{F}_P(\subset \overline{\mathcal{F}}_P)$, is bounded.

Proof. Let S be a maximal K-split torus of G such that the corresponding apartment of \mathcal{B} contains $\overline{\mathcal{F}}_P$ (3.7). Assume, if possible, that $\overline{\mathcal{F}}_P$ is noncompact and fix a point x of \mathcal{F}_P . Then, according to the preceding lemma, there is an infinite ray $\mathcal{R} := \{tv + x \mid t \in \mathbb{R}_{\geq 0}\}$, for some $v \in V(S)$, originating at x and contained in $\overline{\mathcal{F}}_P$. It is obvious from Proposition 3.11(i) that this ray is actually contained in \mathcal{F}_P . Hence, for every point $z \in \mathcal{R}$, $\mathscr{G}_z^{\circ}(0) = P$.

As the central torus of G has been assumed to be K-anisotropic, there is a non-divisible root a of G, with respect to S, such that $\langle a, v \rangle > 0$. Let S_a be the identity component of the kernel of a and G_a (resp. H_a) be the derived subgroup of the centralizer of S_a in G (resp. H). Fix $t \in \mathbb{R}_{\geq 0}$, and let $y = tv + x \in \mathcal{R}$. Let \mathscr{S} be the closed 1-dimensional O-split torus of \mathscr{G}_y° whose generic fiber is the maximal K-split torus of G_a contained in S and let $\lambda : \operatorname{GL}_1 \to \mathscr{S} (\hookrightarrow \mathscr{G}_y^{\circ} \hookrightarrow \mathscr{H}_y)$ be the O-isomorphism such that $\langle a, \lambda \rangle > 0$. Let $c = \langle a, v \rangle / \langle a, \lambda \rangle$. Then $\langle a, v - c\lambda \rangle = 0$.

Let \mathscr{U}_y be the O-subgroup scheme of \mathscr{H}_y representing the functor

$$R \leadsto \{h \in \mathscr{H}_y(R) \mid \lim_{t \to 0} \lambda(t) h \lambda(t)^{-1} = 1\},$$

cf. [CGP, Lemma 2.1.5]. Using the last assertion of 2.1.8(3), and the first assertion of 2.1.8(4), of [CGP] (with k, which is an an arbitrary commutative ring in these assertions, replaced by \mathcal{O} , and G replaced by \mathcal{H}_y), we see that \mathcal{U}_y is a closed smooth unipotent \mathcal{O} -subgroup scheme of \mathcal{H}_y with connected fibers; the generic fiber of \mathcal{U}_y is $U_H(\lambda)$, where $U_H(\lambda)$ is as in [CGP, Lemma 2.1.5] with G replaced by H. We consider the smooth closed \mathcal{O} -subgroup scheme \mathcal{U}_y^{Θ} of \mathcal{U}_y . As \mathcal{U}_y^{Θ} is clearly normalized by \mathcal{F} , it has connected fibers, and hence it is contained in $(\mathcal{H}_y^{\Theta})^{\circ} = \mathcal{G}_y^{\circ}$. The generic fiber of \mathcal{U}_y^{Θ} is $U_H(\lambda)^{\Theta}$ that contains the root group $U_a (= U_{G_a}(\lambda))$ of G corresponding to the root a.

As $\bigcup_{z\in\mathcal{R}} \mathscr{U}_z(0) \supset U_{H_a}(\lambda)(K) \supset U_a(K)$, we see that $\bigcup_{z\in\mathcal{R}} \mathscr{U}_z^{\Theta}(0) \supset U_a(K)$. Now since $\mathscr{G}_z^{\circ} \supset \mathscr{U}_z^{\Theta}$, we conclude that $\bigcup_{z\in\mathcal{R}} \mathscr{G}_z^{\circ}(0) \supset U_a(K)$. But for all $z\in\mathcal{R}$, $\mathscr{G}_z^{\circ}(0) = P$, so the parahoric subgroup P contains the unbounded subgroup $U_a(K)$. This is a contradiction.

Proposition 3.13 implies that each closed facet of \mathcal{B} is a compact polyhedron. Considering the facets lying on the boundary of a maximal closed facet of \mathcal{B} , we see that \mathcal{B} contains facets of every dimension $\leq K$ -rank G.

3.14. Let P be a parahoric subgroup of G(K) and $\mathcal{F} := \mathcal{F}_P$ be the facet of \mathcal{B} associated to P in 3.7. Then for any $x \in \mathcal{F}$, since $P \subset \mathscr{G}_{\mathcal{F}}^{\circ}(\mathcal{O}) \subset \mathscr{G}_{x}^{\circ}(\mathcal{O}) = P$ (3.6(ii)), $\mathscr{G}_{\mathcal{F}}^{\circ}(\mathcal{O}) = P$ and hence the natural \mathcal{O} -group scheme homomorphism $\mathscr{G}_{\mathcal{F}}^{\circ} \to \mathscr{G}_{x}^{\circ}$ is an isomorphism. In particular, for any facet F of $\mathcal{B}(H/K)$ that meets $\mathcal{F}, \mathscr{G}_{\mathcal{F}}^{\circ} = \mathscr{G}_{F}^{\circ}$.

Proposition 3.15. Let \mathfrak{F} be a facet of \mathfrak{B} . Then the κ -unipotent radical $\mathscr{R}_{u,\kappa}(\overline{\mathscr{G}}_{\mathfrak{F}}^{\circ})$ of $\overline{\mathscr{G}}_{\mathfrak{F}}^{\circ}$ equals $(\overline{\mathscr{G}}_{\mathfrak{F}}^{\circ}) \cap \mathscr{R}_{u,\kappa}(\overline{\mathscr{H}}_{\mathfrak{F}}^{\circ}))^{\circ}$.

