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Abstract. Let K be a discretely valued field with Henselian valuation ring and
separably closed (but not necessarily perfect) residue field of characteristic p, H
a connected reductive K-group, and Θ a finite group of automorphisms of H. We
assume that p does not divide the order of Θ and Bruhat-Tits theory is available
for H over K with B(H/K) the Bruhat-Tits building of H(K). We will show
that then Bruhat-Tits theory is also available for G := (HΘ)◦ and B(H/K)Θ

is the Bruhat-Tits building of G(K). (In case the residue field of K is perfect,
this result was proved in [PY1] by a different method.) As a consequence of this
result, we obtain that if Bruhat-Tits theory is available for a connected reductive
K-group G over a finite tamely-ramified extension L of K, then it is also available
for G over K and B(G/K) = B(G/L)Gal(L/K). Using this, we prove that if G is
quasi-split over L, then it is already quasi-split over K.

Introduction. This paper is a sequel to our recent paper [P2]. We will assume fa-
miliarity with that paper; we will freely use results, notions and notations introduced
in it.

Let O be a discretely valued Henselian local ring with valuation ω. Let m be the
maximal ideal of O and K the field of fractions of O. We will assume throughout

that the residue field κ of O is separably closed. Let Ô denote the completion of O

with respect to the valuation ω and K̂ the completion of K. For any O-scheme X ,

X (O) and X (Ô) will always be assumed to carry the Hausdorff-topology induced

from the metric-space topology on O and Ô respectively. It is known that if X is

smooth, then X (O) is dense in X (Ô), [GGM, Prop. 3.5.2]. Similarly, for any K-

variety X, X(K) and X(K̂) will be assumed to carry the Hausdorff-topology induced

from the metric-space topology on K and K̂ respectively. In case X is a smooth

K-variety, X(K) is dense in X(K̂), [GGM, Prop. 3.5.2].

Throughout this paper H will denote a connected reductive K-group. In this
introduction, and beginning with §2 everywhere, we will assume that Bruhat-Tits
theory is available for H over K [P2, 1.9, 1.10]. Then Bruhat-Tits theory is also
available for the derived subgroup D(H) of H over K [P2, 1.11]. Thus there is an
affine building called the Bruhat-Tits building of H(K), that is a polysimplicial
complex given with a metric, and H(K) acts on it by polysimplicial isometries.
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2 FINITE GROUP ACTIONS AND TAMELY-RAMIFIED DESCENT

This building is also the Bruhat-Tits building of D(H)(K) and we will denote it
by B(D(H)/K). It is known (cf. [P2, 3.11, 1.11]) that Bruhat-Tits theory is also
available over K for the centralizer of any K-split torus in H and for the derived
subgroup of such centralizers.

Let Z be the maximal K-split torus in the center of H. Let V (Z) = R ⊗Z
HomK(GL1,ZK). Then there is a natural action of H(K) on this Euclidean space
by translations, with D(H)(K) acting trivially. The enlarged Bruhat-Tits building
B(H/K) of H(K) is the direct product V (Z) × B(D(H)/K). The apartments of
this building, as well as that of B(D(H)/K), are in bijective correspondence with
maximal K-split tori of H. Given a maximal K-split torus T of H, the corresponding
apartment of B(H/K) is an affine space under V (T ) := R⊗Z HomK(GL1, T ).

Given a nonempty bounded subset Ω of an apartment of B(D(H)/K), there
is a smooth affine O-group scheme HΩ with generic fiber H, associated with Ω,
such that HΩ(O) is the subgroup H(K)Ω of H(K) consisting of elements that fix
V (Z)× Ω (⊂ B(H/K)) pointwise [P2, 1.9 1.10]. The neutral component H ◦

Ω of HΩ

is an open affine O-subgroup scheme of the latter; it is by definition the union of the
generic fiber H of HΩ and the identity component of its special fiber. The group
scheme H ◦

Ω is called the Bruhat-Tits group scheme associated to Ω. The special

fiber of H ◦
Ω will be denoted by H

◦
Ω.

Let Θ be a finite group of automorphisms of H. We assume that the order of Θ is
not divisible by the characteristic of the residue field κ. Let G = (HΘ)◦. This group
is also reductive, see [Ri, Prop. 10.1.5] or [PY1, Thm. 2.1]. The goal of this paper is
to show that Bruhat-Tits theory is available for G over K, and the enlarged Bruhat-
Tits building of G(K) can be identified with the subspace B(H/K)Θ of B(H/K)
consisting of points fixed under Θ (see §3). These results have been inspired by
the main theorem of [PY1], which implies that if the residue field κ is algebraically
closed (then every reductive K-group is quasi-split [P2, 1.7], so Bruhat-Tits theory
is available for any such group over K), the enlarged Bruhat-Tits building of G(K)
is indeed B(H/K)Θ.

In §4, we will use the above results to obtain “tamely-ramified descent”: (1) We
will show that if a connected reductive K-group G is quasi-split over a finite tamely-
ramified extension L of K, then it is quasi-split over K (Theorem 4.4); this result
has been proved by Philippe Gille in [Gi] by an entirely different method. (2) The
enlarged Bruhat-Tits building B(G/K) of G(K) can be identified with the subspace
of points of the enlarged Bruhat-Tits building of G(L) that are fixed under the action
of the Galois group Gal(L/K). This latter result was proved by Guy Rousseau in
his unpublished thesis [Rou, Prop. 5.1.1]. It is a pleasure to dedicate this paper to
him for his important contributions to Bruhat-Tits theory.

Acknowledgements. I thank Brian Conrad, Bas Edixhoven and Philippe Gille for
their helpful comments. I thank the referee for carefully reading the paper and
for her/his detailed comments and suggestions which helped me to improve the
exposition. I was partially supported by NSF-grant DMS-1401380.
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For a K-split torus S, let X∗(S) = Hom(GL1, S) and V (S) := R⊗Z X∗(S). Then
for a maximal K-split torus T of H, the apartment A(T ) of B(H/K) corresponding
to T is an affine space under V (T ).

1. Passage to completion

We begin by proving the following well-known result.

Proposition 1.1. K-rankH = K̂-rankH.

Proof. Let T be a maximal K-split torus of H and Z be its centralizer in H. Let
Za be the maximal K-anisotropic connected normal subgroup of Z. Then

K̂-rankH = K̂-rankZ = dim(T )+ K̂-rankZa = K-rankH+K̂-rankZa .

So to prove the proposition, it suffices to show that Za is anisotropic over K̂. But

according to Theorem 1.1 of [P2], Za is anisotropic over K̂ if and only if Za(K̂) is
bounded. The same theorem implies that Za(K) is bounded. As Za(K) is dense in

Za(K̂), we see that Za(K̂) is bounded. �

Proposition 1.2. Bruhat-Tits theory for H is available over K if and only if it is

available over K̂. Moreover, if Bruhat-Tits theory for H is available over K, then

the enlarged Bruhat-Tits buildings of H(K) and H(K̂) are equal.

It was shown by Guy Rousseau in his thesis that the enlarged Bruhat-Tits build-

ings of H(K) and H(K̂) coincide [Rou, Prop. 2.3.5]. Moreover, every apartment in

the building of H(K) is also an apartment in the building of H(K̂); however, the
latter may have many more apartments.

Proof. We assume first that Bruhat-Tits theory is available for H over K and let
B(H/K) denote the enlarged Bruhat-Tits building of H(K). We begin by showing

that the action of H(K) on B(H/K) extends to an action of H(K̂) by isometries.

For this purpose, we recall that H(K) is dense in H(K̂) and the isotropy at any point
x ∈ B(H/K) is a bounded open subgroup of H(K). Now let {hi} be a sequence

in H(K) which converges to a point ĥ ∈ H(K̂), then given any open subgroup of
H(K), for all large i and j, h−1

i hj lies in this open subgroup. Thus for any point
x of B(H/K), the sequence hi · x is eventually constant, i.e., there exists a positive

integer n such that hi · x = hn · x for all i > n. We define ĥ · x = hn · x. This gives

a well-defined action of H(K̂) on B(H/K) by isometries.

For a nonempty bounded subset Ω of an apartment of the Bruhat-Tits building
B(D(H)/K), let HΩ and H ◦

Ω be the smooth affine O-group schemes as in the

Introduction. Then as HΩ(Ô) is a closed and open subgroup of H(K̂) containing

HΩ(O) as a dense subgroup, we see that HΩ(Ô) equals the subgroup H(K̂)Ω of

H(K̂) consisting of elements that fix V (Z)× Ω pointwise.

Let T be a maximal K-split torus of H, then by Proposition 1.1, T
K̂

is a maximal

K̂-split torus of H
K̂

. Let A be the apartment of B(H/K), or of B(D(H)/K),
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corresponding to T . Then every maximal K̂-split torus of H
K̂

is of the form ĥT
K̂
ĥ−1

for an ĥ ∈ H(K̂), and we define the corresponding apartment to be ĥ · A. We now
declare B(H/K) (resp.B(D(H)/K)) to be the enlarged Bruhat-Tits building (resp.

the Bruhat-Tits building) of H(K̂) with these apartments.

Let A be an apartment of the Bruhat-Tits building of H(K) corresponding to a

maximal K-split torus T of H and ĥ ∈ H(K̂). Given a nonempty bounded subset

Ω̂ of Â := ĥ · A, the subset Ω := ĥ−1 · Ω̂ is contained in A. The closed and open

subgroup ĥH(K̂)Ωĥ−1 = ĥHΩ(Ô)ĥ−1 of H(K̂) is the subgroup H(K̂)Ω̂ consisting of

elements that fix V (Z)× Ω̂ pointwise. Now as H(K) is dense in H(K̂) and H(K̂)Ω̂

is an open subgroup, H(K̂) = H(K̂)Ω̂ ·H(K), so ĥ = h′ · h, with h′ ∈ H(K̂)Ω̂ and

h ∈ H(K). Thus the apartment Â = ĥ · A = h′ · hA, and hA is an apartment of

the Bruhat-Tits building of H(K). As h′ ∈ H(K̂)Ω̂, the apartment hA contains Ω̂.

This shows that any bounded subset Ω̂ of an apartment of the Bruhat-Tits building

of H(K̂) is contained in an apartment of the Bruhat-Tits building of H(K). We

define the Ô-group schemes H
Ω̂

and H ◦
Ω̂

associated to Ω̂ to be the group schemes

obtained from the corresponding O-group schemes (given by considering Ω̂ to be a
nonempty bounded subset of an apartment of the building of H(K)) by extension

of scalars O ↪→ Ô.

Let us assume now that Bruhat-Tits theory is available for H over K̂. Then

Bruhat-Tits theory is also available for D(H) over K̂ [P2, 1.11]. The action of H(K̂)

on its building B(D(H)/K̂) restricts to an action of H(K) by isometries. Let T be a

maximal K-split torus of G and A be the apartment of B(D(H)/K̂) corresponding

to T
K̂

. We consider the polysimplicial complex B(D(H)/K̂), with apartments h ·A,
h ∈ H(K), as the building of H(K) and denote it by B(D(H)/K).

Let Ω̂ be a nonempty bounded subset of the apartment Â = ĥ·A, ĥ ∈ H(K̂), in the

building B(D(H)/K̂). As H(K) is dense in H(K̂), the intersection H
Ω̂

(Ô)ĥ∩H(K)

is nonempty. For any h in this intersection, Ω̂ is contained in the apartment h ·A of
B(D(H)/K). This implies, in particular, that any two facets lie on an apartment

of B(D(H)/K). We now note that the Ô-group schemes H
Ω̂

and H ◦
Ω̂

admit unique

descents to smooth affine O-group schemes with generic fiber H, [BLR, Prop. D.4(b)

in §6.1]; the affine rings of these descents are K[H] ∩ Ô[H
Ω̂

] and K[H] ∩ Ô[H ◦
Ω̂

]

respectively. �

In view of the preceding proposition, we may (and do) replace O and K with Ô

and K̂ respectively to assume in the rest of this paper that O and K are complete.

