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Structure and classification of pseudo-reductive groups

Brian Conrad and Gopal Prasad

Abstract. The theory of pseudo-reductive groups, developed by the authors
jointly with Gabber [CGP], was motivated by applications to finiteness theo-

rems over local and global function fields. Subsequent work [CP] aimed at a
more comprehensive understanding of exceptional behavior in characteristic 2

yielded improvements to the general theory in all positive characteristics and

a classification theorem in terms of a “generalized standard” construction over
arbitrary fields (depending on many ingredients from the initial work [CGP]).

We provide an overview of the general theory from the vantage point of

improvements found during the more recent work and survey the proof of the
general classification theorem, including examples and applications illustrating

many phenomena.
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1. Introduction

1.1. Motivation. Let G be a smooth connected affine group over a field k.
The theory of pseudo-reductive groups begins with the observation that the unipo-
tent radical Ru(Gk) over an algebraic closure k of k generally does not arise from a
k-subgroup of G when k is not perfect (though it always does when k is perfect, by
Galois descent); see Example 1.2.3 for the most basic counterexamples over every
imperfect field.

Such failure of k-descent arises almost immediately upon confronting several
natural questions in the arithmetic of linear algebraic groups over global function
fields over finite fields. This was the reason that the authors with Gabber first inves-
tigated pseudo-reductive groups, which we later learned had been studied by Borel
and Tits as part of their work on rational conjugacy theorems for general smooth
connected affine groups (announcing some results in [BoTi3] without proofs).

An important ingredient missing in the work of Borel and Tits is the “standard
construction” (see §2.2). One of the main results emerging from [CGP] and [CP] is
that all pseudo-reductive groups are “standard” away from characteristics 2 and 3
and that the“non-standard” possibilities in characteristics 2 and 3 can be described
in a useful way via a “generalized standard” construction (see §10.2). The story of
standardness and how it can fail in small characteristics underlies the most interest-
ing arithmetic applications and provides a valuable guide to the characteristic-free
general structure theory.
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The proof of the ubiquity of the generalized standard construction in [CP]
depends on many results in [CGP], in addition to requiring further new techniques.
This survey is a user’s guide to that proof.

Remark 1.1.1. The nearly 900-page total length of [CGP] and [CP] is due
to the treatment of many topics, some of which are not directly relevant to the
study of generalized standardness. To provide a geodesic path through the proof
that most pseudo-reductive groups are standard (in fact, away from characteristics
2 and 3 all pseudo-reductive groups are standard), and that every pseudo-reductive
group (over an arbitrary field) has a canonical pseudo-reductive central quotient
that is generalized standard, we use some of the newer ideas in [CP].

In this survey we aim to supply enough discussion of intermediate results,
proofs, and examples to give the reader a sense of the scope and usefulness of the
overall theory, but some topics are only touched upon here in an abbreviated form;
e.g., the difficult construction (via birational group laws) of “split” pseudo-reductive
groups with an irreducible non-reduced root system of any rank (over any imperfect
field of characteristic 2) is only briefly described.

The robust theory of root groups and open cells in pseudo-reductive groups,
as given in [CGP, Ch. 3], rests on scheme-theoretic dynamic techniques with 1-
parameter subgroups described in [CGP, Ch. 2]. Although the theory of pseudo-
reductive groups rests on the theory of reductive groups, the same dynamic methods
can also be used to simplify the development of the theory of reductive groups
(even over rings [C3]). In this article we will survey dynamic methods (and their
applications to root groups and root systems), the general structure theory, and
Galois-twisted forms. This includes a Tits-style classification of perfect pseudo-
reductive groups G (see [CP, §6.3]) in the spirit of Tits’ work [Ti1] (completed by
Selbach [Sel]) in the connected semisimple case.

Remark 1.1.2. It is surprising that a Tits-style classification theorem holds
in the perfect pseudo-reductive case because a “Chevalley form” (i.e., ks/k-form
admitting a k-split maximal k-torus) generally does not exist, even over every local
and global function field (see [CP, Ex. C.1.6]).

The main point of the theory of pseudo-reductive groups is two-fold:

(i) problems for arbitrary linear algebraic groups over imperfect fields k can
often be reduced to the pseudo-reductive case, but there is generally no
simple way to reduce rationality problems to the reductive case,

(ii) there is a rich structure theory for pseudo-reductive groups G in terms of
root systems, root groups, and open cells similar to the reductive case.

In (ii) there are subtleties not encountered in the reductive case; e.g., there is no
link to SL2 with which one can develop the structure of root groups and open
cells in the pseudo-reductive case, root groups can have very large dimension even
if k = ks, and in the perfect pseudo-reductive case the automorphism functor is
represented by an affine k-group scheme that is generally non-smooth with maximal
smooth closed k-subgroup whose identity component is larger than G/ZG.

Example 1.1.3. An interesting rationality question for which the difficulties
alluded to in (i) block any easy inference from the reductive case is this: if G is a
smooth connected affine group over a field k then is G(k)-conjugation transitive on
the set of maximal split k-tori in G? The answer is well-known to be affirmative
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for reductive G [Bo2, 20.9(ii)], and was announced in general (without proof) by
Borel and Tits in [BoTi3]; a complete proof is given in [CGP, Thm. C.2.3]. We
will present this result as Theorem 4.2.9, its proof makes use of the structure of
pseudo-reductive groups via Theorem 4.2.4.

One source of arithmetic motivation for the development of the general theory of
pseudo-reductive groups was the desire to strengthen results in Oesterlé’s beautiful
work [Oes] on Tamagawa numbers for smooth connected affine groups over global
function fields over finite fields. For example, parts of [Oes] were conditional on
the finiteness of the degree-1 Tate–Shafarevich set

X1
S(k,G) := ker(H1(k,G) −→

∏
v 6∈S

H1(kv, G))

for any smooth connected affine group G over a global function field k and finite
set S of places of k. (The analogous finiteness problem with k a number field was
settled affirmatively by Borel and Serre [BS, Thm. 7.1] by using several ingredients:
a finiteness result for adelic coset spaces [Bo1, Thm. 5.4], finiteness of degree-1
Galois cohomology of linear algebraic groups over local fields of characteristic 0,
and class field theory. Their approach does not adapt to positive characteristic.)

A well-known application of the finiteness of X1
S(k,G), going back to [BS]

over number fields, is to finiteness aspects of the failure of local-global principles for
homogeneous spaces over k (see Example 1.1.4 below). But even for homogeneous
spaces under “nice” groups, it is the Tate–Shafarevich sets of stabilizer subgroup
schemes (at k-points) that are relevant. Since such subgroup schemes can be non-
smooth when char(k) > 0, one wants finiteness for X1

S(k,G) without smoothness
hypotheses on G (in which case H1(k,G) denotes the set of isomorphism classes of
G-torsors for the fppf topology over k, and likewise over each kv). The avoidance
of smoothness is not a trivial matter, since if k is imperfect then in general Gred is
not k-smooth, nor even a k-subgroup of G (see [CGP, Ex. A.8.3] for examples).

Example 1.1.4. Let k be a global field, X a homogeneous space for an affine
k-group scheme H of finite type, and S a finite set of places of k. For the equiv-
alence relation on X(k) of being in the same H(kv)-orbit for all v 6∈ S, does each
equivalence class consist of only finitely many H(k)-orbits? (More informally, is the
failure of a local-to-global principle for the H-action on X governed by a finite set?)
This problem for the equivalence class of a point x0 ∈ X(k) is very quickly reduced
to the question of finiteness of X1

S(k,Hx0
), where Hx0

:= {h ∈ H |h.x0 = x0} is
the scheme-theoretic stabilizer of x0 in X; see the beginning of [C2, §6] for this
well-known reduction step.

Even if H is connected reductive, the stabilizer Hx0
may be arbitrarily bad

(e.g., if X = GLn/G for a closed k-subgroup scheme G ⊂ GLn =: H and x0 = 1
then Hx0

= G). By a trick with torsors when char(k) > 0, the general question of
finiteness of X1

S(k,G) for affine k-group schemes G of finite type can be reduced
to the case of smooth connected affine G; see [C2, Lemma 6.1.1, §6.2].