Let \mathcal{F} and \mathcal{F}' be two facets of \mathcal{B} , with $\mathcal{F}' \prec \mathcal{F}$. Then:

- (i) The kernel of the induced homomorphism $\overline{\rho}_{\mathfrak{F}',\mathfrak{F}}^G: \overline{\mathscr{G}}_{\mathfrak{F}}^{\circ} \to \overline{\mathscr{G}}_{\mathfrak{F}'}^{\circ}$ between the special fibers is a smooth unipotent κ -subgroup of $\overline{\mathscr{G}}_{\mathfrak{F}}^{\circ}$ and the image $\mathfrak{p}(\mathfrak{F}'/\mathfrak{F})$ is a pseudoparabolic κ -subgroup of $\overline{\mathscr{G}}_{\mathfrak{F}'}^{\circ}$.
- (ii) If F and F' are facets of $\mathfrak{B}(H/K)$, $F' \prec F$, that meet \mathfrak{F} and \mathfrak{F}' respectively, then $\mathfrak{p}(\mathfrak{F}'/\mathfrak{F}) = (\overline{\mathscr{Q}}^{\Theta})^{\circ}$, where $\overline{\mathscr{Q}}$ is the image of $\overline{\rho}_{F',F} : \overline{\mathscr{H}}_F^{\circ} \to \overline{\mathscr{H}}_{F'}^{\circ}$.
- (iii) The inverse image of the subgroup $\mathfrak{p}(\mathfrak{F}'/\mathfrak{F})(\kappa)$ of $\overline{\mathscr{G}}_{\mathfrak{F}'}^{\circ}(\kappa)$, under the natural surjective homomorphism $\mathscr{G}_{\mathfrak{F}'}^{\circ}(\mathfrak{O}) \to \overline{\mathscr{G}}_{\mathfrak{F}'}^{\circ}(\kappa)$, is $\rho_{\mathfrak{F}',\mathfrak{F}}^{G}(\mathscr{G}_{\mathfrak{F}}^{\circ}(\mathfrak{O}))$ ($\subset \mathscr{G}_{\mathfrak{F}'}^{\circ}(\mathfrak{O})$).

Given a pseudo-parabolic κ -subgroup $\overline{\mathscr{P}}$ of $\overline{\mathscr{G}}_{\mathfrak{T}'}^{\circ}$, there is a facet \mathfrak{F} of \mathfrak{B} with $\mathfrak{F}' \prec \mathfrak{F}$ such that the image of the homomorphism $\overline{\rho}_{\mathfrak{T}',\mathfrak{T}}^{\circ}: \overline{\mathscr{G}}_{\mathfrak{T}}^{\circ} \to \overline{\mathscr{G}}_{\mathfrak{T}'}^{\circ}$ equals $\overline{\mathscr{P}}$.

Proof. The first assertion of the proposition follows immediately from Lemma 3.10(i).

To prove (i), we fix $x \in \mathcal{F}'$ and let F' be the facet of $\mathcal{B}(H/K)$ containing x. As the closure of \mathcal{F} contains x, there is a facet F of $\mathcal{B}(H/K)$ that meets \mathcal{F} and

contains x in its closure. Then $F'\subset\overline{F}$, i.e., $F'\prec F$, and F and F' meet $\mathcal F$ and $\mathcal F'$ respectively. Hence, $\mathscr G_{\mathcal F}^{\circ}=\mathscr G_F^{\circ}=(\mathscr H_F^{\Theta})^{\circ}$ and $\mathscr G_{\mathcal F'}^{\circ}=\mathscr G_{F'}^{\circ}=(\mathscr H_{F'}^{\Theta})^{\circ}$ (3.14). Now we will prove assertions (i) and (ii) together. The kernel $\mathscr K$ of the homomorphism $\overline{\rho}_{F',F}:\overline{\mathscr H}_F^{\circ}\to\overline{\mathscr H}_{F'}^{\circ}$ is a smooth unipotent κ -subgroup, and the image $\overline{\mathscr Q}$ is a pseudoparabolic κ -subgroup of $\overline{\mathscr H}_{F'}^{\circ}$ [P2,1.10 (1), (2)]. The pseudo-parabolic subgroup $\overline{\mathscr Q}$ is clearly Θ -stable as the facets F and F' are Θ -stable. The kernel of $\overline{\rho}_{\mathcal F',\mathcal F}^G$ is $\overline{\mathscr K}\cap\overline{\mathscr G}_{\mathcal F}^{\circ}$, and its image is contained in $(\overline{\mathscr Q}^{\Theta})^{\circ}$. Therefore, the kernel of $\overline{\rho}_{\mathcal F',\mathcal F}^G$ contains $(\overline{\mathscr K}^{\Theta})^{\circ}$ and is contained in $\overline{\mathscr K}^{\Theta}$. As $\overline{\mathscr K}^{\Theta}$ is a smooth subgroup of $\overline{\mathscr K}$, we see that the kernel of $\overline{\rho}_{\mathcal F',\mathcal F}^G$ is smooth.

Since the image of the Lie algebra homomorphism $L(\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}) \to L(\overline{\mathscr{G}}_{\mathcal{F}'}^{\circ})$ induced by $\overline{\rho}_{\mathcal{F}',\mathcal{F}}^G$ is $L(\overline{\mathscr{Q}})^{\Theta}$, the containment $\mathfrak{p}(\mathcal{F}'/\mathcal{F}) = \overline{\rho}_{\mathcal{F}',\mathcal{F}}^G(\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}) \subset (\overline{\mathscr{Q}}^{\Theta})^{\circ}$ is equality. According to Lemma 3.10(ii), $(\overline{\mathscr{Q}}^{\Theta})^{\circ}$ is a pseudo-parabolic κ -subgroup of $\overline{\mathscr{G}}_{\mathcal{F}'}^{\circ}$.