2. Fixed points in B(H/K) under a finite automorphism group Θ of H

We will henceforth assume that Bruhat-Tits theory is available for H over K.
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2.1. Let G be a smooth affine K-group and G be a smooth affine O-group scheme
with generic fiber G. According to [BrT2, 1.7.1-1.7.2] G is “étoffé” and hence by
(ET) of [BrT2, 1.7.1] its affine ring has the following description:

O[G ] = {f ∈ K[G] | f(G (O)) ⊂ O}.

Let Ω be a nonempty bounded subset of an apartment of B(D(H)/K). As the
O-group scheme HΩ is smooth and affine and its generic fiber is H, the affine ring
of HΩ has thus the following description:

O[HΩ] = {f ∈ K[H] | f(H(K)Ω) ⊂ O}.

Proposition 2.2. Let Ω be a nonempty bounded subset of an apartment of B(D(H)/K).
Let HΩ and H ◦

Ω be as above. Let G be a smooth connected K-subgroup of H and
G be a smooth affine O-group scheme with generic fiber G and connected special
fiber. Assume that a subgroup G of G (O) of finite index fixes Ω pointwise (i.e.,
G ⊂ H(K)Ω). Then there is a O-group scheme homomorphism ϕ : G →H ◦

Ω that is
the natural inclusion G ↪→ H on the generic fibers. So the subgroup G (O) of G(K)
is contained in H ◦

Ω (O) and hence it fixes Ω pointwise. If F is a facet of B(D(H)/K)
that meets Ω, then G (O) fixes F pointwise.

Let S be a K-split torus of H and S the O-torus with generic fiber S. If a
subgroup of the maximal bounded subgroup S (O) of S(K) of finite index fixes Ω
pointwise, then there is a maximal K-split torus T of H containing S such that Ω
is contained in the apartment of B(D(H)/K) corresponding to T .

Proof. Since the fibers of the smooth affine group scheme G are connected and the
residue field κ is separably closed, the subgroup G is Zariski-dense in G, and its
image in G (κ) is Zariski-dense in the spacial fiber of G . Using this observation, we
easily see that the affine ring O[G ] (⊂ K[G]) of G has the following description (cf.
[BrT2, 1.7.2]):

O[G ] = {f ∈ K[G] | f(G) ⊂ O}.
This description of O[G ] implies at once that the inclusion G ↪→ H(K)Ω induces a
O-group scheme homomorphism ϕ : G → HΩ that is the natural inclusion G ↪→ H
on the generic fibers. Since G has connected fibers, the homomorphism ϕ factors
through H ◦

Ω .

Any facet F of B(D(H)/K) that meets Ω is stable under G (O) (⊂ H(K)), so a
subgroup of G (O) of finite index fixes it pointwise. Now applying the result of the
preceding paragraph, for F in place of Ω, we see that there is a O-group scheme
homomorphism G →H ◦

F that is the natural inclusion G ↪→ H on the generic fibers
and hence G (O) fixes F pointwise.

Now we will prove the last assertion of the proposition. It follows from what we
have shown above that there is a O-group scheme homomorphism ι : S → H ◦

Ω
that is the natural inclusion S ↪→ H on the generic fibers (ι is actually a closed
immersion, see [PY2, Lemma 4.1]). Applying [P2, Prop. 2.1(i)] to the centralizer of
ι(S ) (in H ◦

Ω ) in place of G , and O in place of o, we see that there is a closed O-torus
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T of H ◦
Ω that commutes with ι(S ) and whose generic fiber T is a maximal K-split

torus of H. The torus T clearly contains S, and [P2, Prop. 2.2(ii)] implies that Ω is
contained in the apartment corresponding to T . �

The following is a simple consequence of the preceding proposition.

Corollary 2.3. Let G, S, G , and S be as in the preceding proposition. Then the set
of points of B(D(H)/K) that are fixed under G (O) is the union of facets pointwise
fixed under G (O). The set of points of the enlarged building B(H/K) that are fixed
under a finite-index subgroup S of the maximal bounded subgroup S(K)b (= S (O)) of
S(K) is the enlarged Bruhat-Tits building B(ZH(S)/K) of the centralizer ZH(S)(K)
of S in H(K).

2.4. Let Θ be a finite group of automorphisms of the reductive K-group H. There is
a natural action of Θ on the Bruhat-Tits building B(D(H)/K) of H(K) by polysim-
plicial isometries such that for all h ∈ H(K), x ∈ B(D(H)/K) and θ ∈ Θ, we have
θ(h · x) = θ(h) · θ(x).

Let Ω be a nonempty bounded subset of an apartment of B(D(H)/K). Assume
that Ω is stable under the action of Θ on B(D(H)/K). Then HΩ(O) is stable under
the action of Θ on H(K), so the affine ring O[HΩ] is stable under the action of Θ
on K[H]. This implies that Θ acts on the group scheme HΩ by O-group scheme
automorphisms. The neutral component H ◦

Ω of HΩ is of course stable under this
action.

In the following we assume that the characteristic p of the residue field κ does not
divide the order of Θ. Then G := (HΘ)◦ is a reductive group, see [Ri, Prop. 10.1.5]
or [PY1, Thm. 2.1]. We will prove that Bruhat-Tits theory is available for G over K
and the enlarged Bruhat-Tits building of G(K), as a metric space, can be identified
with the subspace B(H/K)Θ of points of B(H/K) fixed under Θ.

Let C be the maximal K-split central torus of G and H ′ be the derived subgroup
of the centralizer of C in H. Then H ′ is a connected semi-simple subgroup of

H stable under the group Θ of automorphisms of H; (H ′Θ)
◦

(⊂ G) contains the
derived subgroup of G and its central torus is K-anisotropic. Replacing H with
H ′ we assume in the sequel that H is semi-simple and the central torus of G is
K-anisotropic (cf. [P2, 3.11, 1.11]).

For a subset X of a set given with an action of Θ, we denote by XΘ the subset of
points of X that are fixed under Θ. We will denote B(H/K)Θ by B in the sequel.

If a facet of B(H/K) is stable under the action of Θ, then its barycenter is fixed
under Θ. Conversely, if a facet F contains a point x fixed under Θ, then being the
unique facet containing x, F is stable under the action of Θ.

2.5. We introduce the following partial order “≺” on the set of nonempty subsets
of B(H/K): Given two nonempty subsets Ω and Ω′, Ω′ ≺ Ω if the closure Ω of
Ω contains Ω′. If F and F ′ are facets of B(H/K), with F ′ ≺ F , or equivalently,
H ◦
F (O) ⊂ H ◦

F ′(O), we say that F ′ is a face of F . In a collection C of facets, thus a
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facet is maximal if it is not a proper face of any facet belonging to C, and a facet is
minimal if no proper face of it belongs to C.

Now let X be a convex subset of B(H/K) and C be the set of facets of B(H/K),
or facets lying in a given apartment A, that meet X. Then the following assertions
are easy to prove (see Proposition 9.2.5 of [BrT1]): (1) All maximal facets in C are of
equal dimension and a facet F ∈ C is maximal if and only if dim(F ∩X) is maximal.
(2) Let F be a facet lying in an apartment A. Assume that F is maximal among
the facets of A that meet X, and let AF be the affine subspace of A spanned by F .
Then every facet of A that meets X is contained in AF and A ∩X is contained in
the affine subspace of A spanned by F ∩X.

The subset B = B(H/K)Θ of B(H/K) is closed and convex. Hence the assertions
of the preceding paragraph hold for B in place of X. We will show in this section
that B is an affine building with apartments described below. We begin with the
following proposition which has been suggested by Proposition 1.1 of [PY1], and the
proof given here is an adaptation of the proof of that proposition.

Proposition 2.6. Let A be an apartment of B(H/K) and F a facet of A that meets
B. Let Ω be a nonempty bounded subset of the affine subspace AF of A spanned by
F . We assume that Ω contains F and is stable under the action of Θ on B(H/K).
Let H := H ◦

Ω be the Bruhat-Tits smooth affine O-group scheme with generic fiber

H, and connected special fiber H , associated with Ω. Let H
pred

:= H /Ru,κ(H )

be the maximal pseudo-reductive quotient of H . Then there exist K-split tori S ⊂ T
in H such that

(i) T is a maximal K-split torus of H and Ω is contained in the apartment A(T )
corresponding to T ;

(ii) S is stable under Θ and the special fiber of the schematic closure S of S in

H maps onto the central torus of H
pred

.

Proof. Let T be the set of maximal K-split tori T of H such that Ω ⊂ A(T ). Then
the automorphism group Θ clearly permutes T, and the subgroup P := H (O) acts
transitively on T [P2, Prop. 2.2(i)]. Hence, for every T ∈ T, Ω is contained in the
affine subspace of A(T ) spanned by the facet F .

For T ∈ T, let ST be the lift of the central torus of H
pred

in T . It is clear that
the pair (S, T ) satisfy (i) and (ii) if S is Θ-stable. We consider S := {ST |T ∈ T}; Θ
acts by permutation on S and P acts transitively on it. We will find an element of
S that is Θ-stable. We first prove the following lemma.

Lemma 2.7. Let T ∈ T and S := ST be as above. Then

(i) The normalizer of S in P centralizes S.

(ii) P = PS · U, where PS is the centralizer of S in P and U is the kernel of the

natural homomorphism H (O)→H
pred

(κ).
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Proof. (i) The affine subspace A(T )F of A(T ) spanned by F is an affine space under
the R-vector space V (S). So for any x ∈ F , V (S) + x = A(T )F . Now let h be
an element of P that normalizes S. Then h takes A(T )F = V (S) + x (⊂ A(T )) to
V (S) +h ·x = V (S) +x (⊂ A(hTh−1)) by an affine transformation whose derivative
gives the action of h on V (S). As h fixes the open subset F of A(T )F pointwise, its
derivative acts trivially on V (S) and hence h centralizes S.

(ii) Let S and T be the closed O-tori in H with generic fibers S and T re-
spectively. Then the centralizer H S of S in H is a smooth affine O-subgroup

scheme [CGP, Prop. A.8.10(2)]. Let S be the special fiber of S and H
S

be the
centralizer of S in the special fiber H of H . Since O is Henselian, the natural map

(PS =) H S (O) → H
S

(κ) is surjective [EGA IV4 18.5.17]. As the image of S in

H
pred

is central, the natural homomorphism H
S → H

pred
is surjective (see [Bo,

Prop. 9.6]). On the other hand, Ru,κ(H )∩H
S

= Ru,κ(H
S

) ([CGP, Prop. A.8.14];

note that as S is a torus, both H
S

and (Ru,κ(H ))S = Ru,κ(H )∩H
S

are smooth

and connected). So the natural map H
S
/Ru,κ(H

S
)→H

pred
is an isomorphism.

Since κ is separably closed, this implies that H
S

(κ) → H
pred

(κ) is surjective.