The finiteness of X1
S(k,G) for connected semisimple G is a consequence of the

Hasse Principle for simply connected semisimple k-groups (see [Ha2, Satz A] and
[BP, App. B] when char(k) > 0), and for commutative G it is a consequence of class
field theory and the structure theory of Tits [CGP, App. B] for possibly non-split
smooth connected unipotent groups over imperfect fields when char(k) > 0 (see
[Oes, IV, 2.6(a)]).
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The analogous general finiteness problem over number fields is deduced from
the settled semisimple and commutative cases in [BS] using that Ru(Gk) descends
to a smooth connected unipotent normal k-subgroup U ⊂ G (which moreover must
be k-split) since k is perfect. But no such k-descent U generally exists when k is not
perfect (see Examples 1.2.3 and 1.2.4). The structure theory of pseudo-reductive
groups, especially the role of the “standard construction”, makes possible what may
presently appear to be impossible: to deduce the finiteness of X1

S(k,G) for general
smooth connected affine k-groups G from the settled commutative case (over k)
and semisimple case (over finite extensions of k).

1.2. Initial definitions and examples. Let G be a smooth connected affine
group over a field k. In the absence of a descent of Ru(Gk) ⊂ Gk to a k-subgroup
of G, the following notion is the best substitute:

Definition 1.2.1. The k-unipotent radical Ru,k(G) is the maximal smooth
connected unipotent normal k-subgroup of G.

If K/k is any extension field then obviously

(1.2.1.1) Ru,k(G)K ⊂ Ru,K(GK).

Standard spreading-out and specialization arguments yield equality in (1.2.1.1) if
K/k is separable [CGP, Prop. 1.1.9(1)], such as when K = ks or when k is the
function field of a regular curve X (or higher-dimensional normal variety) over a
field and K is the fraction field of the completed local ring O∧X,x at a point x ∈ X.

If K/k is not separable, such as K = k when k is imperfect, then the inclusion
(1.2.1.1) is generally strict. To make examples with non-equality in (1.2.1.1) we
shall use Weil restriction Rk′/k through a finite extension of fields k′/k that is not
separable, so let us first review why Rk′/k is a very well-behaved operation when
k′/k is separable. The key point is that the product decomposition k′⊗kks =

∏
σ ks

defined by a′ ⊗ b 7→ (σ(a′)b), with σ varying through the set of k-embeddings of k′

into ks, yields a direct product decomposition of ks-schemes

(1.2.1.2) Rk′/k(X ′)ks = R(k′⊗kks)/ks(X ′k′⊗kks
) =

∏
σ

(X ′ ⊗k′,σ ks)

for any quasi-projective k′-scheme X ′. For example, if G′ is a connected reductive
k′-group then Rk′/k(G′) is a connected reductive k-group since Rk′/k(G′)ks is a
direct product of connected reductive groups.

Remark 1.2.2. For a finite extension of fields k′/k, the Weil restriction func-
tor Rk′/k on quasi-projective k′-schemes preserves smoothness (by the infinitesimal

criterion) but if k′/k is not separable then the k-algebra k′⊗k k is not a direct prod-
uct of copies of k and consequently Rk′/k has bad properties (illustrated in [CGP,
A.5]): it generally destroys properness, surjectivity, geometric connectedness, geo-
metric irreducibility, and non-emptiness. Thus, the good behavior for separable
k′/k (inspired by the classical idea of viewing a d-dimensional complex manifold as
a 2d-dimensional real-analytic manifold by using the R-basis {1, i} of C to convert
local holomorphic coordinates into local real-analytic coordinates) is not generally
a useful guide to the non-separable case.

Here are examples in which Ru,k(G) = 1 but Ru,k(Gk) 6= 1, with k any imper-

fect field, so (1.2.1.1) fails to be an equality with K = k:
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Example 1.2.3. Let k be any imperfect field, with p = char(k) > 0, and let
k′/k be a nontrivial purely inseparable finite extension. The Weil restriction G =

Rk′/k(GL1) (informally, “k′
×

as a k-group”) is a commutative smooth connected
affine k-group. Explicitly, G is the Zariski-open subspace complementary to the
hypersurface defined by vanishing of the norm polynomial Nk′/k in the affine space
over k associated to the k-vector space k′, so G is smooth and connected with
dimension [k′ : k] > 1.

The commutative unipotent smooth connected k-group Ru,k(G) is trivial be-

cause the p-torsion group G(ks)[p] is equal to k′s
×

[p] = 1. However, Ru,k(Gk) 6= 1

since G is not a torus (as G/GL1 has dimension [k′ : k]− 1 > 0 and is killed by the
p-power [k′ : k], so it is unipotent).

More generally, if k′/k is a finite extension of fields and G′ is any connected
reductive k′-group then consideration of the functorial meaning of Weil restriction
(instead of using the crutch of commutativity as above) shows that G := Rk′/k(G′)
satisfies Ru,k(G) = 1 [CGP, Prop. 1.1.10]. However, if k′/k is not separable and
G′ 6= 1 then necessarily Ru,k(Gk) 6= 1 (see [CGP, Ex. 1.1.12, Ex. 1.6.1]).

Example 1.2.4. Let k′/k be a purely inseparable extension of degree p =
char(k) and consider G = Rk′/k(SLp)/Rk′/k(µp). The inclusion G ↪→ Rk′/k(PGLp)
has codimension dim Rk′/k(µp) = dim Rk′/k(GL1)[p] = p − 1 > 0 with image
D(Rk′/k(PGLp)) and Ru,k(G) = 1, but Ru,k(Gk) 6= 1 [CGP, Prop. 1.3.4, Ex. 1.3.5].

Definition 1.2.5. A pseudo-reductive k-group is a smooth connected affine
k-group G such that Ru,k(G) = 1. If also G = D(G) then G is pseudo-semisimple.

Example 1.2.6. A mild but very useful generalization of Example 1.2.3 is
given by direct products: the pseudo-reductive k-groups Rk′/k(G′) for nonzero
finite reduced k-algebras k′ and smooth affine k′-groupsG′ with connected reductive
fibers. (Concretely, if k′ =

∏
k′i for fields k′i and if G′i denotes the k′i-fiber of G′ then

Rk′/k(G′) =
∏

Rk′i/k
(G′i).) This construction is far from exhaustive: the pseudo-

reductive k-group G built in Example 1.2.4 is not a k-isogenous quotient of any
k-group of the form Rk′/k(G′) for a nonzero finite reduced k-algebra k′ and smooth
affine k′-group G′ with connected reductive fibers [CGP, Ex. 1.4.7].

Over perfect k pseudo-reductivity coincides with reductivity (in the connected
case), but Examples 1.2.3 and 1.2.4 provide many non-reductive pseudo-reductive
groups over any imperfect field. If we define the k-radical Rk(G) similarly to
Ru,k(G) by replacing “unipotent” with “solvable” then any pseudo-semisimple G
satisfies Rk(G) = 1 (as R(Gk) = Ru(Gk), since Gk is perfect) but the converse
is false! More specifically, for any imperfect field k of characteristic p > 0 and
degree-p purely inseparable extension k′/k, the Weil restriction G = Rk′/k(PGLp)
is pseudo-reductive (by Example 1.2.3) and satisfies G 6= D(G) (as we will explain
in Example 2.2.3) but Rk(G) = 1; see [CGP, Ex. 11.2.1].