To prove (iii), let F'
leq F be as in the proof of (i) above and $\overline{\mathcal{Q}}$ be the image of $\overline{\rho}_{F',F}: \overline{\mathscr{H}}_F^{\circ} \to \overline{\mathscr{H}}_{F'}^{\circ}$. Then, as we saw above, $\overline{\mathcal{Q}}$ is a Θ -stable pseudo-parabolic κ -subgroup of $\overline{\mathscr{H}}_{F'}^{\circ}$ and $\mathfrak{p}(\mathcal{F}'/\mathcal{F}) = \overline{\mathscr{P}} := (\overline{\mathcal{Q}}^{\Theta})^{\circ}$. The inverse image of the subgroup $\overline{\mathcal{Q}}(\kappa)$ of $\overline{\mathscr{H}}_{F'}^{\circ}(\kappa)$ under the natural surjective homomorphism $\mathscr{H}_{F'}^{\circ}(0) \to \overline{\mathscr{H}}_{F'}^{\circ}(\kappa)$ equals $\rho_{F',F}(\mathscr{H}_F^{\circ}(0))$ ($\subset \mathscr{H}_{F'}^{\circ}(0)$), see [P2, 1.10 (4)]. Let $\mathscr{G}_F = (\mathscr{H}_F^{\circ})^{\Theta}$ and $\mathscr{G}_{F'} = (\mathscr{H}_{F'}^{\circ})^{\Theta}$. We will denote the \mathcal{O} -group scheme homomorphism $\overline{\mathscr{G}}_F \to \mathscr{G}_{F'}$ induced by $\rho_{F',F}$ by $\rho_{F',F}^{\Theta}$; the corresponding homomorphism $\overline{\mathscr{G}}_F \to \overline{\mathscr{G}}_{F'}$ between the special fibers of \mathscr{G}_F and $\mathscr{G}_{F'}^{\circ}$ will be denoted by $\overline{\rho}_{F',F}^{\Theta}$. The neutral components of \mathscr{G}_F and $\mathscr{G}_{F'}^{\circ}$ are $\mathscr{G}_{\mathcal{G}}^{\circ}$ and $\mathscr{G}_{\mathcal{G}}^{\circ}$, respectively (3.14). Let $\mathscr{G}_F^{\circ}(\supset \mathscr{G}_{\mathcal{F}}^{\circ})$ be the inverse image of $\mathscr{G}_{\mathcal{G}}^{\circ}$ in \mathscr{G}_F under $\rho_{F',F}^{\Theta}$. Since the homomorphism $\rho_{F',F}$ is the identity on the generic fiber H, we infer that $h \in \mathscr{H}_F^{\circ}(O)$ is fixed under Θ if and only if so is $\rho_{F',F}(h)$, and as the generic fiber of both $\mathscr{G}_{\mathcal{F}}^{\circ}$ and $\mathscr{G}_{\mathcal{F}}^{\circ}$ is G, the generic fiber of \mathscr{G}_F° is also G. It is easily seen now that the inverse image of the subgroup $\mathfrak{p}(\mathcal{F}'/\mathcal{F})(\kappa)$ of $\overline{\mathscr{G}}_{\mathcal{F}'}^{\circ}(\kappa)$, under the natural surjective homomorphism $\mathscr{G}_{\mathcal{F}'}^{\circ}(0) \to \overline{\mathscr{G}}_{\mathcal{F}'}^{\circ}(\kappa)$, is $\rho_{F',F}^{\Theta}(\mathscr{G}_F^{\circ}(0))$. We will presently show that the last group equals $\rho_{\mathcal{F}',\mathcal{F}}^{G}(\mathscr{G})$, this will prove (iii).

 \mathscr{G}_F^{\natural} is the union of its generic fiber G and its special fiber $\overline{\mathscr{G}}_F^{\natural}$; and the identity component of $\overline{\mathscr{G}}_{\mathcal{F}}^{\natural}$ is clearly $\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}$. We have shown above that the image $\overline{\mathscr{P}}$ of $\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}$ under the homomorphism $\overline{\rho}_{\mathcal{F}',\mathcal{F}}^{G}$ is a pseudo-parabolic κ -subgroup of $\overline{\mathscr{G}}_{\mathcal{F}'}^{\circ}$ and the kernel of this homomorphism is smooth. Hence, as κ is separably closed, $\overline{\rho}_{\mathcal{F}',\mathcal{F}}^{G}(\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}(\kappa)) = \overline{\mathscr{P}}(\kappa)$. So, according to [CGP, Thm. C.2.23], there is a pseudo-parabolic κ -subgroup $\overline{\mathscr{P}}'$ of $\overline{\mathscr{G}}_{\mathcal{F}'}^{\circ}$, that contains $\overline{\mathscr{P}}$, such that $\overline{\rho}_{F',F}^{\Theta}(\overline{\mathscr{G}}_F^{\natural}(\kappa)) = \overline{\mathscr{P}}'(\kappa)$. But since κ is infinite, $\overline{\mathscr{P}}'(\kappa)/\overline{\mathscr{P}}(\kappa)$ is infinite unless $\overline{\mathscr{P}}' = \overline{\mathscr{P}}$. So we conclude that $\overline{\mathscr{P}}' = \overline{\mathscr{P}}$, and then $\overline{\rho}_{F',F}^{\Theta}(\overline{\mathscr{G}}_F^{\natural}(\kappa)) = \overline{\mathscr{P}}(\kappa) = \overline{\mathscr{P}}(\kappa) = \overline{\mathscr{P}}(\kappa)$. Now using this, and the fact that the natural homomorphism $\mathscr{G}_{\mathfrak{F}}^{\circ}(\mathfrak{O}) \to \overline{\mathscr{F}}_{\mathfrak{F}}^{\circ}(\kappa)$ is surjective (since \mathfrak{O} is henselian and

 $\mathscr{G}_{\mathcal{F}}^{\circ}$ is smooth, [EGA IV₄, 18.5.17]) and the kernel of this homomorphism equals the kernel of the natural surjective homomorphism $\mathscr{G}_F^{\natural}(0) \to \overline{\mathscr{G}}_F^{\natural}(\kappa)$, we see that $\rho_{\mathcal{F},\mathcal{F}}^{G}(\mathscr{G}_{\mathcal{F}}^{\circ}(0)) = \rho_{F',F}^{\Theta}(\mathscr{G}_{F}^{\natural}(0))$. This proves (iii).