Hence, the map PS → H
pred

(κ) is surjective too. From this we conclude that
P = PS · U. �

We will now complete the proof of Proposition 2.6. As in the preceding lemma,

let U be the kernel of the natural homomorphism H (O)→H
pred

(κ). Since Ω has
been assumed to be stable under the action of Θ on B(H/K), the group Θ acts
on H by O-group scheme automorphisms. So U is stable under the induced action
of Θ on P = H (O). We will now describe a descending Θ-stable filtration of the
subgroup U. For a non-negative integer i, let Ui be the kernel of the homomorphism
P = H (O) → H (O/mi+1). Then each Ui is a normal subgroup of P and is stable
under the action of Θ on the latter, Ui ⊃ Ui+1, and Ui/Ui+1 is a κ-vector space for
all i > 0 [CGP, Prop. A.5.12]. The quotient U/U0 is isomorphic to Ru,κ(H )(κ). If

p = 0, we consider the ascending filtration of the nilpotent group Ru,κ(H )(κ) given
by its ascending central series, and if p 6= 0 we consider the ascending filtration
of the unipotent group Ru,κ(H ) given by Corollary B.3.3 of [CGP] to obtain an
ascending filtration of U/U0. The inverse image in U of this filtration of U/U0 gives
us a descending filtration U = U−n ⊃ U−n+1 ⊃ U−n+2 · · · ⊃ U0, where n is a
non-negative integer. For all j > −n, Uj is a normal subgroup of P that is stable
under the action of Θ on the latter, Uj/Uj+1 is a commutative group of exponent p
if p 6= 0, and is a vector space over Q if p = 0. For convenience, we will denote Uj by

U(j+n+1) for all j. Thus we have a decreasing filtration U = U(1) ⊃ U(2) ⊃ U(3) · · · .

For S ∈ S, let Z
(j)
S be the centralizer of S in U(j). If for θ ∈ Θ, there ex-

ists u(θ) ∈ U(j) such that θ(S) = u(θ)−1Su(θ), then Z
(j)
S U(j+1) is Θ-stable. To
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see this, let θ ∈ Θ, and pick u(θ) ∈ U(j) such that θ(S) = u(θ)−1Su(θ). Then

θ(Z
(j)
S ) = u(θ)−1Z

(j)
S u(θ). So θ(Z

(j)
S U(j+1)) = u(θ)−1Z

(j)
S u(θ)U(j+1) = Z

(j)
S U(j+1)

since U(j)/U(j+1) is commutative. This shows that Z
(j)
S U(j+1) is Θ-stable. Now as Θ

is a finite group of order prime to p if p 6= 0, and U(j)/Z
(j)
S U(j+1) is a commutative

divisible group if p = 0, we conclude that H1(Θ,U(j)/Z
(j)
S U(j+1)) = 0 for all p.

Now we fix an S0 ∈ S. Then for θ ∈ Θ, clearly θ(S0) ∈ S, and since P acts
transitively on S, we see using Lemma 2.7(ii) (for S0 in place of S) that θ(S0) =

u1(θ)−1S0u1(θ) with u1(θ) ∈ U(1) (= U). As Z
(1)
S0

is the normalizer of S0 in U(1)

(Lemma 2.7(i)), we see that θ 7→ u1(θ) (modZ
(1)
S0

U(2)) is a 1-cocycle on Θ with

values in U(1)/Z
(1)
S0

U(2), and hence it is a 1-coboundary. This means that there is a

v1 ∈ U(1) such that u′1(θ) := v−1
1 u1(θ)θ(v1) ∈ Z

(1)
S0

U(2) for all θ ∈ Θ.

Let S1 = v−1
1 S0v1. Then for θ ∈ Θ, we have θ(S1) = u′1(θ)−1S1u

′
1(θ). Observe

that u′1(θ) ∈ Z
(1)
S0

U(2) = v1Z
(1)
S1
v−1

1 U(2) = Z
(1)
S1

U(2) as U(1)/U(2) is commutative. So

for each θ ∈ Θ, there is an element u2(θ) of U(2) such that θ(S1) = u2(θ)−1S1u2(θ).

Now, as above, using the fact that the normalizer of S1 in U(2) is the centralizer Z
(2)
S1

,

we see that θ 7→ u2(θ) (modZ
(2)
S1

U(3)) is a 1-cocycle on Θ with values in U(2)/Z
(2)
S1

U(3),

and hence it is a 1-coboundary. Therefore, there is a v2 ∈ U(2) such that u′2(θ) :=

v−1
2 u2(θ)θ(v2) ∈ Z

(2)
S1

U(3) for all θ ∈ Θ.

Repeating the above argument, we construct a sequence {Si} of tori in S, and a

sequence of elements vi ∈ U(i), such that

• Si = v−1
i Si−1vi, and for each θ ∈ Θ, there is an element ui+1(θ) of U(i+1) such

that θ(Si) = ui+1(θ)−1Siui+1(θ), and θ 7→ ui+1(θ) (modZ
(i+1)
Si

U(i+2)) is a 1-cocycle

on Θ with values in U(i+1)/Z
(i+1)
Si

U(i+2).

For i > 1, let wi = v1v2 · · · vi. Then Si = w−1
i S0wi. Since vj ∈ U(j), and O

has been assumed to be complete, w := limi→∞wi exists in U. Let S = w−1S0w.
For θ ∈ Θ, as θ(Si) = ui+1(θ)−1Siui+1(θ), we see that u1(θ)θ(wi)ui+1(θ)−1w−1

i
normalizes S0. Since the normalizer of S0 in H(K) is closed, taking i → ∞, we
conclude that u1(θ)θ(w)w−1 normalizes S0. This implies that θ(S) = S for all
θ ∈ Θ. �

2.8. Let x, y ∈ B = B(H/K)Θ. Let F be a facet of B(H/K) which contains x in
its closure and is maximal among the facets that meet B, and let Ω = F ∪ {y}. Let
S ⊂ T be a pair of K-split tori with properties (i) and (ii) of Proposition 2.6, and
SG and TG be the maximal subtori of S and T respectively contained in G. Let
A be the apartment of B(H/K) corresponding to the maximal K-split torus T of
H. Then A contains y and the closure of F , and so it also contains x. Moreover,
A is an affine space under V (T ), the affine subspace V (S) + x of A contains F and
is spanned by it. The affine subspaces V (SG) + x ⊂ V (TG) + x of A are clearly
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contained in B = B(H/K)Θ. As V (S)Θ = V (SG) and F ⊂ V (S) + x, we see that
FΘ is contained in V (SG) + x. But since the facet F is maximal among the facets
that meet B, AΘ (= A∩B) is contained in the affine subspace of A spanned by FΘ.
Therefore, AΘ = V (SG) + x. This implies that V (SG) + x = V (TG) + x and hence
SG = TG. We will now show that SG is a maximal K-split torus of G.

Let S′ be a maximal K-split torus of G containing SG. Then the centralizer M :=
ZH(S′) of S′ in H is stable under Θ. The enlarged Bruhat-Tits building B(M/K)
of M(K) is identified with the union of apartments of B(H/K) that correspond to
maximal K-split tori of M (these are precisely the maximal K-split tori of H that
contain S′), cf. [P2, 3.11]. Let z be a point of B(M/K)Θ and T ′ be a maximal K-split
torus of M such that the corresponding apartment A′ of B(M/K) contains z. Then

A′ = V (T ′)+z and hence A′Θ = A′∩B = V (T ′)Θ+z = V (S′)+z is an affine subspace
of A′ of dimension dim(S′). Let F ′ be a facet of A′ that contains the point z in its

closure and is maximal among the facets of A′ meeting B. Then A′Θ is contained in

the affine subspace of A′ spanned by F ′Θ, so dim(F ′Θ) = dim(S′) > dim(SG). But

dim(FΘ) = dim(SG) > dim(F ′Θ). This implies that dim(SG) = dim(S′) and hence
S′ = SG. So SG is a maximal K-split torus of G.

Thus we have established the following proposition:

Proposition 2.9. Given points x, y ∈ B, there exists a maximal K-split torus SG
of G, and a maximal K-split torus T of H containing SG and hence contained in
ZH(SG), such that the apartment A of B(ZH(SG)/K) corresponding to T contains
x and y. Moreover, AΘ = A∩B is the affine subspace V (SG) +x of A of dimension
dim(SG).

We will now derive the following proposition which will give us apartments in the
Bruhat-Tits building of G(K). In the sequel, we will use S, instead of SG, to denote
a maximal K-split torus of G. As M := ZH(S) is stable under Θ, the enlarged
Bruhat-Tits building B(M/K) of M(K) contains a Θ-fixed point.

Proposition 2.10. Let S be a maximal K-split torus of G and let T be a maximal
K-split torus of H containing S such that the apartment A of B(H/K) corresponding
to T contains a Θ-fixed point x. Then B(ZH(S)/K)Θ = V (S) + x = AΘ. So
B(ZH(S)/K)Θ is an affine space under the R-vector space V (S).

Proof. Let C be the central torus of ZH(S) and ZH(S)′ the derived subgroup.

Then C, ZH(S) and ZH(S)′ are stable under Θ; G′ := (ZH(S)′Θ)
◦

is anisotropic
over K since S is a maximal K-split torus of G, and so also of (ZH(S)Θ)◦ (⊂ G).
Now applying Proposition 2.9 to ZH(S)′ in place of H, we see that the Bruhat-Tits
building B(ZH(S)′/K) of ZH(S)′(K) contains only one point fixed under Θ. For if
y, z ∈ B(ZH(S)′/K)Θ, then there is an apartment A′ of B(ZH(S)′/K) that contains

these points. Moreover, the dimension of the affine subspace A′Θ of A′ is 0 as G′ is
anisotropic over K. Therefore, y = z. This proves that B(ZH(S)′/K)Θ consists of a
single point. Hence, B(ZH(S)/K)Θ = V (C)Θ + x = V (S) + x, and so it is an affine
space under V (S). �
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2.11. Let S be a maximal K-split torus of G. Let N := NG(S) and Z := ZG(S)
be respectively the normalizer and the centralizer of S in G. As N (in fact, the
normalizer NH(S) of S in H) normalizes the centralizer ZH(S) of S in H, there is a
natural action of N(K) on B(ZH(S)/K) and N(K) stabilizes B(ZH(S)/K)Θ under
this action. For n ∈ N(K), the action of n carries an apartment A of B(ZH(S)/K)
to the apartment n ·A by an affine transformation.

Now let T be a maximal K-split torus of ZH(S) such that the corresponding apart-
ment A := AT of B(ZH(S)/K) contains a Θ-fixed point x. According to the previous
proposition, B(ZH(S)/K)Θ = V (S)+x = AΘ. So we can view B(ZH(S)/K)Θ as an
affine space under V (S). We will now show, using the proof of the lemma in 1.6 of
[PY1], that B(ZH(S)/K)Θ has the properties required of an apartment correspond-
ing to the maximal K-split torus S in the Bruhat-Tits building of G(K) if such a
building exists. We need to check the following three conditions.

A1: The action of N(K) on B(ZH(S)/K)Θ = AΘ is by affine transformations and
the maximal bounded subgroup Z(K)b of Z(K) acts trivially.

Let Aff(AΘ) be the group of affine automorphisms of AΘ and ϕ : N(K) →
Aff(AΘ) be the action map.

A2: The group Z(K) acts by translations, and the action is characterized by the
following formula: for z ∈ Z(K),

χ(ϕ(z)) = −ω(χ(z)) for all χ ∈ X∗K(Z) (↪→ X∗K(S)),

here we regard the translation ϕ(z) as an element of V (S).

A3: For g ∈ Aff(AΘ), denote by dg ∈ GL(V (S)) the derivative of g. Then the map
N(K)→ GL(V (S)), n 7→ dϕ(n), is induced from the action of N(K) on X∗(S) (i.e.,
it is the Weyl group action).

Moreover, as the central torus of G is K-anisotropic, these three conditions de-
termine the affine structure on B(ZH(S)/K)Θ uniquely; see [T, 1.2].

Proposition 2.12. Conditions A1, A2 and A3 hold.