If G is a smooth connected affine group over a field k then G/Ru,k(G) is clearly
pseudo-reductive, so every such G uniquely fits into a short exact sequence

(1.2.6) 1 −→ U −→ G −→ G/U −→ 1

expressing it as an extension of a pseudo-reductive k-group by a smooth connected
unipotent k-group U . The usefulness of (1.2.6) rests on being able to analyze the
outer terms. For the left term, this requires applying Tits’ structure theory for
smooth connected unipotent groups [CGP, App. B] because if k is not perfect then
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U is often not k-split (i.e., U may not admit a composition series consisting of
smooth closed k-subgroups with successive quotients k-isomorphic to Ga):

Example 1.2.7. If k′/k is a nontrivial purely inseparable finite extension in
characteristic p > 0 and G := Rk′/k(GLn)/GL1 with n > 1 then the central smooth
connected k-subgroup

U := Rk′/k(GL1)/GL1 = ker(G� Rk′/k(PGLn))

of dimension [k′ : k]− 1 > 0 is unipotent since it is killed by the p-power [k′ : k] yet
U does not contain Ga as a k-subgroup [CGP, Ex. B.2.8]. Thus, U is not k-split.

In §2.2 we will introduce the standard construction that builds many pseudo-
reductive groups from Weil restrictions of connected reductive groups over finite
extensions of k. (This construction also involves auxiliary commutative pseudo-
reductive k-groups.) The ubiquity of the standard construction when char(k) 6= 2, 3
leads to a useful general principle (requiring care in characteristics 2 and 3):

to solve a problem for general smooth connected affine k-groups,
the structure theory of pseudo-reductive k-groups should reduce
the task to the commutative case over k and the connected
semisimple case over all finite extensions k′/k.

The method by which one applies the structure theory to carry out such a reduction
depends on the specific problem under consideration. Here are two examples:

Example 1.2.8. Let k be a global function field over a finite field. In Exam-
ple 1.1.4 we saw that the problem of finiteness of degree-1 Tate–Shafarevich sets
X1

S(k,G) for arbitrary affine k-group schemes G of finite type and finite sets S
of places of k naturally leads one to the study of pseudo-reductive groups. After
reducing this problem to the case of smooth connected G, one can apply Galois-
twisting to (1.2.6) to eventually reduce to pseudo-reductive G; see [C2, §6.3]. (This
latter reduction is harder than its analogue over number fields because Ru,k(G) is
generally not k-split.)

Pseudo-reductivity has not yet played a role beyond its definition. The struc-
ture theory of pseudo-reductive groups, especially the ubiquity of the “standard
construction” away from characteristics 2 and 3 and a precise understanding of the
“non-standard” possibilities in characteristics 2 and 3, is what allows one to reduce
the pseudo-reductive case over k to the settled commutative case over k and the
settled semisimple case over finite extensions of k to solve the general finiteness
problem for X1

S(k,G) (see [C2, §6.4]).

Example 1.2.9. For global function fields k, the finiteness of the Tamagawa
number of any smooth connected affine k-group was settled by Harder [Ha1] and
Oesterlé [Oes, IV, 1.3] in the semisimple and commutative cases respectively, and
the general case is deduced from this via the structure theory of pseudo-reductive
groups in [C2, §7.3–§7.4]. This deduction uses standardness (and control of non-
standardness when char(k) = 2, 3) very differently from how standardness (and its
controlled failure in small characteristic) is used in the proof of finiteness of degree-1
Tate–Shafarevich sets.

The failure of the standard construction to be exhaustive in characteristics 2
and 3 is due to three sources (at least the first two of which below were known
to Tits in an embryonic form [Ti3, Cours 1991-92, 5.3, 6.4]). Firstly, one can
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make “exotic” generalizations of the standard construction by using non-central
Frobenius factorizations (see [CGP, §7.1, §7.4]) that exist in characteristic p > 0 if
and only if the Dynkin diagram has an edge of multiplicity p (i.e., p = 2, 3). Here
are constructions with p = 2:

Example 1.2.10. Over a field k of characteristic 2, consider the exceptional
isogeny between types Bn and Cn (n > 1, with B1 and C1 understood to denote
A1). This is given by πq : SO(q)→ Sp(Bq) for any non-degenerate quadratic space

(V, q) of dimension 2n+ 1 over k and the associated symplectic space (V/V ⊥, Bq)

of dimension 2n, where V ⊥ is the defect line of q and Bq is induced by the bilinear
form Bq(v, v

′) = q(v + v′)− q(v)− q(v′). The kernel of the composite map

Spin(q) −→ SO(q)
πq−→ Sp(Bq)

is killed by the Frobenius isogeny FSpin(q)/k : Spin(q) → Spin(q(2)) (with q(2) the
scalar extension of q by the squaring endomorphism of k), thereby yielding a non-
central factorization of FSpin(q)/k:

Spin(q) −→ Sp(Bq) −→ Spin(q(2)).

There is a not so widely known analogue of this Frobenius factorization for any
simply connected k-group G of type Cn (n > 2) in place of Spin(q). This is fully
explained in Example 7.5.5, and goes as follows. Among the minimal non-central
k-subgroup schemes of kerFG/k that are normal in G, there is a unique minimal

one; call it N . For G := G/N , the restriction to V := im(Lie(G)→ Lie(G)) of the
quadratic map X 7→ X [2] on Lie(G) is valued in a unique line L, and the resulting
quadratic form q : V → L is G-invariant and non-degenerate. The composite
k-homomorphism G → G → SO(q) uniquely factors through the central isogeny
Spin(q) → SO(q) via a purely inseparable isogeny G → Spin(q) through which
FG/k uniquely factors.

In §7.5 such non-central Frobenius factorizations yield non-standard pseudo-
semisimple k-groups H for which Hss

k
:= Hk/R(Hk) is simply connected of any

type Bn or Cn (n > 1) that we wish (and adapts to F4 for p = 2 and G2 for p = 3).

To describe a second source of non-standard examples, we need to make an ob-
servation concerning root systems associated to standard pseudo-reductive groups.
In §2.3 we will see that if G is a pseudo-reductive k-group and T is a split maximal
k-torus in G (as exists when k = ks) then the set Φ(G,T ) of nontrivial T -weights
on Lie(G) is a root system (spanning the Q-vector space X(T ′)Q for the maximal
k-torus T ′ := T ∩D(G) in D(G) that is an isogeny complement in T to the maxi-
mal central k-torus in G). Inspection of the standard construction shows that this
root system is always reduced when G is standard [CGP, Cor. 4.1.6], and in fact
without any standardness hypotheses Φ(G,T ) is reduced whenever char(k) 6= 2 (see
Theorem 3.1.7) or k is perfect.

Now choose an imperfect field k with characteristic 2 and an integer n > 1.
There exist pseudo-semisimple k-groups G with a split maximal k-torus T of di-
mension n such that Φ(G,T ) is the unique non-reduced irreducible root system
BCn of rank n. The construction of such G (see §8) is rather delicate, involving
birational group laws, in contrast with the preceding constructions that rest only
on concrete operations with affine groups via Weil restrictions and fiber products.
The existence of such k-groups G is ultimately due to the combinatorial fact that
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among all reduced and irreducible root systems, precisely type Cn (n > 1) admits
a root that is divisible in the weight lattice (and moreover only divisible by ±2).

Remark 1.2.11. The pseudo-semisimple groups G with root system BCn whose
construction is reviewed in §8 admit a natural quotient map f : G � G =
Rk′/k(Sp2n) for a nontrivial finite extension k′/k contained inside k1/2. If [k : k2] is

finite then such G can be built for which the induced map G(k)→ G(k) = Sp2n(k′)
is bijective, and the structure of G ensures that the inverse bijection is a coun-
terexample to a conjecture [BoTi2, 8.19] of Borel and Tits on the algebraicity
of certain “abstract” homomorphisms between connected linear algebraic groups,
even if we restrict to perfect connected linear algebraic groups. This affirms the
expectation of Borel and Tits that restrictions on k (e.g., avoidance of imperfect
fields of characteristic 2) may be needed in their conjecture.