Finally, to prove the last assertion of the proposition, we fix a facet F' of $\mathcal{B}(H/K)$ that meets \mathcal{F}' . Then $\mathscr{G}^{\circ}_{\mathcal{F}'} = \mathscr{G}^{\circ}_{F'}$ (3.14). Using Lemma 3.10(iii) for κ in place of k and $\overline{\mathscr{H}}^{\circ}_{F'}$ in place of \mathcal{H} , we find a Θ -stable pseudo-parabolic κ -subgroup $\overline{\mathscr{Q}}$ of $\overline{\mathscr{H}}^{\circ}_{F'}$ such that $\overline{\mathscr{P}} = (\overline{\mathscr{Q}}^{\ominus})^{\circ}$. Let $(F' \prec) F$ be the facet of $\mathcal{B}(H/K)$ corresponding to the pseudo-parabolic κ -subgroup $\overline{\mathscr{Q}}$ of $\overline{\mathscr{H}}^{\circ}_{F'}$. Then F is stable under Θ -action. As $F' \prec F$, there is a natural \mathcal{O} -group scheme homomorphism $\rho_{F',F} : \mathscr{H}^{\circ}_{F} \to \mathscr{H}^{\circ}_{F'}$ that restricts to a \mathcal{O} -group scheme homomorphism $\rho_{F',F}^G : \mathscr{G}^{\circ}_{F} \to \mathscr{G}^{\circ}_{F'}$. Let $\overline{\mathscr{Q}}$ be the image of the former. Then according to (ii), the image of the latter is $(\overline{\mathscr{Q}}^{\Theta})^{\circ} = \overline{\mathscr{P}}$. Let $P = \mathscr{G}^{\circ}_{F}(\mathcal{O}) \subset \mathscr{G}^{\circ}_{F'}(\mathcal{O}) =: Q$, and $\mathcal{F} = \mathcal{F}_{P}$. Then $P \subset Q$ are parahoric subgroups of G(K), $\mathcal{F}' = \mathcal{F}_{Q} \subset \overline{\mathcal{F}}_{Q} \subset \overline{\mathcal{F}}_{P} = \overline{\mathcal{F}}$, thus $\mathcal{F}' \prec \mathcal{F}$. As F and F' meet \mathcal{F} and \mathcal{F}' respectively, $\mathscr{G}^{\circ}_{\mathcal{F}} = \mathscr{G}^{\circ}_{F}$ and $\mathscr{G}^{\circ}_{\mathcal{F}'} = \mathscr{G}^{\circ}_{F'}(3.14)$, and hence the image of the homomorphism $\overline{\rho}^{G}_{\mathcal{F}',\mathcal{F}} : \overline{\mathscr{G}^{\circ}_{\mathcal{F}}} \to \overline{\mathscr{G}^{\circ}_{\mathcal{F}'}}$ equals $\overline{\mathscr{P}}$.

Proposition 3.15 and [CGP, Propositions 2.2.10 and 3.5.1] imply the following. (Recall that the residue field κ of K has been assumed to be separably closed!)

Corollary 3.16. (i) A facet \mathcal{F} of \mathcal{B} is a chamber (=maximal facet) if and only if $\overline{\mathscr{G}}_{\mathfrak{F}}^{\circ}$ does not contain a proper pseudo-parabolic κ -subgroup. Equivalently, \mathcal{F} is a chamber if and only if the pseudo-reductive quotient $\overline{G}_{\mathfrak{F}}^{\operatorname{pred}}$ is commutative (this is the case if and only if $\overline{G}_{\mathfrak{F}}^{\operatorname{pred}}$ contains a unique maximal κ -torus, or, equivalently, every torus of this pseudo-reductive group is central).

(ii) The codimension of a facet \mathcal{F} of \mathcal{B} equals the κ -rank of the derived subgroup of the pseudo-split pseudo-reductive quotient $\overline{G}_{\mathcal{F}}^{\text{pred}} := \overline{\mathscr{G}}_{\mathcal{F}}^{\circ}/\mathscr{R}_{u,\kappa}(\overline{\mathscr{G}}_{\mathcal{F}}^{\circ})$ of $\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}$.

We will now establish the following analogues of Propositions 3.5–3.7 of [P2].

Proposition 3.17. Let A be an apartment of B, and C, C' two chambers in A. Then there is a gallery joining C and C' in A, i.e., there is a finite sequence

$$\mathfrak{C} = \mathfrak{C}_0, \, \mathfrak{C}_1, \, \ldots, \, \mathfrak{C}_m = \mathfrak{C}'$$

of chambers in A such that for i with $1 \leq i \leq m$, C_{i-1} and C_i share a face of codimension 1.

Proof. Let \mathcal{A}_2 be the codimension 2-skelton of \mathcal{A} , i.e., the union of all facets in \mathcal{A} of codimension at least 2. Then \mathcal{A}_2 is a closed subset of \mathcal{A} of codimension 2, so $\mathcal{A} - \mathcal{A}_2$ is a connected open subset of the affine space \mathcal{A} . Hence $\mathcal{A} - \mathcal{A}_2$ is arcwise connected. This implies that given points $x \in \mathcal{C}$ and $x' \in \mathcal{C}'$, there is a piecewise linear curve in $\mathcal{A} - \mathcal{A}_2$ joining x and x'. Now the chambers in \mathcal{A} that meet this curve make a gallery joining \mathcal{C} to \mathcal{C}' .

As the central torus of G is K-anisotropic, the dimension of any apartment, or any chamber, in \mathcal{B} is equal to the K-rank of G. A panel in \mathcal{B} is by definition a facet of codimension 1.