Proof. The action of n ∈ N(K) on B(ZH(S)/K) carries the apartment A = AT via
an affine isomorphism f(n) : A→ AnTn−1 to the apartment AnTn−1 corresponding
to the torus nTn−1 containing S. As (AnTn−1)Θ = B(ZH(S)/K)Θ = AΘ, we see
that f(n) keeps AΘ stable and so ϕ(n) := f(n)|AΘ is an affine automorphism of AΘ.

The derivative df(n) : V (T )→ V (nTn−1) is induced from the map

HomK(GL1, T ) = X∗(T )→ X∗(nTn
−1) = HomK(GL1, nTn

−1),

λ 7→ Intn·λ, where Intn is the inner automorphism of H determined by n ∈ N(K) ⊂
H(K). So, the restriction dϕ(n) : V (S)→ V (S) is induced from the homomorphism
X∗(S)→ X∗(S), λ 7→ Intn · λ. This proves A3.

Condition A3 implies that dϕ is trivial on Z(K). Therefore, Z(K) acts by trans-
lations. The action of the bounded subgroup Z(K)b on AΘ admits a fixed point
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by the fixed point theorem of Bruhat-Tits. Therefore, Z(K)b acts by the trivial
translation. This proves A1.

Since the image of S(K) in Z(K)/Z(K)b ' Zdim(S) is a subgroup of finite index,
to prove the formula in A2, it suffices to prove it for z ∈ S(K). But for z ∈ S(K),
zTz−1 = T , and f(z) is a translation of the apartment A (ϕ(z) is regarded as an
element of V (T )) which satisfies (see 1.9 of [P2]):

χ(f(z)) = −ω(χ(z)) for all χ ∈ X∗K(T ).

This implies the formula in A2, since the restriction map X∗K(T ) → X∗K(S) is sur-
jective and the image of the restriction map X∗K(Z) → X∗K(S) is of finite index in
X∗K(S). �

2.13. Apartments of B. By definition, the apartments of B are the affine spaces
B(ZH(S)/K)Θ under the R-vector space V (S) (of dimension = K-rankG) for max-
imal K-split tori S of G. For any apartment A of B(ZH(S)/K) that contains a
Θ-fixed point, B(ZH(S)/K)Θ = AΘ (Proposition 2.10). The subgroup NG(S)(K) of
G(K) acts by affine transformations on the apartment B(ZH(S)/K)Θ and ZG(S)(K)
acts on it by translations (Proposition 2.12). Conjugacy of maximal K-split tori of
G under G(K) implies that this group acts transitively on the set of apartments of
B.

Propositions 2.9 and 2.10 imply the following proposition at once:

Proposition 2.14. Given any two points of B, there is a maximal K-split torus S
of G such that the corresponding apartment of B contains these two points.

Proposition 2.15. Let A be an apartment of B. Then there is a unique maximal
K-split torus S of G such that A = B(ZH(S)/K)Θ. So the stabilizer of A in G(K)
is NG(S)(K).

Proof. We fix a maximal K-split torus S of G such that A = B(ZH(S)/K)Θ. We
will show that S is uniquely determined by A. For this purpose, we observe that
the subgroup NG(S)(K) of G(K) acts on A and the maximal bounded subgroup
ZG(S)(K)b of ZG(S)(K) acts trivially (Proposition 2.12). So the subgroup Z of
G(K) consisting of elements that fix A pointwise is a bounded subgroup of G(K),
normalized by NG(S)(K), and it contains ZG(S)(K)b. Now, using the Bruhat de-
composition of G(K) with respect to S, we see that every bounded subgroup of
G(K) that is normalized by NG(S)(K) is a normal subgroup of the latter. Hence
the identity component of the Zariski-closure of Z is ZG(S). As S is the unique
maximal K-split torus of G contained in ZG(S), both the assertions follow. �

2.16. The affine Weyl group of G. Let G(K)+ denote the (normal) subgroup
of G(K) generated by K-rational elements of the unipotent radicals of parabolic
K-subgroups of G. Let S be a maximal K-split torus of G, N and Z respectively
be the normalizer and centralizer of S in G. Let N(K)+ := N(K) ∩G(K)+. Then
N(K)+ maps onto the Weyl group W := N(K)/Z(K) of G (this can be seen using,
for example, [CGP, Prop. C.2.24(i)]).
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Let A be the apartment of B corresponding to S. As in 2.11, let ϕ : N(K) →
Aff(A) be the action map, then the affine Weyl group Waff of G/K is by definition
the subgroup ϕ(N(K)+) of Aff(A).

3. Bruhat-Tits theory for G over K

3.1. Bruhat-Tits group schemes G ◦Ω. Let Ω be a nonempty Θ-stable bounded
subset of an apartment of B(H/K). Let HΩ be the smooth affine O-group scheme
associated to Ω in 2.1. There is a natural action of Θ on HΩ by O-group scheme
automorphisms (2.4). Define the functor H Θ

Ω of Θ-fixed points that associates to a
commutative O-algebra C the subgroup HΩ(C)Θ of HΩ(C) consisting of elements
fixed under Θ. The functor H Θ

Ω is represented by a closed smooth O-subgroup
scheme of HΩ (see Propositions 3.1 and 3.4 of [E], or Proposition A.8.10 of [CGP]);
we will denote this closed smooth O-subgroup scheme also by H Θ

Ω . Its generic fiber is
HΘ, and so the identity component of the generic fiber is G. The neutral component
(H Θ

Ω )
◦

of H Θ
Ω is by definition the union of the identity components of its generic

and special fibers; it is an open (so smooth) affine O-subgroup scheme [PY2, §3.5]
with generic fiber G. The index of the subgroup (H Θ

Ω )
◦
(O) in H Θ

Ω (O) is known to be

finite [EGA IV3, Cor. 15.6.5]. It is obvious that (H Θ
Ω )
◦

= ((H ◦
Ω )Θ)◦. We will denote

(H Θ
Ω )◦ by G ◦Ω in the sequel and call it the Bruhat-Tits O-group scheme associated to

G and Ω. The special fiber of G ◦Ω will be denoted G
◦
Ω. As G ◦Ω(O) ⊂ HΩ(O), G ◦Ω(O)

fixes Ω pointwise.

3.2. Let Ω′ ≺ Ω be nonempty bounded subsets of an apartment of B(H/K). We
assume that both Ω and Ω′ are stable under the action of Θ on B(H/K). The O-
group scheme homomorphism HΩ →HΩ′ of [P2, 1.10] restricts to a homomorphism
ρΩ′,Ω : H ◦

Ω → H ◦
Ω′ , and by [E, Prop. 3.5], or [CGP, Prop. A.8.10(2)], it induces

a O-group scheme homomorphism H Θ
Ω → H Θ

Ω′ . The last homomorphism gives a

O-group scheme homomorphism ρGΩ′,Ω : (H Θ
Ω )◦ = G ◦Ω → G ◦Ω′ = (H Θ

Ω′ )
◦ that is the

identity homomorphism on the generic fiber G.

3.3. Let A be the apartment of B corresponding to a maximal K-split torus S of
G and Ω be a nonempty bounded subset of A. The apartment A is contained in
an apartment A of B(H/K) that corresponds to a maximal K-split torus T of H
containing S and A = A ∩ B = AΘ (2.13). So Ω is a bounded subset of A. The
group scheme HΩ contains a closed split O-torus T with generic fiber T , see [P2,
1.9]. Let S be the O-subtorus of T whose generic fiber is S (S is the schematic
closure of S in T ). The automorphism group Θ of HΩ acts trivially on the O-torus
S (since S ⊂ G ⊂ HΘ) and hence this torus is contained in G ◦Ω. The special fiber

S of S is a maximal torus of G
◦
Ω since S is a maximal K-split torus of G.

Proposition 3.4. Let A and A′ be apartments of B and Ω a nonempty bounded
subset of A ∩ A′. Then there exists an element g ∈ G ◦Ω(O) that maps A onto A′.
Any such element fixes Ω pointwise.
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Proof. We will use Proposition 2.1(ii) of [P2], with O in place of o, and denote
G ◦Ω by G , and its special fiber by G , in this proof. Let S and S′ be the maximal
K-split tori of G corresponding to the apartments A and A′ respectively and S
and S ′ be the O-tori of G with generic fibers S and S′ respectively. The special

fibers S and S
′
of S and S ′ are maximal split tori of G , and hence according to a

result of Borel and Tits there is an element g of G (κ) which conjugates S onto S
′

[CGP, Thm. C.2.3]. Now [P2, Prop. 2.1(ii)] implies that there exists a g ∈ G (O) lying
over g that conjugates S onto S ′. This element fixes Ω pointwise and conjugates
S onto S′ and hence maps A onto A′. �

3.5. Given a point x ∈ B, for simplicity we will denote G ◦{x}, H{x}, H ◦
{x} and

H Θ
{x} by G ◦x , Hx, H ◦

x and H Θ
x respectively, and the special fibers of these group

schemes will be denoted by G
◦
x, H x, H

◦
x and H

Θ
x respectively. The subgroup

of H(K) (resp.G(K)) consisting of elements that fix x will be denoted by H(K)x

(resp.G(K)x). The subgroup G ◦x (O) (⊂ G(K)x) is of finite index in G(K)x.

3.6. Parahoric subgroups of G(K). For x ∈ B, G ◦x and Px := G ◦x (O) will
respectively be called the Bruhat-Tits parahoric O-group scheme and the parahoric
subgroup of G(K) associated with the point x. Let S be a maximal K-split torus
of G such that x lies in the apartment A of B corresponding to S. Then the group
scheme G ◦x contains a closed split O-torus S whose generic fiber is S (3.3). The
parahoric subgroups of G(K) are by definition the subgroups Px for x ∈ B. For a
given parahoric subgroup Px, the associated Bruhat-Tits parahoric O-group scheme
is G ◦x .

(i) Let P be a parahoric subgroup of G(K), G ◦ the associated Bruhat-Tits para-

horic O-group scheme, G
◦

the special fiber of G ◦, and P be a subgroup of P of finite
index. Then the image of P in G

◦
(κ) is Zariski-dense in the connected group G

◦
, so

the affine ring of G ◦ is:

O[G ◦] = {f ∈ K[G] | f(P) ⊂ O}.

Thus the subgroup P “determines” the group scheme G ◦, and hence P is the unique
parahoric subgroup of G(K) containing P as a subgroup of finite index.

(ii) Let P and G ◦ be as in the preceding paragraph. Let Ω be a nonempty Θ-stable
bounded subset of an apartment of B(H/K) and G ◦Ω be as in 3.1. We assume that
Ω is fixed pointwise by P . Then the inclusion of P in H(K)Ω (= HΩ(O)) gives a
O-group scheme homomorphism G ◦ →H ◦

Ω (Proposition 2.2). This homomorphism
obviously factors through G ◦Ω to give a O-group scheme homomorphism G ◦ → G ◦Ω
that is the identity on the generic fiber G.

Suppose x, y ∈ B(H/K) are fixed by P , and [xy] is the geodesic joining x and y.
Then P fixes every point z of [xy]. Let G ◦[xy] be as in 3.1 (for Ω = [xy]). There are

O-group scheme homomorphisms G ◦ → G ◦[xy] and G ◦ → G ◦z that are the identity on

the generic fiber G.
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3.7. Polysimplicial structure on B. Let P be a parahoric subgroup of G(K)
and G ◦ be the Bruhat-Tits parahoric O-group scheme associated with P (3.6). Let
B(H/K)P denote the set of points of B(H/K) fixed by P . According to Corollary
2.3, B(H/K)P is the union of facets pointwise fixed by P . Let FP := B(H/K)P ∩B.
This closed convex subset is by definition the closed facet of B associated with the
parahoric subgroup P . The O-group scheme G ◦ contains a closed split O-torus S
whose generic fiber S is a maximal K-split torus of G (3.3). The subgroup S (O) (of
S(K)) is the maximal bounded subgroup of S(K) and it is contained in P (= G ◦(O)),
so, according to Corollary 2.3, FP is contained in the enlarged building B(ZH(S)/K)
of ZH(S)(K). This implies that the closed facet FP is contained in the apartment
A := B(ZH(S)/K)Θ (= B(ZH(S)/K) ∩ B) of B corresponding to the maximal K-
split torus S of G.