A third source of non-standard pseudo-reductive groups occurs only over im-
perfect fields k of characteristic 2. In the rank-1 pseudo-semisimple case, one class
of such k-groups arises from purely inseparable finite extensions K/k and nonzero
proper kK2-subspaces V ⊂ K such that the ratios v′/v of nonzero elements of
V generate K as a k-algebra. Given such data, which exist over k if and only if
[k : k2] > 2, the k-subgroup HV,K/k ⊂ RK/k(SL2) generated by the points ( 1 v

0 1 )
and ( 1 0

v 1 ) for all v ∈ V is perfect and pseudo-reductive. The k-isomorphism class of
HV,K/k depends on V precisely up to K×-scaling, so this class of k-groups consti-
tutes a “continuous family”; it plays a role in the above birational construction for
BCn, and admits as higher-rank generalizations certain “special orthogonal” groups
attached to a distinguished class of degenerate quadratic forms in characteristic 2
(see §7.3). The properties of the k-groups HV,K/k are addressed in §7.2.

1.3. Terminology and Notation. For a finite flat extension B → B′ of
noetherian rings, we denote by RB′/B the Weil restriction functor assigning to any
quasi-projective B′-scheme X ′ the quasi-projective B-scheme RB′/B(X ′) represent-
ing the functor on B-algebras A  X ′(A ⊗B B′); we refer the reader to [CGP,
A.5] for a discussion of the existence and basic properties of this functor (especially
beyond the classical case when B′ is finite étale over B).

For any scheme X, the underlying reduced closed subscheme (with the same
topological space) is denoted Xred. For a group scheme H of finite type over a field
k, Hsm denotes the maximal smooth closed k-subgroup; see [CGP, C.4.1–C.4.2]
for its existence and basic properties and see [CGP, A.8.2] for the equality with
Hred when H is of multiplicative type (but Hsm is usually much smaller than Hred;
see [CGP, A.8.3, C.4.2] for examples).

For a smooth affine group G over a field k, Gred
k

denotes the quotient of Gk
modulo its unipotent radical; we define Gss

k
similarly using the radical. A finite-

dimensional quadratic space (V, q) over a field k is non-degenerate if q 6= 0 and the
projective hypersurface (q = 0) ⊂ P(V ∗) is k-smooth.

For a group scheme G of finite type over a field k and smooth closed k-subgroup
H, the scheme-theoretic centralizer ZG(H) is the closed k-subgroup scheme of G
representing the functor assigning to any k-algebra A the group of points g ∈ G(A)
whose conjugation action on the A-group GA is trivial on HA; see [CGP, A.1.9ff.]
for the existence of ZG(H). In the special case H = G (with G smooth) it is called
the scheme-theoretic center and is denoted by ZG (e.g., ZSLn

= µn for all integers



10 BRIAN CONRAD AND GOPAL PRASAD

n > 1). The existence and basic properties of ZG(H) when H is of multiplicative
type (but possibly not smooth) is addressed in [CGP, Prop. A.8.10].

Whenever we speak of “centralizer”, “kernel” (for a homomorphism), and “in-
tersection” (of closed subgroup schemes), it is always understood that we intend
the scheme-theoretic notions (which may not be smooth). In [CGP, A.1] many ba-
sic definitions in the group scheme context are reviewed and the relationship with
more classical definitions (when available) is discussed, such as quotients modulo
closed subgroups.

1.4. Simplifications and corrections. In addition to surveying the com-
bined works [CGP] and [CP], we have taken the opportunity to provide some
simplifications and improvements, as well as a few corrections. For the convenience
of the reader we highlight those items here, beginning with the simplifications.

(i) It is an important fact in the general theory that the Weil restriction
Rk′/k(G′) is perfect for any (possibly non-separable) finite extension of
fields k′/k and connected semisimple k′-group G′ that is simply connected.
The original proof given in [CGP, Cor. A.7.11] relies on group scheme
techniques over artinian rings; in Proposition 2.2.4 we provide a shorter
and simpler proof using only smooth affine groups over fields.

(ii) In the study of pseudo-reductivity, an important notion is that of a pseudo-
parabolic k-subgroup of a smooth connected affine k-group G. The def-
inition of pseudo-parabolicity via a dynamic procedure (rather than by
a geometric property of the associated coset space), given in Definition
2.3.6, may initially look ad hoc. However, it is a powerful concept (and is
equivalent to parabolicity when G is reductive).

As for parabolic k-subgroups, every pseudo-parabolic k-subgroup of a
smooth connected affine k-group G is its own scheme-theoretic normalizer;
we give a proof of this fact in Theorem 4.3.6 that is substantially simpler
than the proof given in [CGP, Prop. 3.5.7].

(iii) It is very useful that any pseudo-reductive k-group G admitting a split
maximal k-torus T (such as whenever k = ks) contains a Levi k-subgroup
L ⊃ T (i.e., Lk → Gred

k
is an isomorphism); moreover, one can control the

position inside G of the simple positive root groups for L. The proof here
as Theorem 5.4.4 is simpler than the one in [CGP, Thm. 3.4.6].

(iv) The first main classification theorem in the general theory of pseudo-
reductive groups is that the standard construction is ubiquitous away from
specific situations over imperfect fields of characteristics 2 and 3. This is
made precise in the absolutely pseudo-simple case in Theorem 7.4.8, whose
proof is much simpler than the one in [CGP, Cor. 6.3.5, Prop. 6.3.6].

One of the key facts this rests upon, recorded here in Theorem 7.2.5(i),
is that for any field k that is not imperfect of characteristic 2 and any ab-
solutely pseudo-simple k-group G whose root system over ks has rank 1
and whose minimal field of definition for its geometric unipotent radical
is K/k, the natural map iG : G → RK/k(GK/Ru,K(GK)) is an isomor-
phism. The proof here, based on ideas from [CP, §3.1], is a substantial
simplification of the proof given in [CGP, Thm. 6.1.1].

(v) One of the main results in [CP] concerns the ubiquity of the “generalized
standard” construction, a generalization of the standard construction that
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accounts for exceptional phenomena over fields k of characteristic 2 sat-
isfying [k : k2] > 2. A crucial step towards the proof of its ubiquity is
that the “generalized standard” property is insensitive to passage to the
derived group. We give a proof of this fact (in Proposition 10.2.5) that is
significantly simpler than the proof in [CP, §9.1].

Now we mention four corrections. The first correction concerns the relation-
ship between pseudo-parabolic k-subgroups of a pseudo-reductive k-group G and
parabolic subgroups of G′ = Gred

k
. The formulation of such a dictionary in [CGP,

Prop. 3.5.4] omits the hypothesis that the chosen maximal k-torus T is split; this
is needed to justify scalar extension to ks at the start of the argument. We provide
a much simpler proof of the corrected formulation in Proposition 4.3.3, moreover
avoiding the passage to ks. That missing split hypothesis does not harm the proofs
of results in [CGP] (or work in [C2] and [CP] relying on [CGP]) because every
appeal to [CGP, Prop. 3.5.4] (e.g., in the proof of [CP, Prop. 8.1.4]) takes place
over a separably closed field (where all tori are split) with two exceptions:

(a) [CGP, Cor. 3.5.11] has a formulation that permits its proof to begin by
extending the ground field to its separable closure,

(b) [CGP, Prop. 11.4.4] concerns a pseudo-reductive k-group with a split
maximal k-torus, and its proof works using the corrected formulation of
[CGP, Prop. 3.5.4] because every pseudo-parabolic k-subgroup contains a
split maximal k-torus (see Lemma 4.2.7, which has no logical dependence
on anything in [CGP, Ch. 11]),

The second correction involves [CGP, Prop. 3.3.15] that provides three basic
properties of minimal pseudo-parabolic k-subgroups P in a pseudo-reductive k-
group G containing a split maximal k-torus. The formulation is correct but there
is a gap in Step 1 of the proof in [CGP]: it was overlooked to show (as is needed in
the proof) that every minimal pseudo-parabolic k-subgroup of such a G necessarily
contains a split maximal k-torus. We establish [CGP, Prop. 3.3.15(1),(2)] by more
direct means as Proposition 3.3.7, and establish part (3) as Proposition 4.2.8.