Proposition 3.18. B is thick, that is any panel is a face of at least three chambers, and every apartment of B is thin, that is any panel lying in an apartment is a face of exactly two chambers of the apartment.

Proof. Let \mathcal{F} be a facet of \mathcal{B} that is not a chamber, and \mathcal{C} be a chamber of which \mathcal{F} is a face. Then there is an \mathcal{O} -group scheme homomorphism $\rho_{\mathcal{F},\mathcal{C}}^G: \mathscr{G}_{\mathcal{C}}^{\circ} \to \mathscr{G}_{\mathcal{F}}^{\circ}$ (3.2). The image of $\overline{\mathscr{G}}_{\mathcal{C}}^{\circ}$ in $\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}$, under the induced homomorphism of special fibers, is a minimal pseudo-parabolic κ -subgroup of $\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}$, and conversely, any minimal pseudo-parabolic κ -subgroup of the latter determines a chamber of \mathcal{B} with \mathcal{F} as a face (Corollary 3.16). Now as κ is infinite, $\overline{\mathscr{G}}_{\mathcal{F}}^{\circ}$ contains infinitely many minimal pseudo-parabolic κ -subgroups. We conclude that \mathcal{F} is a face of infinitely many chambers.

The second assertion follows at once from the following well-known result in algebraic topology: In any simplicial complex whose geometric realization is a topological manifold without boundary (such as an apartment \mathcal{A} of \mathcal{B}), any simplex of codimension 1 is a face of exactly two chambers (i.e., maximal dimensional simplices).

Proposition 3.19. Let \mathcal{A} be an apartment of \mathcal{B} and S be the maximal K-split torus of G corresponding to this apartment. (Then $\mathcal{A} = \mathcal{B}(Z_H(S)/K)^{\Theta}$.) The group $N_G(S)(K)$ acts transitively on the set of chambers of \mathcal{A} .

Proof. According to Proposition 3.17, given any two chambers in \mathcal{A} , there exists a minimal gallery in \mathcal{A} joining these two chambers. So to prove the proposition by induction on the length of a minimal gallery joining two chambers, it suffices to prove that given two different chambers \mathcal{C} and \mathcal{C}' in \mathcal{A} which share a panel \mathcal{F} , there is an element $n \in N_G(S)(K)$ such that $n \cdot \mathcal{C} = \mathcal{C}'$. Let $\mathcal{G} := \mathcal{G}_{\mathcal{F}}^{\circ}$ be the Bruhat-Tits smooth affine \mathcal{O} -group scheme associated with the panel \mathcal{F} and $\mathcal{F} \subset \mathcal{G}$ be the closed \mathcal{O} -torus with generic fiber S. Let $\overline{\mathcal{G}}$ be the special fiber of \mathcal{G} and $\overline{\mathcal{F}}$ the special fiber of \mathcal{F} . Then $\overline{\mathcal{F}}$ is a maximal torus of $\overline{\mathcal{G}}$. The chambers \mathcal{C} and \mathcal{C}' correspond to minimal pseudo-parabolic subgroups $\overline{\mathcal{P}}$ and $\overline{\mathcal{P}}'$ of $\overline{\mathcal{G}}$ (Corollary 3.16). Both of these minimal pseudo-parabolic κ -subgroups contain $\overline{\mathcal{F}}$ since the chambers \mathcal{C} and \mathcal{C}' lie in \mathcal{A} . But then by Theorems C.2.5 and C.2.3 of [CGP], there is an element $\overline{n} \in \overline{\mathcal{G}}(\kappa)$ that normalizes $\overline{\mathcal{F}}$ and conjugates $\overline{\mathcal{P}}$ onto $\overline{\mathcal{P}}'$. Now from Proposition 2.1(iii) of [P2] we conclude that there is an element $n \in N_{\mathcal{G}}(\mathcal{F})(\mathcal{O})$ lying over \overline{n} . It is clear that n normalizes S and hence it lies in $N_G(S)(K)$; it fixes \mathcal{F} pointwise and $n \cdot \mathcal{C} = \mathcal{C}'$.

Now in view of Propositions 2.14, 3.4, 3.17 and 3.18, Theorem 3.11 of [Ro] (cf. also [P2, 1.8]) implies that \mathcal{B} is an affine building if for any maximal K-split torus S of G, $\mathcal{B}(Z_H(S)/K)^{\Theta}$ is taken to be the corresponding apartment, and \mathcal{B} is given the polysimplicial structure described in 3.7. Thus we obtain the following:

Theorem 3.20. $\mathbb{B} = \mathbb{B}(H/K)^{\Theta}$ is an affine building. Its apartments are the affine spaces $\mathbb{B}(Z_H(S)/K)^{\Theta}$ under $V(S) := \mathbb{R} \otimes_{\mathbb{Z}} X_*(S)$ for maximal K-split tori S of G. Its facets are as in 3.7. The group G(K) acts on \mathbb{B} by polysimplicial isometries.

From Propositions 2.15 and 3.19 we obtain the following.

Proposition 3.21. G(K) acts transitively on the set of ordered pairs (A, \mathbb{C}) consisting of an apartment A of B and a chamber \mathbb{C} of A.

Remark 3.22. (i) As in [P2, 3.16], using the preceding proposition we can obtain Tits systems in suitable subgroups of G(K).

(ii) As in [P2, $\S 5$], we can obtain filtration of root groups and a valuation of root datum for G/K.

§4. Tamely-ramified descent

We begin by proving the following proposition:

Proposition 4.1. Let k be a field of characteristic $p \ge 0$. Let \mathfrak{H} be a noncommutative pseudo-reductive k-group, θ a k-automorphism of \mathfrak{H} of finite order not divisible by p, and $\mathfrak{G} := (\mathfrak{H}^{\langle \theta \rangle})^{\circ}$. Then

- (i) No maximal torus of $\mathfrak G$ is central in $\mathfrak H$.
- (ii) The centralizer in \mathcal{H} of any maximal torus of \mathcal{G} is commutative.
- (iii) Given a maximal k-torus S of G, there is a θ -stable maximal k-torus of H containing S.
- (iv) If k is separably closed, then $\mathfrak H$ contains a θ -stable proper pseudo-parabolic k-subgroup.