Let FP be the subset of points of FP that are not fixed by any parahoric subgroup
of G(K) larger than P . Then FP = FP −

⋃
Q)P FQ. Given another parahoric

subgroup subgroup Q of G(K), if FQ = FP , then Q = P . (To see this, we choose

points x, y ∈ B such that G ◦x (O) = P and G ◦y (O) = Q. Then y ∈ FQ = FP . So P
fixes y. Now using 3.6 (ii) we see that P ⊂ Q. We similarly see that Q ⊂ P .) Hence
if Q ) P , then FQ is properly contained in FP . By definition, FP is the facet of B
associated with the parahoric subgroup P of G(K), and as P varies over the set of
parahoric subgroups of G(K), these are are all the facets of B. We will show below
(Propositions 3.11 and 3.13) that FP is convex and bounded.

For a parahoric subgroup Q of G(K) containing P , obviously, FQ ⊂ FQ ⊂ FP ,
thus FQ ≺ FP and hence FP is a maximal facet if and only if P is a minimal
parahoric subgroup of G(K). The maximal facets of B are called the chambers of
B. It is easily seen using the observations contained in 2.5 that all the chambers are
of equal dimension. We say that a facet F′ of B is a face of a facet F if F′ ≺ F, i.e.,
if F′ is contained in the closure of F.

In the following three lemmas (3.8, 3.9 and 3.10), k is any field of characteristic
p > 0. We will use the notation introduced in [CGP, §2.1].

Lemma 3.8. Let H be a smooth connected affine algebraic k-group and Q be a
pseudo-parabolic k-subgroup of H. Let S be a k-torus of Q whose image in the
maximal pseudo-reductive quotient M := Q/Ru,k(Q) of Q contains the maximal
central torus of M. Then any 1-parameter subgroup λ : GL1 → H such that
Q = PH(λ)Ru,k(H) has a conjugate under Ru,k(Q)(k) with image in S.

Proof. Let λ : GL1 → H be a 1-parameter subgroup such that Q = PH(λ)Ru,k(H).
The image T of λ is contained in Q and it maps into the central torus of M. Therefore,
T is contained in the solvable subgroup SRu,k(Q) of Q. Note that as S is commutative,
the derived subgroup of SRu,k(Q) is contained in Ru,k(Q), so the maximal k-tori
of SRu,k(Q) are conjugate to each other under Ru,k(Q)(k) [Bo, Thm. 19.2]. Hence,
there is a u ∈ Ru,k(Q)(k) such that uTu−1 ⊂ S. Then the image of the 1-parameter
subgroup µ : GL1 → S, defined as µ(t) = uλ(t)u−1, is contained in S. �
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Lemma 3.9. Let H be a smooth connected affine algebraic k-group given with an
action by a finite group Θ and U be a smooth connected Θ-stable unipotent normal
k-subgroup of H. We assume that p does not divide the order of Θ. Let S be a
Θ-stable k-torus of H := H/U. Then there exists a Θ-stable k-torus S in H that
maps isomorphically onto S. In particular, there exists a Θ-stable k-torus in H that
maps isomorphically onto the maximal central torus of H.

Proof. Let T be a k-torus of H that maps isomorphically onto S (⊂ H). Considering
the Θ-stable solvable subgroup T U; using conjugacy under U(k) of maximal k-tori
of this solvable group [Bo, Thm. 19.2], we see that for θ ∈ Θ, θ(T) = u(θ)−1Tu(θ)
for some u(θ) ∈ U(k). Let U(k) =: U0 ⊃ U1 ⊃ U2 · · · ⊃ Un = {1} be the descending
central series of the nilpotent group U(k). Each subgroup Ui is Θ-stable and Ui/Ui+1

is a commutative p-group if p 6= 0, and a Q-vector space if p = 0. Now let i 6 n, be
the largest integer such that there exists a k-torus S in T U that maps onto S, and
for every θ ∈ Θ, there is a u(θ) ∈ Ui such that θ(S) = u(θ)−1Su(θ). Let Ni be the
normalizer of S in Ui. Then, for θ ∈ Θ, θ(Ni) = u(θ)−1Niu(θ) and hence as Ui/Ui+1

is commutative, we see that θ(NiUi+1) = NiUi+1, i.e., NiUi+1 is Θ-stable. It is easy
to see that θ 7→ u(θ) mod (NiUi+1) is a 1-cocycle on Θ with values in Ui/NiUi+1.
But H1(Θ, Ui/NiUi+1) is trivial since the finite group Θ is of order prime to p if
p 6= 0, and Ui/NiUi+1 is divisible if p = 0. So there exits a u ∈ Ui such that for
all θ ∈ Θ, u−1u(θ)θ(u) lies in NiUi+1. Now let S′ = u−1Su. Then the normalizer of
S′ in Ui is u−1Niu and again as Ui/Ui+1 is commutative, u−1Niu · Ui+1 = NiUi+1.
For θ ∈ Θ, we choose u′(θ) ∈ Ui+1 such that u−1u(θ)θ(u) ∈ u−1Niu · u′(θ). Then
θ(S′) = u′(θ)−1S′u′(θ) for all θ ∈ Θ. This contradicts the maximality of i unless
i = n. �

Lemma 3.10. Let H be a smooth connected affine algebraic k-group given with an
action by a finite group Θ. We assume that p does not divide the order of Θ. Let
G = (HΘ)

◦
. Then

(i) Ru,k(G) = (G ∩ Ru,k(H))◦ = (Ru,k(H)Θ)
◦
; moreover, G/(G ∩ Ru,k(H)) is

pseudo-reductive, and if k is perfect then G ∩Ru,k(H) = Ru,k(G).

(ii) Given a Θ-stable pseudo-parabolic k-subgroup Q of H, P := G∩Q is a pseudo-
parabolic k-subgroup of G, so P is connected and it equals (QΘ)

◦
.

(iii) Conversely, given a pseudo-parabolic k-subgroup P of G, and a maximal k-
torus S ⊂ P, there is a Θ-stable pseudo-parabolic k-subgroup Q of H, Q containing
the centralizer ZH(S) of S in H, such that P = G ∩ Q = (QΘ)

◦
.

Proof. The first assertion of (i) immediately follows from [CGP, Prop. A.8.14(2)].
Now we observe that as Ru,k(G) = (G∩Ru,k(H))◦, (G∩Ru,k(H))/Ru,k(G) is a finite
étale (unipotent) normal subgroup of the pseudo-reductive quotient G/Ru,k(G) of G
so it is central. Thus the kernel of the quotient map π : G/Ru,k(G)→ G/(G∩Ru,k(H))
is an étale unipotent central subgroup. Hence, G/(G∩Ru,k(H)) is pseudo-reductive
as G/Ru,k(G) is. Moreover, if k is perfect then every pseudo-reductive k-group is



FINITE GROUP ACTIONS AND TAMELY-RAMIFIED DESCENT 17

reductive and such a group does not contain a nontrivial étale unipotent normal
subgroup. This implies that if k is perfect, then Ru,k(G) = G ∩Ru,k(H).

Since Ru,k(G) ⊂ G∩Ru,k(H) ⊂ G∩Q, to prove (ii), we can replace H by its pseudo-
reductive quotient H/Ru,k(H) and assume that H is pseudo-reductive. Then G is
also pseudo-reductive by (i). Let U = Ru,k(Q) be the k-unipotent radical of Q; U

is Θ-stable. Let S be a Θ-stable k-torus in Q that maps isomorphically onto the
maximal central torus of the pseudo-reductive quotient Q := Q/U (Lemma 3.9). By
Lemma 3.8, there exists a 1-parameter subgroup λ : GL1 → S such that Q = PH(λ).
Let µ =

∑
θ∈Θ θ ·λ. Then µ is invariant under Θ and so it is a 1-parameter subgroup

of G. We will now show that Q = PH(µ). Let Φ (resp. Ψ) be the set of weights in the
Lie algebra of Q (resp.PH(µ)) with respect to the adjoint action of S. Then since
Q, PH(µ) and S are Θ-stable, the subsets Φ and Ψ (of X(S)) are stable under the
action of Θ on X(S). Hence, for all a ∈ Φ, as 〈a, λ〉 > 0, we conclude that 〈a, µ〉 > 0.
Therefore, Φ ⊂ Ψ. On the other hand, for b ∈ Ψ, 〈b, µ〉 > 0. If b (∈ Ψ) does not
belong to Φ, then for θ ∈ Θ, θ · b /∈ Φ, so for all θ ∈ Θ, 〈θ · b, λ〉 < 0, which implies
that 〈b, µ〉 < 0. This is a contradiction. Therefore, Φ = Ψ and so Q = PH(µ). Now
observe that (QΘ)

◦ ⊂ G ∩ Q ⊂ QΘ. As QΘ is a smooth subgroup ([E, Prop. 3.4] or
[CGP, Prop. A.8.10(2)]), G ∩ Q is a smooth k-subgroup, and since it contains the
pseudo-parabolic k-subgroup PG(µ), it is a pseudo-parabolic k-subgroup of G [CGP,

Prop. 3.5.8], hence in particular it is connected. Therefore, G ∩ Q = (QΘ)
◦
.

Now we will prove (iii). Let λ : GL1 → S be a 1-parameter subgroup such that
P = PG(λ)Ru,k(G). Then Q := PH(λ)Ru,k(H) is a pseudo-parabolic k-subgroup of H
that is Θ-stable (since λ is Θ-invariant) and it contains P as well as ZH(S). According
to (ii), G ∩ Q = (QΘ)

◦
is a pseudo-parabolic k-subgroup of G containing P. The Lie

algebras of P and (QΘ)
◦

are clearly equal. This implies that P = G∩Q = (QΘ)
◦

and
we have proved (iii). �

Proposition 3.11. Let P be a parahoric subgroup of G(K) and FP and FP be as
in 3.7.

(i) Given x ∈ FP and y ∈ FP , for every point z of the geodesic [xy], except possibly
for z = y, G ◦z (O) = P .

(ii) Let F be a facet of B(H/K) that meets FP and is maximal among such facets.
Then G ◦F (O) = P . Thus F ∩B ⊂ FP .

The first assertion of this proposition implies that FP is convex. The second
assertion implies that FP is an open-dense subset of FP , hence the closure of FP is
FP .

Proof. To prove the first assertion, let [xy] be the geodesic joining x and y. Let
F0, F1, . . . , Fn be the facets of B(H/K) containing a segment of positive length of the
geodesic [xy] (so each Fi is Θ-stable and is fixed pointwise by P , hence P ⊂ G ◦Fi

(O),

cf. 3.6(ii)). Then [xy] ⊂
⋃
i F i. We assume the facets {Fi} indexed so that x lies in

F 0, y lies in Fn, and for each i < n, F i ∩ F i+1 is nonempty. Let z0 = x. For every
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positive integer i (6 n), F i−1 ∩ F i contains a unique point of [xy]; we will denote
this point by zi.

To prove the second assertion of the proposition along with the first, we take x
to be a point of B such that G ◦x (O) = P (so x ∈ FP ) and take y to be any point of
F ∩ B. Let [xy], and for i 6 n, Fi and zi be as in the preceding paragraph. Then
Fn = F .