The third correction is at the end of the proof of [CGP, Lemma 7.1.2]. Replace
the last sentence with: “By the Chevalley commutation relations [SGA3, XXIII,
3.3.1(iii), 3.4.1(iii)], if c is a positive root and c′ is a short positive root such that
ic+c′ is a long root then ri,1 = p vanishes in k.” (That c may be short was missed.)

The final correction is that [CP, Prop. 8.4.3] was not formulated in enough
generality for later needs (in the proof of [CP, Thm. 9.2.1]), but its proof applies
in the required additional generality. We record that result here in the appropriate
generality as Proposition 10.1.15 and provide a proof; it implies that certain data
entering into the “generalized standard” construction can be canonically recovered
from the output of that construction (see Corollary 10.2.6). Galois descent then
ensures that the “generalized standard” property over a field k is insensitive to
scalar extension to ks (Corollary 10.2.8), so when proving a given pseudo-reductive
k-group is generalized standard (as in one of our main results, Theorem 10.2.13)
it is sufficient to work over ks. Passage to ks is essential for accessing calculations
with root groups and properties of the rank-1 case.

1.5. Acknowledgements. The authors are grateful to the Tulane University
Mathematics Department for its warm hospitality in hosting the Clifford Lectures,
to Michel Brion and Mahir Can for providing us with the opportunity to speak
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1100784 and G.P. was partially supported by NSF grant DMS-1401380.

2. Standard groups and dynamic methods

2.1. Basic properties of pseudo-reductive groups. If K/k is a separable
extension of fields (e.g., K = ks) then a smooth connected affine k-group G is
pseudo-reductive if and only if GK is pseudo-reductive, since (1.2.1.1) is an equality
in such cases. In particular, since G(ks) is Zariski-dense in Gks , it follows easily by
Galois descent from ks that if G is pseudo-reductive and N is a smooth connected
normal k-subgroup of G then N is pseudo-reductive. For example, the derived
group D(G) of a pseudo-reductive group is always pseudo-reductive.

A consequence of the pseudo-reductivity of the derived group is that solvable
pseudo-reductive groups G are always commutative [CGP, Prop. 1.2.3]. Indeed,
solvability implies that D(G) is unipotent (as we may check over k by using the
structure of solvable smooth connected affine k-groups), yet D(G) inherits pseudo-
reductivity from G and hence D(G) = 1; i.e., G is commutative. However, in
contrast with tori (which can be studied by means of Galois lattices), it is generally
very difficult to say anything about the structure of commutative pseudo-reductive
groups (e.g., they can admit nontrivial étale p-torsion in characteristic p > 0 [CGP,
Ex. 1.6.3]). Hence, in structure theorems for pseudo-reductive groups we shall treat
the commutative case as a black box.

Further similarities with the reductive case are given by the following result
that often enables one to reduce general questions for pseudo-reductive groups to
the separate consideration of commutative and pseudo-semisimple cases:

Proposition 2.1.1. Let G be a pseudo-reductive k-group and T ⊂ G a k-torus.

(i) The scheme-theoretic centralizer ZG(T ) is pseudo-reductive, and it is com-
mutative when T is maximal in G.

(ii) Any Cartan k-subgroup C of G is commutative and pseudo-reductive and
G = C ·D(G).

(iii) The derived group D(G) is perfect (i.e., pseudo-semisimple).

Proof. The proof of the first part of (i) entails using the analogue for Gred
k

:=

Gk/Ru(Gk) and the good behavior of torus centralizers under quotient maps (such

as Gk � Gred
k

) to show that Ru,k(ZG(T )) ⊂ Ru,k(G). Any Cartan k-subgroup C

is certainly nilpotent, so the derived group D(C) is a smooth connected unipotent
normal k-subgroup of C. But we have shown that C is pseudo-reductive, so D(C) =
1; i.e., C is commutative. This proves (i).

We next claim that for any smooth connected affine k-group H and Cartan
k-subgroup C of H, H = C ·D(H). Indeed, H/D(H) is commutative and hence is
its own Cartan k-subgroup, so the Cartan subgroup C of H maps onto H/D(H).
This yields (ii).

To prove (iii), let C be a Cartan k-subgroup of G. By [CGP, Lemma 1.2.5(ii)],
C ∩D(G) is a Cartan subgroup of D(G). Hence, D(G) = (C ∩D(G)) ·D(D(G)) ⊂
C ·D(D(G)). Therefore, G = C ·D(G) = C ·D(D(G)). But C is commutative, so
G/D(D(G)) is commutative and thus D(G) ⊂ D(D(G)). The reverse inclusion is
obvious. �
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The commutativity of any Cartan k-subgroup C of a pseudo-reductive k-group
G implies immediately that C coincides with its own scheme-theoretic centralizer
in G, so C contains the scheme-theoretic center ZG of G (as in the reductive case).
Another feature of pseudo-reductive groups reminiscent of the connected reductive
case (and not shared by smooth connected affine groups in general) is that normality
is transitive for smooth connected k-subgroups:

Proposition 2.1.2. If G is a pseudo-reductive k-group, H is a smooth con-
nected normal k-subgroup of G, and N is a smooth connected normal k-subgroup of
H then N is normal in G.

The case of perfect N can be settled by using the known analogous result for
Gred
k

. The general case is deduced from this via considerations with root systems

over ks. See [CGP, Prop. 1.2.7, Rem. 3.1.10] for details.

Despite the preceding favorable basic properties, in general pseudo-reductivity
is not an especially robust notion (in contrast with reductivity):

Example 2.1.3. Over any imperfect field k of characteristic p > 0, pseudo-
reductivity is usually not inherited by quotients modulo central k-subgroup schemes
(e.g., Rk′/k(SLp)/µp is not pseudo-reductive for any nontrivial purely insepara-
ble finite extension k′/k in characteristic p [CGP, Ex. 1.3.5]) or modulo pseudo-
semisimple normal k-subgroups (see [CGP, Ex. 1.6.4]).

Although central quotients G/Z of pseudo-reductive k-groups G can fail to be
pseudo-reductive, such failure is governed by the commutative case: for any Cartan
k-subgroup C of G, the k-smooth central quotient G/Z is pseudo-reductive if and
only if its Cartan k-subgroup C/Z is pseudo-reductive [CGP, Lemma 9.4.1].

Example 2.1.4. The failure of Rk′/k(SLp)/µp to be pseudo-reductive for a
nontrivial purely inseparable finite extension k′/k in characteristic p is explained by

the failure of pseudo-reductivity of its Cartan k-subgroup Q = Rk′/k(GLp−1
1 )/µp,

where µp is canonically included into the first factor Rk′/k(GL1). Indeed, for a
degree-p subextension k′0/k of k′/k the quotient Rk′0/k

(µp)/µp is a k-subgroup of

Q, and since k′0
p ⊂ k this k-subgroup coincides with the k-group Rk′0/k

(GL1)/GL1

that is smooth, connected, and unipotent of dimension p− 1 > 0.

Among the central quotients of a pseudo-reductive groupG, the central quotient
G/ZG (with ZG ⊂ G the scheme-theoretic center) is especially useful. Fortunately,
G/ZG is always pseudo-reductive and has trivial scheme-theoretic center (but it
might not be perfect, in contrast with the reductive case); see §6.1.

As a final illustration of the contrast between pseudo-reductive and reductive
groups, recall that any connected reductive group H over a field k is unirational
[Bo2, 18.2(ii)]. (The k-group H is generated by its perfect derived group and
its maximal central k-torus, so alternatively one can appeal to the more general
fact [CGP, Prop. A.2.11] that every perfect smooth connected affine k-group is
generated by k-tori.) This unirationality property yields the important consequence
that H(k) is Zariski-dense in H when k is infinite. This fails badly in the pseudo-
reductive case:

Example 2.1.5. For every imperfect field k there exist pseudo-reductive k-
groups G that are not unirational, and for rational function fields k = κ(v) over
fields κ of positive characteristic there exist nontrivial pseudo-reductive k-groups
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G such that G(k) is not Zariski-dense in G. In view of the unirationality of the
perfect D(G) [CGP, Prop. A.2.11] and the equality G = C · D(G) for a (commu-
tative pseudo-reductive) Cartan k-subgroup C ⊂ G, all obstructions arise in the
commutative case.