Proof. We fix an algebraic closure \overline{k} of k. Let \mathcal{H}' be the maximal reductive quotient of $\mathcal{H}_{\overline{L}}$. As \mathcal{H} is noncommutative, \mathcal{H}' is also noncommutative (see [CGP, Prop. 1.2.3]). The automorphism θ induces a \overline{k} -automorphism of \mathcal{H}' which we will denote again by θ . According to a theorem of Steinberg [St, Thm. 7.5], $\mathcal{H}_{\overline{k}}$ contains a θ -stable Borel subgroup \mathcal{B} , and this Borel subgroup contains a θ -stable maximal torus \mathcal{T} . The natural quotient map $\pi: \mathcal{H}_{\overline{k}} \to \mathcal{H}'$ carries \mathcal{T} isomorphically onto a maximal torus of \mathcal{H}' . We endow the root system of \mathcal{H}' with respect to the maximal torus $\mathfrak{T}' :=$ $\pi(\mathfrak{I}) \cap \mathscr{D}(\mathcal{H}')$ of the derived subgroup $\mathscr{D}(\mathcal{H}')$ of \mathcal{H}' with the ordering determined by the Borel subgroup $\pi(\mathcal{B})$. Let a be the sum of all positive roots. Then as $\pi(\mathcal{B})$ is θ stable, a is fixed under θ acting on the character group $X(\mathfrak{T}')$ of \mathfrak{T}' . Therefore, $X(\mathfrak{T}')$ admits a nontrivial torsion-free quotient on which θ acts trivially. This implies that T contains a nontrivial subtorus \mathcal{T} that is fixed pointwise under θ and is mapped by π into \mathfrak{T}' ($\subset \mathcal{D}(\mathcal{H}')$). The subtorus \mathscr{T} is therefore contained in $\mathfrak{T}_{\overline{L}}$. Since the center of the semi-simple group $\mathscr{D}(\mathcal{H}')$ does not contain a nontrivial smooth connected subgroup, we infer that \mathscr{T} is not central in $\mathscr{H}_{\overline{k}}$. Thus the subgroup $\mathscr{G}_{\overline{k}}$ contains a noncentral torus of $\mathcal{H}_{\overline{k}}$. Now by conjugacy of maximal tori in $\mathcal{G}_{\overline{k}}$, we see that no maximal torus of this group can be central in $\mathcal{H}_{\overline{k}}$. This proves (i).

To prove (ii), let S be a maximal torus of S. Then the centralizer $Z_{\mathcal{H}}(S)$ of S in \mathcal{H} is a θ -stable pseudo-reductive subgroup of \mathcal{H} , and $(Z_{\mathcal{H}}(S)^{\langle \theta \rangle})^{\circ} = Z_{\mathcal{G}}(S)$. As S is a maximal torus of $Z_{\mathcal{G}}(S)$ that is central in $Z_{\mathcal{H}}(S)$, if $Z_{\mathcal{H}}(S)$ were noncommutative, we could apply (i) to this subgroup in place of \mathcal{H} to get a contradiction.

To prove (iii), we consider the centralizer $Z_{\mathcal{H}}(S)$ of S in \mathcal{H} . This centralizer is θ -stable and commutative according to (ii). The unique maximal k-torus of it contains S and is a θ -stable maximal torus of \mathcal{H} .

To prove (iv), we assume now that k is separably closed and let S be a maximal torus of S. Then S is k-split, and in view of (i), there is a 1-parameter subgroup $\lambda : GL_1 \to S$ whose image is not central in \mathcal{H} . Then $P_{\mathcal{H}}(\lambda)$ is a θ -stable proper pseudo-parabolic k-subgroup of \mathcal{H} .

In the following proposition we will use the notation introduced in §§1, 2. As in 2.4, we will assume that H is semi-simple and the central torus of G is K-anisotropic. We will further assume that H is K-isotropic, Θ is a finite cyclic group of automorphisms of H, and p does not divide the order of Θ .

Proposition 4.2. The Bruhat-Tits building $\mathfrak{B}(H/K)$ of H(K) contains a Θ -stable chamber.

Proof. Let F be a Θ-stable facet of $\mathcal{B}(H/K)$ that is maximal among the Θ-stable facets. Let $\mathcal{H} := \mathcal{H}_F^{\circ}$ be the Bruhat-Tits smooth affine \mathcal{O} -group scheme with generic fiber H, and connected special fiber $\overline{\mathcal{H}}$, corresponding to F. Let $\mathcal{H} := \overline{\mathcal{H}}/\mathcal{R}_{u,\kappa}(\overline{\mathcal{H}})$ be the maximal pseudo-reductive quotient of $\overline{\mathcal{H}}$. In case \mathcal{H} is commutative, $\overline{\mathcal{H}}$ does not contain a proper pseudo-parabolic κ -subgroup and so F is a chamber of $\mathcal{B}(H/K)$. We assume, if possible, that \mathcal{H} is not commutative. As F is stable under the action of Θ , there is a natural action of this finite cyclic group on $\overline{\mathcal{H}}$ by \mathcal{O} -group scheme automorphisms (2.4). This action induces an action of Θ on $\overline{\mathcal{H}}$, and so also on its pseudo-reductive quotient \mathcal{H} . Now taking θ to be a generator of Θ , and using the preceding proposition for \mathcal{H}/κ , we conclude that \mathcal{H} contains a Θ -stable proper pseudo-parabolic κ -subgroup of $\overline{\mathcal{H}}$ is a Θ -stable proper pseudo-parabolic κ -subgroup of $\overline{\mathcal{H}}$. The facet F' corresponding to $\overline{\mathcal{P}}$ is Θ -stable and $F \prec F'$. This contradicts the maximality of F. Hence, \mathcal{H} is commutative and F is a chamber.