Since x ∈ F 0, there is a O-group scheme homomorphism G ◦F0
→ G ◦x that is

the identity on the generic fiber G. Thus, G ◦F0
(O) ⊂ P . But P ⊂ G ◦F0

(O), so
G ◦z0(O) = G ◦F0

(O) = P . Let j (6 n) be a positive integer such that for all i < j,

G ◦zi(O) = G ◦Fi
(O) = P . The inclusion of {zj} in F j−1 ∩ F j gives rise to O-group

scheme homomorphisms HFj−1

σj−→Hzj

ρj←−HFj that are the identity on the generic

fiber H. The images of the induced homomorphisms H
◦
Fj−1

σj−→H
◦
zj

ρj←−H
◦
Fj

are

pseudo-parabolic κs-subgroups of H
◦
zj ([P2, 1.10(2)]). We conclude by Lie algebra

consideration that σj(G
◦
Fj−1

) = (σj(H
◦
Fj−1

)Θ)
◦

and ρj(G
◦
Fj

) = (ρj(H
◦
Fj

)Θ)
◦
, and

Lemma 3.10(ii) implies that both of these subgroups are pseudo-parabolic subgroups

of G
◦
zj . As G ◦Fj−1

(O) = P , whereas, P ⊂ G ◦Fj
(O) (⊂ G ◦zj (O)), we see that σj(G

◦
Fj−1

)

is contained in ρj(G
◦
Fj

). Let Q and Q
′

respectively be the images of σj(G
◦
Fj−1

) and

ρj(G
◦
Fj

) in the maximal pseudo-reductive quotient G
pred
zj := G

◦
zj/Ru,κs(G

◦
zj ) of G

◦
zj .

Then Q ⊂ Q′, and both of them are pseudo-parabolic subgroups of G
pred
zj .

Now let S be a maximal K-split torus of G such that the apartment of B cor-
responding to S contains the geodesic [xy] and let v ∈ V (S) so that v + x =
y. Then for all sufficiently small positive real number ε, −εv + zj ∈ Fj−1 and
εv + zj ∈ Fj . Using [P2, 1.10(3)] we infer that the images of the pseudo-parabolic

subgroups σj(H
◦
Fj−1

) and ρj(H
◦
Fj

) (of H
◦
zj ) in the maximal pseudo-reductive quo-

tient H
pred
zj := H

◦
zj/Ru,κs(H

◦
zj ) of H

◦
zj are opposite pseudo-parabolic subgroups.

Therefore, the image H of σj(H
◦
Fj−1

) ∩ ρj(H
◦
Fj

) in H
pred
zj is pseudo-reductive.

Proposition A.8.14 (2) of [CGP] implies then that (HΘ)
◦

is pseudo-reductive. It

is obvious that under the natural homomorphism π : G
pred
zj → H

pred
zj , the image

of Q = Q ∩ Q′ is (HΘ)
◦
. As the kernel of the homomorphism π is a finite (étale

unipotent) subgroup (Lemma 3.10(i)), and (HΘ)
◦

is pseudo-reductive, we see that

Q is a pseudo-reductive subgroup of G
pred
zj . But since Q is a pseudo-parabolic

subgroup of the latter, we must have Q = G
pred
zj , and hence, Q

′
= G

pred
zj . So,

σj(G
◦
Fj−1

) = G
◦
zj = ρj(G

◦
Fj

).

Since the natural homomorphism G ◦Fj−1
(O) → G

◦
Fj−1

(κ) is surjective (as O is

henselian and G ◦Fj−1
is smooth, [EGA IV4, 18.5.17]), and σj(G

◦
Fj−1

) = G
◦
zj , the image
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of G ◦Fj−1
(O) (⊂ G ◦zj (O)) in G

◦
zj (κ) is Zariski-dense in G

◦
zj . From this we see that

O[G ◦zj ] = {f ∈ K[G] | f(G ◦Fj−1
(O)) ⊂ O} = O[G ◦Fj−1

],

cf. [BrT2, 1.7.2] and 2.1. Therefore, σj |G ◦Fj−1
: G ◦Fj−1

→ G ◦zj is a O-group scheme

isomorphism. We similarly see that ρj |G ◦Fj
: G ◦Fj

→ G ◦zj is a O-group scheme iso-

morphism. Now since G ◦Fj−1
(O) = P , we conclude that P = G ◦zj (O) = G ◦Fj

(O). By

induction it follows that P = G ◦zi(O) = G ◦Fi
(O) for all i 6 n. In particular, for all

z ∈ [xy], except possibly for z = y, G ◦z (O) = P , and G ◦Fn
(O) = P . �

For parahoric subgroups P and Q of G(K), if FP ∩FQ is nonempty, then for any
z in this intersection, P = G ◦z (O) = Q (Proposition 3.11). Thus every point of B is
contained in a unique facet.

We will use the following simple lemma in the proof of the next proposition.

Lemma 3.12. Let S be a maximal K-split torus of G, A the corresponding apart-
ment of B, and C be a noncompact closed convex subset of A. Then for any point
x ∈ C, there is an infinite ray originating at x and contained in C.

Proof. Recall that A is an affine space under the vector space V (S) = R⊗Z X∗(S).
We identify A with V (S) using translations by elements in the latter, with x iden-
tified with the origin 0, and use a positive definite inner product on V (S) to get a
norm on A. With this identification, C is a closed convex subset of V (S) containing
0. Since C is noncompact, there exist unit vectors vi ∈ V (S), i > 1, and positive real
numbers si →∞ such that sivi lies in C. After replacing {vi} by a subsequence, we
may (and do) assume that the sequence {vi} converges to a unit vector v. We will
now show that for every nonnegative real number t, tv lies in C, this will prove the
lemma. To see that tv lies in C, it suffices to observe that for a given t, the sequence
{tvi} converges to tv, and for all sufficiently large i (so that si > t), tvi lies in C. �

Proposition 3.13. For any parahoric subgroup P of G(K), the associated closed
facet FP of B, and so also the associated facet FP (⊂ FP ), is bounded.

Proof. Let S be a maximal K-split torus of G such that the corresponding apartment
of B contains FP (3.7). Assume, if possible, that FP is noncompact and fix a point
x of FP . Then, according to the preceding lemma, there is an infinite ray R :=
{tv + x | t ∈ R>0}, for some v ∈ V (S), originating at x and contained in FP . It is
obvious from Proposition 3.11(i) that this ray is actually contained in FP . Hence,
for every point z ∈ R, G ◦z (O) = P .

As the central torus of G has been assumed to be K-anisotropic, there is a non-
divisible root a of G, with respect to S, such that 〈a, v〉 > 0. Let Sa be the identity
component of the kernel of a and Ga (resp.Ha) be the derived subgroup of the
centralizer of Sa in G (resp.H). Fix t ∈ R>0, and let y = tv + x ∈ R. Let S
be the closed 1-dimensional O-split torus of G ◦y whose generic fiber is the maximal
K-split torus of Ga contained in S and let λ : GL1 → S (↪→ G ◦y ↪→ Hy) be the
O-isomorphism such that 〈a, λ〉 > 0. Let c = 〈a, v〉/〈a, λ〉. Then 〈a, v − cλ〉 = 0.
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Let Uy be the O-subgroup scheme of Hy representing the functor

R {h ∈Hy(R) | lim
t→0

λ(t)hλ(t)−1 = 1},

cf. [CGP, Lemma 2.1.5]. Using the last assertion of 2.1.8(3), and the first assertion
of 2.1.8(4), of [CGP] (with k, which is an an arbitrary commutative ring in these
assertions, replaced by O, and G replaced by Hy), we see that Uy is a closed smooth
unipotent O-subgroup scheme of Hy with connected fibers; the generic fiber of Uy is
UH(λ), where UH(λ) is as in [CGP, Lemma 2.1.5] with G replaced by H. We consider
the smooth closed O-subgroup scheme U Θ

y of Uy. As U Θ
y is clearly normalized by S ,

it has connected fibers, and hence it is contained in (H Θ
y )◦ = G ◦y . The generic fiber

of U Θ
y is UH(λ)Θ that contains the root group Ua (= UGa(λ)) of G corresponding

to the root a.
As

⋃
z∈R Uz(O) ⊃ UHa(λ)(K) ⊃ Ua(K), we see that

⋃
z∈R U Θ

z (O) ⊃ Ua(K).

Now since G ◦z ⊃ U Θ
z , we conclude that

⋃
z∈R G ◦z (O) ⊃ Ua(K). But for all z ∈ R,

G ◦z (O) = P , so the parahoric subgroup P contains the unbounded subgroup Ua(K).
This is a contradiction. �

Proposition 3.13 implies that each closed facet of B is a compact polyhedron.
Considering the facets lying on the boundary of a maximal closed facet of B, we see
that B contains facets of every dimension 6 K-rankG.

3.14. Let P be a parahoric subgroup of G(K) and F := FP be the facet of B

associated to P in 3.7. Then for any x ∈ F, since P ⊂ G ◦F (O) ⊂ G ◦x (O) = P (3.6(ii)),
G ◦F (O) = P and hence the natural O-group scheme homomorphism G ◦F → G ◦x is an
isomorphism. In particular, for any facet F of B(H/K) that meets F, G ◦F = G ◦F .

Proposition 3.15. Let F be a facet of B. Then the κ-unipotent radical Ru,κ(G
◦
F)

of G
◦
F equals (G

◦
F ∩Ru,κ(H

◦
F))
◦
.

Let F and F′ be two facets of B, with F′ ≺ F. Then:

(i) The kernel of the induced homomorphism ρGF′,F : G
◦
F → G

◦
F′ between the special

fibers is a smooth unipotent κ-subgroup of G
◦
F and the image p(F′/F) is a pseudo-

parabolic κ-subgroup of G
◦
F′.

(ii) If F and F ′ are facets of B(H/K), F ′ ≺ F , that meet F and F′ respectively,

then p(F′/F) = (Q
Θ

)◦, where Q is the image of ρF ′,F : H
◦
F →H

◦
F ′.

(iii) The inverse image of the subgroup p(F′/F)(κ) of G
◦
F′(κ), under the natural

surjective homomorphism G ◦F′(O)→ G
◦
F′(κ), is ρGF′,F(G ◦F (O)) (⊂ G ◦F′(O)).

Given a pseudo-parabolic κ-subgroup P of G
◦
F′, there is a facet F of B with F′ ≺ F

such that the image of the homomorphism ρGF′,F : G
◦
F → G

◦
F′ equals P.

Proof. The first assertion of the proposition follows immediately from Lemma 3.10(i).

To prove (i), we fix x ∈ F′ and let F ′ be the facet of B(H/K) containing x.
As the closure of F contains x, there is a facet F of B(H/K) that meets F and
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contains x in its closure. Then F ′ ⊂ F , i.e., F ′ ≺ F , and F and F ′ meet F and
F′ respectively. Hence, G ◦F = G ◦F = (H Θ

F )
◦

and G ◦F′ = G ◦F ′ = (H Θ
F ′ )
◦

(3.14). Now

we will prove assertions (i) and (ii) together. The kernel K of the homomorphism

ρF ′,F : H
◦
F →H

◦
F ′ is a smooth unipotent κ-subgroup, and the image Q is a pseudo-

parabolic κ-subgroup of H
◦
F ′ [P2, 1.10 (1), (2)]. The pseudo-parabolic subgroup Q is

clearly Θ-stable as the facets F and F ′ are Θ-stable. The kernel of ρGF′,F is K ∩G
◦
F,

and its image is contained in (Q
Θ

)
◦
. Therefore, the kernel of ρGF′,F contains (K

Θ
)
◦

and is contained in K
Θ

. As K
Θ

is a smooth subgroup of K , we see that the kernel
of ρGF′,F is smooth.