To make a commutative pseudo-reductive k-group that is either not unirational
or does not have a Zariski-dense locus of k-points, it suffices to construct a smooth
connected unipotent k-group U with either of these properties and build a commu-
tative pseudo-reductive extension of U by GL1 over k.

Let U = {yq = x− cp−1xp} where p = char(k) > 0, c ∈ k− kp, and q = pr > 1.
In [CGP, Ex. 11.3.1] it is shown that: U admits a commutative pseudo-reductive
extension by GL1 over k, U is not unirational over k if q > 2, and when k = κ(v)
for a field κ of characteristic p > 0 the group U(k) is finite if q > 2 and c = v.

2.2. The standard construction. A large class of pseudo-reductive groups
can be built by using actions of commutative pseudo-reductive k-groups on Weil
restrictions to k of connected reductive groups over finite (possibly inseparable)
extensions of k. Before describing this construction, we address the preservation
of pseudo-reductivity under certain central pushouts that “replace” a Cartan k-
subgroup with another commutative pseudo-reductive k-group.

Proposition 2.2.1. Let G be a pseudo-reductive k-group and C a commutative
pseudo-reductive k-subgroup satisfying C = ZG (C ). Let C be another commutative
pseudo-reductive k-group equipped with an action on G and with a k-homomorphism
φ : C → C respecting the actions on G . The cokernel G of the central inclusion

α : C ↪→ G o C

defined by c 7→ (c−1, φ(c)) is pseudo-reductive.

Informally, G is obtained from G by replacing C with C.

Proof. It is elementary to check that H := G o C is pseudo-reductive and
that any central k-subgroup of H is contained in C ×C. Hence, to prove that U :=
Ru,k(G) is trivial it suffices to show that the (visibly solvable) smooth connected
normal preimage N ⊂ H of U is central, as then natually U = N/C ↪→ C, forcing
U = 1 since C is commutative and pseudo-reductive.

To show that N is central in H it is enough to prove that the smooth con-
nected normal commutator k-subgroup (H,N) in the pseudo-reductive k-group H
is unipotent. But for any smooth connected affine k-group H and solvable smooth
connected normal k-subgroup N , the commutator subgroup (H,N) is unipotent
(as we easily check over k by working with the maximal reductive quotient Hred

k
in

which the solvable normal image of Nk must be a normal torus, hence central due

to the connectedness of Hred
k

). �

The main class of C ’s of interest for applying Proposition 2.2.1 is the Cartan
k-subgroups of G , and in such cases the k-group C = (C × C)/α(C ) is a Cartan
k-subgroup of G. There are many natural examples in which φ is not surjective;
these arise in the “standard construction” (see Definition 2.2.6) and in the study of
both ks/k-forms and automorphism schemes of general pseudo-semisimple groups.

To apply Proposition 2.2.1 in the special case G = Rk′/k(G′) for a finite ex-
tension of fields k′/k and a connected reductive k′-group G′, it is convenient (for
motivational purposes) to first review how the behavior of Rk′/k on linear algebraic
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groups is sensitive to whether or not k′/k is separable. If k′/k is separable and
f ′ : X ′ → Y ′ is a surjection between affine k′-schemes of finite type then it is
an immediate consequence of (1.2.1.2) and considerations over ks that Rk′/k(f ′) is
surjective. If we drop the separability condition on k′/k then Rk′/k(f ′) is surjective
provided that f ′ is also smooth (in which case Rk′/k(f ′) is smooth too) [CGP,
Cor. A.5.4(1)], but surjectivity fails to be preserved in the absence of smoothness:

Example 2.2.2. Consider the p-power endomorphism f ′ : GL1 → GL1 over
a degree-p inseparable extension k′/k in characteristic p. The map Rk′/k(f ′) is
the p-power endomorphism of the smooth connected affine k-group Rk′/k(GL1) of
dimension p. The image of Rk′/k(f ′) lies inside the canonical k-subgroup GL1

(and so coincides with this k-subgroup) because the image of the p-power map on
Rk′/k(GL1)(ks) = (k′ ⊗k ks)× is contained inside k×s = GL1(ks).

Although Weil restriction through a finite extension of fields k′/k does not pre-
serve many properties when k′/k is not separable (Remark 1.2.2), it does preserve
the property “smooth and geometrically connected” [CGP, Prop. A.5.9] (such as
for smooth connected affine groups), and if X ′ is a smooth affine k′-scheme with
pure dimension n then X := Rk′/k(X ′) is k-smooth (by the infinitesimal criterion)
with pure dimension n[k′ : k] (as we may check by computing tangent spaces at the
Zariski-dense set of ks-points in Xks = Rk′s/ks

(X ′ ⊗k′ k′s) for k′s := k′ ⊗k ks).
Also, if f ′ : X ′ → Y ′ is a torsor for a smooth affine k′-group H ′ then Rk′/k(f ′)

is an Rk′/k(H ′)-torsor [CGP, Cor. A.5.4(3)]. For our purposes, the most important
example is that the natural map

Rk′/k(G′)/Rk′/k(H ′) −→ Rk′/k(G′/H ′)

is an isomorphism for any affine k′-group scheme G′ of finite type and smooth
closed k′-subgroup H ′. (In particular, if such an H ′ is normal in G′ then Rk′/k(H ′)
is normal in Rk′/k(G′) and the associated quotient group is Rk′/k(G′/H ′).)

The k′-smoothness hypothesis on H ′ is crucial, since Example 2.2.2 shows that
inseparable Weil restriction generally does not carry isogenies to surjections, even
when working with smooth connected affine groups. The bad behavior of insepa-
rable Weil restriction with respect to isogenies has interesting consequences in the
context of connected semisimple groups, such as a non-perfect inseparable Weil
restriction of such a group:

Example 2.2.3. Let k be imperfect of characteristic p, and let k′/k be a non-
trivial finite extension satisfying k′

p ⊂ k. The smooth connected affine k-group
Rk′/k(PGLp) is not perfect. To understand this, and more generally to analyze the
structure of this k-group, the quotient presentation PGLp ' SLp/µp over k′ is not
useful because Rk′/k is not compatible with the formation of this central quotient
by the non-smooth µp (as we shall see).

We need a quotient presentation entirely in terms of smooth k′-groups. The
central quotient description GLp/GL1 could be used, but for later purposes it is
more convenient to consider another central quotient description with smooth k′-
groups, as follows.

Let T ′ ⊂ SLp be a maximal k′-torus (such as the diagonal k′-torus), and define

T
′

:= T ′/µp to be its maximal k′-torus image in PGLp. The conjugation action
of SLp on itself naturally factors through an action on SLp by the central quotient

PGLp, so in this way the k′-subgroup T
′ ⊂ PGLp naturally acts on SLp. This yields
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a k′-isomorphism

PGLp ' SLp/µp ' (SLp o T
′
)/T ′,

where T ′ ↪→ SLp o T is the central anti-diagonal inclusion t′ 7→ (t′
−1
, t′ mod µp).

The right side involves only smooth k′-groups and so yields a k-isomorphism

(2.2.3) Rk′/k(PGLp) ' (Rk′/k(SLp) o Rk′/k(T
′
))/Rk′/k(T ′)

in which Rk′/k(T
′
) acts on Rk′/k(SLp) by applying the functoriality of Rk′/k to

the T
′
-action on SLp. (Beware that Rk′/k(T ′) → Rk′/k(T

′
) is not surjective, as

T ′k′s → T
′
k′s

is the direct product of GLp−2
1 against the p-power map GL1 � GL1.)