To prove the next theorem (Theorem 4.4), we will use the following:

Proposition 4.3. Let \mathfrak{R} be a field complete with respect to a discrete valuation and with separably closed residue field. Let \mathfrak{G} be a connected absolutely simple \mathfrak{R} -group of inner type A that splits over a finite tamely-ramified field extension \mathfrak{L} of \mathfrak{R} . Then \mathfrak{G} is \mathfrak{R} -split.

Proof. We may (and do) assume that \mathfrak{G} is simply connected. Then \mathfrak{G} is \mathfrak{K} -isomorphic to $\mathrm{SL}_{n,\mathfrak{D}}$, where \mathfrak{D} is a finite dimensional division algebra with center \mathfrak{K} that splits over the finite tamely-ramified field extension \mathfrak{L} of \mathfrak{K} . By Propositions 4 and 12 of [S, Ch. II] the degree of \mathfrak{D} is a power of p, where p is the characteristic of the residue

field of \mathfrak{K} . But a noncommutative division algebra of degree a power of p cannot split over a field extension of degree prime to p. So, $\mathfrak{D} = \mathfrak{K}$, hence $\mathfrak{G} \simeq \mathrm{SL}_n$ is \mathfrak{K} -split.

Theorem 4.4. A semi-simple K-group G that is quasi-split over a finite tamely-ramified field extension of K is already quasi-split over K.

This theorem has been proved by Philippe Gille in [Gi] by an entirely different method.

Proof. We assume that all field extensions appearing in this proof are contained in a fixed separable closure of K. To prove the theorem, we may (and do) replace G by its simply-connected central cover and assume that G is simply connected. Let S be a maximal K-split torus of G. Then G is quasi-split over a (separable) extension E of E if and only if the derived subgroup E of E if and only if E is quasi-split over E if and only if E is trivial. Therefore, to prove the theorem we need to show that any semi-simple simply connected E is quasi-split over a finite tamely-ramified field extension of E is necessarily trivial. Let E be any such group.

There exists a finite indexing set I, and for each $i \in I$, a finite separable field extension K_i of K and an absolutely almost simple simply connected K_i -anisotropic K_i -group G_i such that $G = \prod_{i \in I} R_{K_i/K}(G_i)$. Now G is quasi-split over a finite separable field extension L of K if and only if for each i, $R_{K_i/K}(G_i)$ is quasi-split over L. But $R_{K_i/K}(G_i)$ is quasi-split over L if and only if G_i is quasi-split over the compositum $L_i := K_i L$. For $i \in I$, the finite extension K_i of K is complete and its residue field is separably closed, and if L is a finite tamely-ramified field extension of K, then L_i is a finite tamely-ramified field extension of K_i . So to prove the theorem, we may (and do) replace K by K_i and G by G_i to assume that G is an absolutely almost simple simply connected K-anisotropic K-group that is quasi-split over a finite tamely-ramified field extension of K. We will show that such a group G is trivial.

Let L be a finite tamely-ramified field extension of K of minimal degree over which G is quasi-split. Since the residue field κ of K is separably closed, L is a cyclic extension of K. Let Θ be the Galois group of L/K. Then Θ is a finite cyclic group of order not divisible by $p = (-char(\kappa))$.

As G_L is quasi-split, Bruhat-Tits theory is available for G over L [BrT2, §4]. The Galois group Θ acts on G(L) by continuous automorphisms and so it acts on the Bruhat-Tits building $\mathcal{B}(G/L)$ of G(L) by polysimplicial isometries. Let $H = \mathbb{R}_{L/K}(G_L)$. Then H is quasi-split over K and hence Bruhat-Tits theory is also available for H over K. Let $\mathcal{B}(H/K)$ be the Bruhat-Tits building of H(K) (= G(L)). Elements of Θ act by K-automorphisms on H and so on $\mathcal{B}(H/K)$ by polysimplicial isometries; moreover, $G = H^{\Theta}$. There is a natural Θ -equivariant identification of the building $\mathcal{B}(H/K)$ with the building $\mathcal{B}(G/L)$. (Note that K-rank H = L-rank G_L , and there is a natural bijective correspondence between the set of maximal K-split

tori of H and the set of maximal L-split tori of G_L , see [CGP, Prop. A.5.15(2)]. This correspondence will be used below.) The results of §3 imply that Bruhat-Tits theory is available for G over K and $\mathcal{B} := \mathcal{B}(H/K)^{\Theta} (= \mathcal{B}(G/L)^{\Theta})$ is the Bruhat-Tits building of G(K).

Since G is K-anisotropic, the building of G(K) consists of a single point, hence Θ fixes a unique point of $\mathcal{B}(G/L)$. Let C be the facet of $\mathcal{B}(G/L)$ that contains this point. Then C is stable under Θ . According to Proposition 4.2, C is a chamber. Let $\mathscr{H}:=\mathscr{H}_C^{\circ}$ be the Bruhat-Tits smooth affine \mathbb{O} -group scheme associated to C with generic fiber H and connected special fiber $\overline{\mathscr{H}}$. As C is a chamber, the maximal pseudo-reductive quotient $\overline{\mathscr{H}}^{\operatorname{pred}}$ of $\overline{\mathscr{H}}$ is commutative [P2, 1.10]. Now using Proposition 2.6 for $\Omega=C=F$ we obtain a Θ -stable maximal K-split torus T of H such that C lies in the apartment A(T) corresponding to T (and the special fiber of the schematic closure of T in \mathscr{H} maps onto the maximal torus of $\overline{\mathscr{H}}^{\operatorname{pred}}$). Let T' be the image of T_L under the natural surjective homomorphism T is a T-torus of T and according to T-torus of T