Since the image of the Lie algebra homomorphism L(G
◦
F) → L(G

◦
F′) induced by

ρGF′,F is L(Q)Θ, the containment p(F′/F) = ρGF′,F(G
◦
F) ⊂ (Q

Θ
)
◦

is equality. Accord-

ing to Lemma 3.10(ii), (Q
Θ

)
◦

is a pseudo-parabolic κ-subgroup of G
◦
F′ .

To prove (iii), let F ′ ≺ F be as in the proof of (i) above and Q be the image

of ρF ′,F : H
◦
F → H

◦
F ′ . Then, as we saw above, Q is a Θ-stable pseudo-parabolic

κ-subgroup of H
◦
F ′ and p(F′/F) = P := (Q

Θ
)
◦
. The inverse image of the subgroup

Q(κ) of H
◦
F ′(κ) under the natural surjective homomorphism H ◦

F ′(O) → H
◦
F ′(κ)

equals ρF ′,F (H ◦
F (O)) (⊂ H ◦

F ′(O)), see [P2, 1.10 (4)]. Let GF = (H ◦
F )Θ and GF ′ =

(H ◦
F ′)

Θ. We will denote the O-group scheme homomorphism GF → GF ′ induced by

ρF ′,F by ρΘ
F ′,F ; the corresponding homomorphism G F → G F ′ between the special

fibers of GF and GF ′ will be denoted by ρΘ
F ′,F . The neutral components of GF and

GF ′ are G ◦F and G ◦F′ respectively (3.14). Let G \
F (⊃ G ◦F ) be the inverse image of G ◦F′ in

GF under ρΘ
F ′,F . Since the homomorphism ρF ′,F is the identity on the generic fiber

H, we infer that h ∈ H ◦
F (O) is fixed under Θ if and only if so is ρF ′,F (h), and as

the generic fiber of both G ◦F and G ◦F′ is G, the generic fiber of G \
F is also G. It is

easily seen now that the inverse image of the subgroup p(F′/F)(κ) of G
◦
F′(κ), under

the natural surjective homomorphism G ◦F′(O) → G
◦
F′(κ), is ρΘ

F ′,F (G \
F (O)). We will

presently show that the last group equals ρGF′,F(G ◦F (O)), this will prove (iii).

G \
F is the union of its generic fiber G and its special fiber G

\
F ; and the identity

component of G
\
F is clearly G

◦
F. We have shown above that the image P of G

◦
F under

the homomorphism ρGF′,F is a pseudo-parabolic κ-subgroup of G
◦
F′ and the kernel of

this homomorphism is smooth. Hence, as κ is separably closed, ρGF′,F(G
◦
F(κ)) =

P(κ). So, according to [CGP, Thm. C.2.23], there is a pseudo-parabolic κ-subgroup

P
′

of G
◦
F′ , that contains P, such that ρΘ

F ′,F (G
\
F (κ)) = P

′
(κ). But since κ is

infinite, P
′
(κ)/P(κ) is infinite unless P

′
= P. So we conclude that P

′
= P,

and then ρΘ
F ′,F (G

\
F (κ)) = P(κ) = ρGF′,F(G

◦
F(κ)). Now using this, and the fact that

the natural homomorphism G ◦F (O) → G
◦
F(κ) is surjective (since O is henselian and
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G ◦F is smooth, [EGA IV4, 18.5.17]) and the kernel of this homomorphism equals

the kernel of the natural surjective homomorphism G \
F (O) → G

\
F (κ), we see that

ρGF′,F(G ◦F (O)) = ρΘ
F ′,F (G \

F (O)). This proves (iii).

Finally, to prove the last assertion of the proposition, we fix a facet F ′ of B(H/K)
that meets F′. Then G ◦F′ = G ◦F ′ (3.14). Using Lemma 3.10(iii) for κ in place of k

and H
◦
F ′ in place of H, we find a Θ-stable pseudo-parabolic κ-subgroup Q of H

◦
F ′

such that P = (Q
Θ

)
◦
. Let (F ′ ≺)F be the facet of B(H/K) corresponding to

the pseudo-parabolic κ-subgroup Q of H
◦
F ′ . Then F is stable under Θ-action. As

F ′ ≺ F , there is a natural O-group scheme homomorphism ρF ′,F : H ◦
F → H ◦

F ′

that restricts to a O-group scheme homomorphism ρGF ′,F : G ◦F → G ◦F ′ . Let Q be

the image of the former. Then according to (ii), the image of the latter is (Q
Θ

)◦ =
P. Let P = G ◦F (O) ⊂ G ◦F ′(O) =: Q, and F = FP . Then P ⊂ Q are parahoric

subgroups of G(K), F′ = FQ ⊂ FQ ⊂ FP = F, thus F′ ≺ F. As F and F ′ meet
F and F′ respectively, G ◦F = G ◦F and G ◦F′ = G ◦F ′ (3.14), and hence the image of the

homomorphism ρGF′,F : G
◦
F → G

◦
F′ equals P. �

Proposition 3.15 and [CGP, Propositions 2.2.10 and 3.5.1] imply the following.
(Recall that the residue field κ of K has been assumed to be separably closed!)

Corollary 3.16. (i) A facet F of B is a chamber (=maximal facet) if and only if G
◦
F

does not contain a proper pseudo-parabolic κ-subgroup. Equivalently, F is a chamber

if and only if the pseudo-reductive quotient G
pred
F is commutative (this is the case if

and only if G
pred
F contains a unique maximal κ-torus, or, equivalently, every torus

of this pseudo-reductive group is central ).

(ii)The codimension of a facet F of B equals the κ-rank of the derived subgroup

of the pseudo-split pseudo-reductive quotient G
pred
F := G

◦
F/Ru,κ(G

◦
F) of G

◦
F.

We will now establish the following analogues of Propositions 3.5–3.7 of [P2].

Proposition 3.17. Let A be an apartment of B, and C, C′ two chambers in A.
Then there is a gallery joining C and C′ in A, i.e., there is a finite sequence

C = C0, C1, . . . , Cm = C′

of chambers in A such that for i with 1 6 i 6 m, Ci−1 and Ci share a face of
codimension 1.

Proof. Let A2 be the codimension 2-skelton of A, i.e., the union of all facets in A of
codimension at least 2. Then A2 is a closed subset of A of codimension 2, so A−A2

is a connected open subset of the affine space A. Hence A−A2 is arcwise connected.
This implies that given points x ∈ C and x′ ∈ C′, there is a piecewise linear curve
in A − A2 joining x and x′. Now the chambers in A that meet this curve make a
gallery joining C to C′. �
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As the central torus of G is K-anisotropic, the dimension of any apartment, or
any chamber, in B is equal to the K-rank of G. A panel in B is by definition a facet
of codimension 1.

Proposition 3.18. B is thick, that is any panel is a face of at least three chambers,
and every apartment of B is thin, that is any panel lying in an apartment is a face
of exactly two chambers of the apartment.

Proof. Let F be a facet of B that is not a chamber, and C be a chamber of which F is
a face. Then there is an O-group scheme homomorphism ρGF,C : G ◦C → G ◦F (3.2). The

image of G
◦
C in G

◦
F, under the induced homomorphism of special fibers, is a minimal

pseudo-parabolic κ-subgroup of G
◦
F, and conversely, any minimal pseudo-parabolic

κ-subgroup of the latter determines a chamber of B with F as a face (Corollary

3.16). Now as κ is infinite, G
◦
F contains infinitely many minimal pseudo-parabolic

κ-subgroups. We conclude that F is a face of infinitely many chambers.

The second assertion follows at once from the following well-known result in alge-
braic topology: In any simplicial complex whose geometric realization is a topological
manifold without boundary (such as an apartment A of B), any simplex of codi-
mension 1 is a face of exactly two chambers (i.e., maximal dimensional simplices).
�

Proposition 3.19. Let A be an apartment of B and S be the maximal K-split
torus of G corresponding to this apartment. (Then A = B(ZH(S)/K)Θ.) The group
NG(S)(K) acts transitively on the set of chambers of A.

Proof. According to Proposition 3.17, given any two chambers in A, there exists
a minimal gallery in A joining these two chambers. So to prove the proposition
by induction on the length of a minimal gallery joining two chambers, it suffices to
prove that given two different chambers C and C′ in A which share a panel F, there
is an element n ∈ NG(S)(K) such that n · C = C′. Let G := G ◦F be the Bruhat-Tits
smooth affine O-group scheme associated with the panel F and S ⊂ G be the closed
O-torus with generic fiber S. Let G be the special fiber of G and S the special
fiber of S . Then S is a maximal torus of G . The chambers C and C′ correspond

to minimal pseudo-parabolic subgroups P and P
′

of G (Corollary 3.16). Both of
these minimal pseudo-parabolic κ-subgroups contain S since the chambers C and
C′ lie in A. But then by Theorems C.2.5 and C.2.3 of [CGP], there is an element

n ∈ G (κ) that normalizes S and conjugates P onto P
′
. Now from Proposition

2.1(iii) of [P2] we conclude that there is an element n ∈ NG (S )(O) lying over n. It
is clear that n normalizes S and hence it lies in NG(S)(K); it fixes F pointwise and
n · C = C′. �

Now in view of Propositions 2.14, 3.4, 3.17 and 3.18, Theorem 3.11 of [Ro] (cf. also
[P2, 1.8]) implies that B is an affine building if for any maximal K-split torus S of
G, B(ZH(S)/K)Θ is taken to be the corresponding apartment, and B is given the
polysimplicial structure described in 3.7. Thus we obtain the following:
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Theorem 3.20. B = B(H/K)Θ is an affine building. Its apartments are the affine
spaces B(ZH(S)/K)Θ under V (S) := R⊗Z X∗(S) for maximal K-split tori S of G.
Its facets are as in 3.7. The group G(K) acts on B by polysimplicial isometries.

From Propositions 2.15 and 3.19 we obtain the following.

Proposition 3.21. G(K) acts transitively on the set of ordered pairs (A,C) con-
sisting of an apartment A of B and a chamber C of A.

Remark 3.22. (i) As in [P2, 3.16], using the preceding proposition we can obtain
Tits systems in suitable subgroups of G(K).

(ii) As in [P2, §5], we can obtain filtration of root groups and a valuation of root
datum for G/K.

§4. Tamely-ramified descent

We begin by proving the following proposition:

Proposition 4.1. Let k be a field of characteristic p > 0. Let H be a noncommuta-
tive pseudo-reductive k-group, θ a k-automorphism of H of finite order not divisible
by p, and G := (H〈θ〉)

◦
. Then

(i) No maximal torus of G is central in H.

(ii) The centralizer in H of any maximal torus of G is commutative.

(iii) Given a maximal k-torus S of G, there is a θ-stable maximal k-torus of H

containing S.

(iv) If k is separably closed, then H contains a θ-stable proper pseudo-parabolic
k-subgroup.

Proof. We fix an algebraic closure k of k. Let H′ be the maximal reductive quotient
of Hk. As H is noncommutative, H′ is also noncommutative (see [CGP, Prop. 1.2.3]).

The automorphism θ induces a k-automorphism of H′ which we will denote again by
θ. According to a theorem of Steinberg [St, Thm. 7.5], Hk contains a θ-stable Borel
subgroup B, and this Borel subgroup contains a θ-stable maximal torus T. The
natural quotient map π : Hk → H′ carries T isomorphically onto a maximal torus
of H′. We endow the root system of H′ with respect to the maximal torus T′ :=
π(T)∩D(H′) of the derived subgroup D(H′) of H′ with the ordering determined by
the Borel subgroup π(B). Let a be the sum of all positive roots. Then as π(B) is θ-
stable, a is fixed under θ acting on the character group X(T′) of T′. Therefore, X(T′)
admits a nontrivial torsion-free quotient on which θ acts trivially. This implies that
T contains a nontrivial subtorus T that is fixed pointwise under θ and is mapped by
π into T′ (⊂ D(H′)). The subtorus T is therefore contained in Gk. Since the center
of the semi-simple group D(H′) does not contain a nontrivial smooth connected
subgroup, we infer that T is not central in Hk. Thus the subgroup Gk contains a
noncentral torus of Hk. Now by conjugacy of maximal tori in Gk, we see that no
maximal torus of this group can be central in Hk. This proves (i).
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To prove (ii), let S be a maximal torus of G. Then the centralizer ZH(S) of S in

H is a θ-stable pseudo-reductive subgroup of H, and (ZH(S)〈θ〉)
◦

= ZG(S). As S is
a maximal torus of ZG(S) that is central in ZH(S), if ZH(S) were noncommutative,
we could apply (i) to this subgroup in place of H to get a contradiction.