On the right side of (2.2.3) we have an instance of the cokernel construction in
Proposition 2.2.1, and the k-group Rk′/k(SLp) is perfect since its group of ks-points
SLp(k

′
s) is perfect (as SLn(F ) is generated by subgroups of the form SL2(F ) for any

field F ). Thus, the commutativity of Rk′/k(T
′
) implies that

D(Rk′/k(PGLp)) = Rk′/k(SLp)/Rk′/k(µp),

with Rk′/k(µp) = ker([p] : Rk′/k(GL1)� GL1) of dimension p− 1 > 0 (as noted in
Example 1.2.4). But Rk′/k(PGLp) and Rk′/k(SLp) have the same dimension, so it
follows that Rk′/k(PGLp) is not perfect.

To put the construction in Example 2.2.3 into a broader framework, as a first
step we record an important result that explains the dichotomy between the per-
fectness of Rk′/k(SLp) and the failure of perfectness of Rk′/k(PGLp) above:

Proposition 2.2.4. If k′/k is a finite extenion of fields and G′ is a connected
semisimple k′-group that is simply connected then G := Rk′/k(G′) is perfect (and
hence is pseudo-semisimple).

Proof. Suppose the commutative quotient H := G/D(G) is nontrivial, so
the Lie algebra h of H is a nonzero G-equivariant quotient of g := Lie(G) with
trivial G-action. Hence, it suffices to show that the space gG of G-coinvariants of g
vanishes. By treating the factor fields of k′⊗k ks separately we may assume k = ks,
so gG = gG(k). Identifying G(k) and G′(k′) is compatible with identifying g and the
underlying k-vector space of g′ [CGP, Cor. A.7.6], so it suffices to prove g′G′ = 0.

The simply connectedness hypothesis implies that a maximal torus T ′ of G′ is
the direct product of coroot groups a∨(GL1) for roots a in a basis ∆ of Φ(G′, T ′),
and pairs of opposite root groups (relative to the positive system of roots associated
to ∆) generate SL2’s inside G′. The Lie algebras of these SL2’s span Lie(G′) (as one
sees via consideration of an open cell), so the vanishing of G′-coinvariants under
AdG′ reduces to the case G′ = SL2 that is verified by direct calculation. �

2.2.5. The following construction of a large class of pseudo-reductive groups will
admit a refined formulation via Proposition 2.2.4. Let k be a field, k′ a nonzero finite
reduced k-algebra, andG′ a smooth affine k′-group whose fibers over the factor fields
of k′ are connected reductive. (The reason we consider such a product k′ of fields as
a single k-algebra, rather than treat its factor fields k′i and the corresponding fiber
groups G′i of G′ separately, is due to convenience in later Galois descent arguments
since scalar extension along k → ks generally does not carry fields to fields.)

Let T ′ ⊂ G′ be a maximal k′-torus, and let Rk′/k(G′/ZG′) act on Rk′/k(G′) by
applying Rk′/k to the natural G′/ZG′ -action on G′. (If the k′-group ZG′ is non-étale
over some point of Spec(k′) that is not k-étale then Rk′/k(G′/ZG′) is generally larger
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than Rk′/k(G′)/Rk′/k(ZG′).) Finally, consider a commutative pseudo-reductive k-
group C equipped with a factorization

(2.2.5.1) Rk′/k(T ′)
φ−→ C −→ Rk′/k(T ′/ZG′)

of the natural k-homomorphism Rk′/k(T ′)→ Rk′/k(T ′/ZG′) (which is generally not
surjective when ZG′ is not k′-étale over some point where Spec(k′) is not k-étale).

Since T ′ is a Cartan k′-subgroup of G′, Rk′/k(T ′) is a Cartan k-subgroup of
Rk′/k(G′) [CGP, Prop. A.5.15(3)]. Thus, by Proposition 2.2.1 the central quotient

(2.2.5.2) (Rk′/k(G′) o C)/Rk′/k(T ′)

modulo the anti-diagonal inclusion Rk′/k(T ′) ↪→ Rk′/k(G′)oC is pseudo-reductive.

Definition 2.2.6. A standard pseudo-reductive k-group is a k-group that is
k-isomorphic to (2.2.5.2) for some 4-tuple (G′, k′/k, T ′, C) as above equipped with
a factorization (2.2.5.1).

Note that every commutative pseudo-reductive k-group is standard, by letting
k′ = k and G′ = 1. The pseudo-semisimple k-groups in Example 1.2.4 that do
not arise as a k-isogenous quotient of the Weil restriction of a connected reductive
group over any finite extension of k are nonetheless standard; see Example 2.2.8.
In practice, to solve problems for a standard pseudo-reductive group one can often
reduce to the study of Rk′/k(G′); this makes standardness a useful notion.

Beware that using different 4-tuples (equipped with respective factorizations
(2.2.5.1)) as the data in Definition 2.2.6 can yield the same G. For instance, the
data specifies a Cartan k-subgroup C ⊂ G, and if there is a proper k-subalgebra
k′0 ⊂ k′ over which k′ is étale then we can replace (G′, k′/k) with (Rk′/k′0

(G′), k′0/k).
Hence, for non-commutative standard pseudo-reductive k-groups G, two questions
arise:

(1) DoesG admit a “standard” description relative to any Cartan k-subgroup?
(2) Can (G′, k′/k) be chosen so that the fibers of G′ over the factor fields of

k′ are absolutely simple (to avoid the artificial presence of separable Weil
restriction in G′)?

The answers are affirmative, and (provided that G′ has absolutely simple and
simply connected fibers over the factor fields of k′, as may always be arranged in
the non-commutative case) this allows us to arrange that the data (G′, k′/k, T ′, C)
and (2.2.5.1) are uniquely determined up to unique isomorphism by the pair (G,C).
Most of the proofs involve root groups and are addressed in a more general setting
later (see Corollary 10.2.6 and Proposition 10.2.7). For now we only need the exis-
tence aspect in (2), so we address that and then introduce dynamic constructions
underlying a robust theory of root groups in the pseudo-reductive case.

Proposition 2.2.7. Any non-commutative standard pseudo-reductive group G
arises from a 4-tuple (G′, k′/k, T ′, C) and factorization (2.2.5.1) such that the fibers
of G′ → Spec(k′) are semisimple, absolutely simple, and simply connected.

Proof. Choose an initial 4-tuple (G′, k′/k, T ′, C) and diagram (2.2.5.1) giving
rise to G. Since Rk′/k(T ′)×C is a Cartan k-subgroup of Rk′/k(G′)oC (see [CGP,
Prop. A.5.15(3)]), it follows that in the quotient G the inclusion C ↪→ G is a Cartan
k-subgroup. The derived group D(G) is perfect (Proposition 2.1.1(iii)), so by the
commutativity of C it follows that the image of D(Rk′/k(G′)) in G is D(G). In
particular, G′ is non-commutative since D(G) 6= 1 by hypothesis.
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Let G ′ = D(G′), so T ′ := T ′∩G ′ is a maximal k′-torus in G ′ [CGP, Cor. A.2.7].
(Some fibers of G′ over Spec(k′) might be commutative, and the corresponding

fibers of G ′ are trivial.) For the simply connected central cover π : G̃′ � G ′,

the preimage T̃ ′ = π−1(T ′) is a maximal k′-torus and the image of Rk′/k(π) is
D(Rk′/k(G ′)) by Proposition 2.2.4 (since the commutator morphism G ′ × G ′ → G ′

factors through π, so likewise after applying Rk′/k). The pseudo-reductivity of
Rk′/k(G′) implies that D(Rk′/k(G′)) is perfect (Proposition 2.1.1(iii)), yet the latter
derived group is contained in Rk′/k(G ′) since

1 −→ Rk′/k(G ′) −→ Rk′/k(G′) −→ Rk′/k(G′/G ′)

is exact with commutative final term, so

D(Rk′/k(G′)) = image(Rk′/k(G̃′) −→ Rk′/k(G ′)).

In other words, D(G) is the image of Rk′/k(G̃′)→ G.