We identify H(K) with G(L). Then for $x \in H(K)(\subset H(L))$ and $\theta \in \Theta$, we have $q(\theta(x)) = \theta(x)$. Since T(K) is Θ -stable, for $t \in T(K)$ and $\theta \in \Theta$, $\theta(t)$ lies in T'(L). Now as T(K) is Zariski-dense in T, its image in T'(L) is Zariski-dense in T'. Since this image is stable under the action of $\Theta = \operatorname{Gal}(L/K)$ on G(L), from the Galois criterion [Bo, Ch. AG, Thm. 14.4(3)] we infer that T' descends to a K-torus of G, i.e., there is a K-torus T of G such that $T' = T_L$. In the natural identification of $\mathcal{B}(H/K)$ with $\mathcal{B}(G/L)$, the apartment A(T) of the former is Θ -equivariantly identified with the apartment A(T') of the latter. We will view the chamber C as a Θ -stable chamber in A(T').

Let Δ be the basis of the affine root system of the absolutely almost simple, simply connected quasi-split L-group G_L with respect to $T' (= \mathfrak{I}_L)$, determined by the Θ -stable chamber C [BrT2, §4]. Then Δ is stable under the action of Θ on the affine root system of G_L with respect to T'. There is a natural Θ -equivariant bijective correspondence between the set of vertices of C and Δ . Since \mathcal{B} , and hence C^{Θ} , consists of a single point, Θ acts transitively on the set of vertices of C so it acts transitively on Δ . Now from the classification of irreducible affine root systems [BrT1, §1.4.6], we see that G_L is a split group of type A_n for some n. Proposition 4.3 implies that G cannot be of inner type A_n over K. On the other hand, if G is of outer type A_n , then over a quadratic Galois extension $K' (\subset L)$ of K it is of inner type. Now, according to Proposition 4.3, G splits over K'. We conclude that L = K' and hence $\#\Theta = 2$. As Θ acts transitively on Δ and $\#\Delta = n + 1$, we infer that n + 1 = 2, i.e., n = 1, and then G is of inner type, a contradiction.

4.5. Now let k be a field endowed with a nonarchimedean discrete valuation. We assume that the valuation ring of k is Henselian. Let K be the maximal unramified extension of k, and L be a finite tamely-ramified field extension of K with Galois group $\Theta := \operatorname{Gal}(L/K)$. Let G be a connected reductive k-group that is quasi-split over K and $H = \operatorname{R}_{L/K}(G_L)$. Then $G = H^{\Theta}$, and by Theorem 3.20, the Bruhat-Tits building $\mathfrak{B}(G/K)$ of G(K) can be identified with the subspace of points in the Bruhat-Tits building of G(L) (= H(K)) that are fixed under Θ (with polysimplicial structure on $\mathfrak{B}(G/K)$ as in 3.7). Now by "unramified descent" [P2], Bruhat-Tits theory is available for G over k and the Bruhat-Tits building of G(k) is $\mathfrak{B}(G/K)^{\operatorname{Gal}(K/k)}$.

References

- [Bo] A. Borel, *Linear algebraic groups* (second edition). Springer-Verlag, New York (1991).
- [BLR] S. Bosch, W. Lütkebohmert and M. Raynaud, *Néron models*. Springer-Verlag, Heidelberg (1990).
- [BrT1] F. Bruhat and J. Tits, *Groupes réductifs sur un corps local*. Publ. Math. IHES **41**(1972).
- [BrT2] F. Bruhat and J. Tits, *Groupes réductifs sur un corps local*, II. Publ. Math. IHES **60**(1984).
- [CGP] B. Conrad, O. Gabber and G. Prasad, *Pseudo-reductive groups* (second edition). Cambridge U. Press, New York (2015).
- [E] B. Edixhoven, Néron models and tame ramification. Comp. Math. 81(1992), 291-306.
- [GGM] O. Gabber, P. Gille and L. Moret-Bailly, Fibrés principaux sur les corps valués henséliens. Algebr. Geom. 1(2014), 573-612.
- [Gi] P. Gille, Semi-simple groups that are quasi-split over a tamely-ramified extension, Rendiconti Sem. Mat. Padova, to appear.
- [EGA IV₃] A. Grothendieck, Eléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, Publ. Math. IHES **28**(1966), 5-255.
- [EGA IV₄] A. Grothendieck, Eléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, Publ. Math. IHES **32**(1967), 5-361.
- [P1] G. Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group. Bull. Soc. Math. France **129**(2001), 169-174.
- [P2] G. Prasad, A new approach to unramified descent in Bruhat-Tits theory. American J. Math. (to appear).
- [PY1] G. Prasad and J.-K. Yu, On finite group actions on reductive groups and buildings. Invent. Math. 147(2002), 545–560.
- [PY2] G. Prasad and J.-K. Yu, On quasi-reductive group schemes. J. Alg. Geom. 15 (2006), 507-549.

[Ri] R. Richardson, On orbits of algebraic groups and Lie groups, Bull. Australian Math. Soc. 25(1982), 1-28.

[Ro] M. Ronan, Lectures on buildings. University of Chicago Press, Chicago (2009).

[Rou] G. Rousseau, *Immeubles des groupes réductifs sur les corps locaux*, University of Paris, Orsay, thesis (1977).

(Available at http://www.iecl.univ-lorraine.fr/~Guy.Rousseau/Textes/)

[S] J-P. Serre, Galois cohomology. Springer-Verlag, New York (1997).

[St] R. Steinberg, *Endomorphisms of linear algebraic groups*, Memoirs of the Amer. Math. Soc. **80**(1968).

[T] J. Tits, Reductive groups over local fields. Proc. Symp. Pure Math. #33, Part I, 29–69, American Math. Soc. (1979).

University of Michigan Ann Arbor, MI 48109. e-mail: gprasad@umich.edu