To prove (iii), we consider the centralizer ZH(S) of S in H. This centralizer is θ-
stable and commutative according to (ii). The unique maximal k-torus of it contains
S and is a θ-stable maximal torus of H.

To prove (iv), we assume now that k is separably closed and let S be a maximal
torus of G. Then S is k-split, and in view of (i), there is a 1-parameter subgroup
λ : GL1 → S whose image is not central in H. Then PH(λ) is a θ-stable proper
pseudo-parabolic k-subgroup of H. �

In the following proposition we will use the notation introduced in §§1, 2. As
in 2.4, we will assume that H is semi-simple and the central torus of G is K-
anisotropic. We will further assume that H is K-isotropic, Θ is a finite cyclic group
of automorphisms of H, and p does not divide the order of Θ.

Proposition 4.2. The Bruhat-Tits building B(H/K) of H(K) contains a Θ-stable
chamber.

Proof. Let F be a Θ-stable facet of B(H/K) that is maximal among the Θ-stable
facets. Let H := H ◦

F be the Bruhat-Tits smooth affine O-group scheme with generic

fiber H, and connected special fiber H , corresponding to F . Let H := H /Ru,κ(H )

be the maximal pseudo-reductive quotient of H . In case H is commutative, H
does not contain a proper pseudo-parabolic κ-subgroup and so F is a chamber of
B(H/K). We assume, if possible, that H is not commutative. As F is stable under
the action of Θ, there is a natural action of this finite cyclic group on H by O-
group scheme automorphisms (2.4). This action induces an action of Θ on H , and
so also on its pseudo-reductive quotient H. Now taking θ to be a generator of Θ,
and using the preceding proposition for H/κ, we conclude that H contains a Θ-
stable proper pseudo-parabolic κ-subgroup. The inverse image P in H of any such
pseudo-parabolic subgroup of H is a Θ-stable proper pseudo-parabolic κ-subgroup
of H . The facet F ′ corresponding to P is Θ-stable and F ≺ F ′. This contradicts
the maximality of F . Hence, H is commutative and F is a chamber. �

To prove the next theorem (Theorem 4.4), we will use the following:

Proposition 4.3. Let K be a field complete with respect to a discrete valuation and
with separably closed residue field. Let G be a connected absolutely simple K-group
of inner type A that splits over a finite tamely-ramified field extension L of K. Then
G is K-split.

Proof. We may (and do) assume that G is simply connected. Then G is K-isomorphic
to SLn,D, where D is a finite dimensional division algebra with center K that splits
over the finite tamely-ramified field extension L of K. By Propositions 4 and 12 of
[S, Ch. II] the degree of D is a power of p, where p is the characteristic of the residue
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field of K. But a noncommutative division algebra of degree a power of p cannot
split over a field extension of degree prime to p. So, D = K, hence G ' SLn is
K-split. �

Theorem 4.4. A semi-simple K-group G that is quasi-split over a finite tamely-
ramified field extension of K is already quasi-split over K.

This theorem has been proved by Philippe Gille in [Gi] by an entirely different
method.

Proof. We assume that all field extensions appearing in this proof are contained
in a fixed separable closure of K. To prove the theorem, we may (and do) replace
G by its simply-connected central cover and assume that G is simply connected.
Let S be a maximal K-split torus of G. Then G is quasi-split over a (separable)
extension L of K if and only if the derived subgroup ZG(S)′ of the centralizer ZG(S)
of S is quasi-split over L. Moreover, G is quasi-split over K if and only if ZG(S)′

is trivial. Therefore, to prove the theorem we need to show that any semi-simple
simply connected K-anisotropic K-group that is quasi-split over a finite tamely-
ramified field extension of K is necessarily trivial. Let G be any such group.

There exists a finite indexing set I, and for each i ∈ I, a finite separable field
extension Ki of K and an absolutely almost simple simply connected Ki-anisotropic
Ki-group Gi such that G =

∏
i∈I RKi/K(Gi). Now G is quasi-split over a finite

separable field extension L of K if and only if for each i, RKi/K(Gi) is quasi-split
over L. But RKi/K(Gi) is quasi-split over L if and only if Gi is quasi-split over the
compositum Li := KiL. For i ∈ I, the finite extension Ki of K is complete and its
residue field is separably closed, and if L is a finite tamely-ramified field extension of
K, then Li is a finite tamely-ramified field extension of Ki. So to prove the theorem,
we may (and do) replace K by Ki and G by Gi to assume that G is an absolutely
almost simple simply connected K-anisotropic K-group that is quasi-split over a
finite tamely-ramified field extension of K. We will show that such a group G is
trivial.

Let L be a finite tamely-ramified field extension of K of minimal degree over
which G is quasi-split. Since the residue field κ of K is separably closed, L is a
cyclic extension of K. Let Θ be the Galois group of L/K. Then Θ is a finite cyclic
group of order not divisible by p (= char(κ)).

As GL is quasi-split, Bruhat-Tits theory is available for G over L [BrT2, §4].
The Galois group Θ acts on G(L) by continuous automorphisms and so it acts on
the Bruhat-Tits building B(G/L) of G(L) by polysimplicial isometries. Let H =
RL/K(GL). Then H is quasi-split over K and hence Bruhat-Tits theory is also
available for H over K. Let B(H/K) be the Bruhat-Tits building of H(K) (= G(L)).
Elements of Θ act by K-automorphisms on H and so on B(H/K) by polysimplicial
isometries; moreover, G = HΘ. There is a natural Θ-equivariant identification of the
building B(H/K) with the building B(G/L). (Note that K-rankH = L-rankGL,
and there is a natural bijective correspondence between the set of maximal K-split
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tori of H and the set of maximal L-split tori of GL, see [CGP, Prop. A.5.15(2)].
This correspondence will be used below.) The results of §3 imply that Bruhat-Tits
theory is available for G over K and B := B(H/K)Θ (= B(G/L)Θ) is the Bruhat-
Tits building of G(K).

Since G is K-anisotropic, the building of G(K) consists of a single point, hence
Θ fixes a unique point of B(G/L). Let C be the facet of B(G/L) that contains
this point. Then C is stable under Θ. According to Proposition 4.2, C is a cham-
ber. Let H := H ◦

C be the Bruhat-Tits smooth affine O-group scheme associ-

ated to C with generic fiber H and connected special fiber H . As C is a cham-

ber, the maximal pseudo-reductive quotient H
pred

of H is commutative [P2, 1.10].
Now using Proposition 2.6 for Ω = C = F we obtain a Θ-stable maximal K-split
torus T of H such that C lies in the apartment A(T ) corresponding to T (and the
special fiber of the schematic closure of T in H maps onto the maximal torus

of H
pred

). Let T ′ be the image of TL under the natural surjective homomor-
phism q : HL = RL/K(GL)L → GL. Then T ′ is a L-torus of GL and according
to [CGP, Prop. A.5.15(2)] it is the unique maximal L-split torus of GL such that
RL/K(T ′) (⊂ RL/K(GL) = H) contains the maximal K-split torus T of H.

We identify H(K) with G(L). Then for x ∈ H(K)(⊂ H(L)) and θ ∈ Θ, we have
q(θ(x)) = θ(x). Since T (K) is Θ-stable, for t ∈ T (K) and θ ∈ Θ, θ(t) lies in T ′(L).
Now as T (K) is Zariski-dense in T , its image in T ′(L) is Zariski-dense in T ′. Since
this image is stable under the action of Θ = Gal(L/K) on G(L), from the Galois
criterion [Bo, Ch. AG, Thm. 14.4(3)] we infer that T ′ descends to a K-torus of G,
i.e., there is a K-torus T of G such that T ′ = TL. In the natural identification
of B(H/K) with B(G/L), the apartment A(T ) of the former is Θ-equivariantly
identified with the apartment A(T ′) of the latter. We will view the chamber C as a
Θ-stable chamber in A(T ′).

Let ∆ be the basis of the affine root system of the absolutely almost simple,
simply connected quasi-split L-group GL with respect to T ′ (= TL), determined by
the Θ-stable chamber C [BrT2, §4]. Then ∆ is stable under the action of Θ on
the affine root system of GL with respect to T ′. There is a natural Θ-equivariant
bijective correspondence between the set of vertices of C and ∆. Since B, and hence
CΘ, consists of a single point, Θ acts transitively on the set of vertices of C so it
acts transitively on ∆. Now from the classification of irreducible affine root systems
[BrT1, §1.4.6], we see that GL is a split group of type An for some n. Proposition
4.3 implies that G cannot be of inner type An over K. On the other hand, if G
is of outer type An, then over a quadratic Galois extension K ′ (⊂ L) of K it is of
inner type. Now, according to Proposition 4.3, G splits over K ′. We conclude that
L = K ′ and hence #Θ = 2. As Θ acts transitively on ∆ and #∆ = n+ 1, we infer
that n+ 1 = 2, i.e., n = 1, and then G is of inner type, a contradiction. �
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4.5. Now let k be a field endowed with a nonarchimedean discrete valuation. We
assume that the valuation ring of k is Henselian. Let K be the maximal unram-
ified extension of k, and L be a finite tamely-ramified field extension of K with
Galois group Θ := Gal(L/K). Let G be a connected reductive k-group that is
quasi-split over K and H = RL/K(GL). Then G = HΘ, and by Theorem 3.20,
the Bruhat-Tits building B(G/K) of G(K) can be identified with the subspace of
points in the Bruhat-Tits building of G(L) (= H(K)) that are fixed under Θ (with
polysimplicial structure on B(G/K) as in 3.7). Now by “unramified descent” [P2],
Bruhat-Tits theory is available for G over k and the Bruhat-Tits building of G(k) is

B(G/K)Gal(K/k).
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Heidelberg (1990).
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[E] B. Edixhoven, Néron models and tame ramification. Comp. Math. 81(1992), 291-
306.

[GGM] O. Gabber, P. Gille and L. Moret-Bailly, Fibrés principaux sur les corps valués
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schémas et des morphismes de schémas, Publ. Math. IHES 32(1967), 5-361.

[P1] G. Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group.
Bull. Soc. Math. France 129(2001), 169-174.

[P2] G. Prasad, A new approach to unramified descent in Bruhat-Tits theory. Amer-
ican J. Math. (to appear).

[PY1] G. Prasad and J.-K. Yu, On finite group actions on reductive groups and build-
ings. Invent. Math. 147(2002), 545–560.

[PY2] G. Prasad and J.-K. Yu, On quasi-reductive group schemes. J. Alg. Geom.
15 (2006), 507-549.



FINITE GROUP ACTIONS AND TAMELY-RAMIFIED DESCENT 29

[Ri] R. Richardson, On orbits of algebraic groups and Lie groups, Bull. Australian
Math. Soc. 25(1982), 1-28.

[Ro] M. Ronan, Lectures on buildings. University of Chicago Press, Chicago (2009).

[Rou] G. Rousseau, Immeubles des groupes réductifs sur les corps locaux, University
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