The composite map G̃′ � G ′ ↪→ G′ carries T̃ ′ into T ′ and ZG̃′ into ZG′ inducing

an isomorphism G̃′/ZG̃′ ' G′/ZG′ between maximal adjoint semisimple quotients,

so likewise we obtain a natural isomorphism T̃ ′/ZG̃′ ' T
′/ZG′ . Using the diagram

Rk′/k(T̃ ′) −→ Rk′/k(T ′)
φ−→ C −→ Rk′/k(T ′/ZG′) ' Rk′/k(T̃ ′/ZG̃′)

whose composition is the natural map, we can make a standard pseudo-reductive
k-group

H := (Rk′/k(G̃′) o C)/Rk′/k(T̃ ′)

equipped with an evident k-homomorphism

f : H −→ (Rk′/k(G′) o C)/Rk′/k(T ′) =: G = D(G) · C

that is visibly surjective.

We claim that ker f = 1. It suffices to show that if a point (g̃′, c) ∈ Rk′/k(G̃′)oC
(valued in a k-algebra) maps into the anti-diagonal k-subgroup

Rk′/k(T ′) ↪→ Rk′/k(G′) o C

then g̃′ ∈ Rk′/k(T̃ ′). This follows immediately from the compatibility of Rk′/k with
fiber products, as that gives

Rk′/k(T̃ ′) = Rk′/k(T ′)×Rk′/k(G ′) Rk′/k(G̃′) = Rk′/k(T ′)×Rk′/k(G′) Rk′/k(G̃′).

By replacing (G′, T ′) with (G̃′, T̃ ′) and working with the factorization diagram

Rk′/k(T̃ ′) −→ C −→ Rk′/k(T̃ ′/ZG̃′)

built above, we reduce to the case that all fibers of G′ over factor fields of k′ are
semisimple and simply connected. Those factor fields k′i of k′ for which the fiber
G′i of G′ is trivial may clearly be dropped from consideration, so we may assume
that every G′i is nontrivial.

By working over each factor field of k′ separately, it is well-known (see [CGP,
Prop. A.5.14]) that there exists a finite étale cover Spec(K ′)→ Spec(k′) and smooth
affine K ′-group H ′ whose fibers are connected semisimple, absolutely simple, and
simply connected such that RK′/k′(H

′) ' G′. By [CGP, Prop. A.5.15(1),(2)] we
have ZG′ = RK′/k′(ZH′) and there exists a unique maximal K ′-torus S′ in H ′

such that RK′/k′(S
′) = T ′, so RK′/k(S′/ZH′) = Rk′/k(T ′/ZG′) and RK′/k(S′) =
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Rk′/k(T ′) since K ′ is k′-étale. Hence, using the 4-tuple (H ′,K ′/k, S′, C) and cor-
responding factorization diagram recovers G in the desired manner. �

Example 2.2.8. The nontrivial standard pseudo-semisimple k-groups G are
precisely the pseudo-reductive central quotients Rk′/k(G′)/Z where k′ is a nonzero
finite reduced k-algebra and G′ is a smooth affine k′-group whose fibers over the fac-
tor fields of k′ are connected semisimple, absolutely simple, and simply connected.

Indeed, if we describe G using a 4-tuple as in Proposition 2.2.7 then the k-group
G = D(G) is the image of the map Rk′/k(G′)→ G, and the kernel Z of this latter
map is exactly

ker(φ : Rk′/k(T ′) −→ C) ⊂ ker(Rk′/k(T ′) −→ Rk′/k(T ′/ZG′)) = Rk′/k(ZG′),

so Z is central in Rk′/k(G′).
Conversely, for such pairs (k′/k,G′) and a closed k-subgroup Z ⊂ ZRk′/k(G′) =

Rk′/k(ZG′) (see [CGP, Prop. A.5.15(1)] for the equality), we have to show that any
central quotient G := Rk′/k(G′)/Z that is pseudo-reductive is necessarily standard.
Let T ′ ⊂ G′ be a maximal k′-torus, so C := Rk′/k(T ′) is a Cartan k-subgroup of
Rk′/k(G′) due to [CGP, Prop. A.5.15(3)]. Hence, C/Z is a Cartan k-subgroup of
Rk′/k(G′)/Z, so if Rk′/k(G′)/Z is pseudo-reductive then C/Z is pseudo-reductive.
The converse holds too: since Rk′/k(G′)/Z ' (Rk′/k(G′) o (C/Z))/C with C/Z
acting through its natural homomorphism into Rk′/k(T ′/ZG′), if C/Z is pseudo-
reductive then Rk′/k(G′)/Z is given by the “standard” construction and thus is
pseudo-reductive.

2.3. Dynamic techniques and pseudo-parabolic subgroups. The struc-
ture of split connected reductive groups over a field k rests on the fact that a
connected semisimple k-group with a split maximal k-torus of dimension 1 is k-
isomorphic to SL2 or PGL2. In particular, the construction of root groups and root
data for split connected reductive groups ultimately rests on this rank-1 classifica-
tion. Nothing similar is available early in the study of pseudo-reductive groups.

It is true that if char(k) 6= 2 then a pseudo-semisimple k-group with a split
maximal k-torus of dimension 1 is k-isomorphic to Rk′/k(SL2) or Rk′/k(PGL2) for
a purely inseparable finite extension k′/k, but (i) the proof requires the full force
of the techniques to be discussed in this section, and (ii) in characteristic 2 there
is no comparable result. Hence, to develop a characteristic-free structure theory
involving root groups and root systems we need an alternative viewpoint.

A systematic study of limiting behavior of orbits under 1-parameter subgroups
provides an adequate substitute for the lack of a uniform rank-1 classification early
on (even if we were to avoid characteristic 2). Motivation for this arises from a
description of parabolic subgroups, their unipotent radicals, and Levi factors in
GLn entirely in terms of 1-parameter subgroups (without reference to the usual
definitions of parabolicity, unipotence, or Levi factors). Consider an increasing flag

0 = F0 ( F1 ( · · · ( Fm = V

of subspaces of a nonzero finite-dimensional k-vector space V ; this corresponds to
a parabolic k-subgroup P ⊂ G := GL(V ) as the stabilizer of the flag F•. Let Vj
be a linear complement to Fj−1 in Fj for 1 6 j 6 m, so the stabilizer L of the
ordered m-tuple (V1, . . . , Vm) is a Levi factor of P (i.e., P = LnU for the k-descent
U = Ru,k(P ) of Ru(Pk)). The decomposition

⊕
Vj of V is encoded in terms of

a 1-parameter k-subgroup λ : GL1 → G by making GL1 act on Vj through the
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character t 7→ taj for integers a1 > · · · > am; the Vj ’s are the weight spaces for the
weights occurring in this GL1-action on V .

Choose ordered bases for each Vj and use these to make an ordered basis
{v1, . . . , vn} for V by putting the basis vectors from Vj before Vj+1 for all j. Denote
the unique Vj containing vr as Vjr (so j1 6 . . . 6 jn). Under the resulting identi-
fication V = kn, any point g = (xrs) ∈ GLn(R) = G(R) (valued in a k-algebra R)
satisfies

λ(t)gλ(t)−1 = (tajr−ajsxrs).

Thus, if we make GL1 act on G via conjugation through λ then the orbit map
(GL1)R → GR through g defined by t 7→ t.g := λ(t)gλ(t)−1 extends to an R-
scheme map A1

R → GR (i.e., the map of coordinate rings R[G] → R[T, 1/T ] lands
inside R[T ]) precisely when xrs = 0 whenever jr > js, which is to say if and only
if g ∈ P (R). In such cases, we express the existence of this extended map on A1

R

by saying “limt→0 t.g exists”, and the image in G(R) of the zero section under this
extended map is referred to as limt→0 t.g. Hence, the condition that limt→0 t.g
exists and is equal to 1 is precisely that xrs = δrs whenever jr > js, which is to
say if and only if g ∈ U(R). Finally, a point g ∈ G centralizes λ, or equivalently
t 7→ t.g is the constant R-morphism to g ∈ G(R), if and only if g preserves each
(Vj)R, which is to say g ∈ L(R).

The preceding calculations show that P , U , and L can be recovered dynamically
in terms of the GL1-action on G via (t, g) 7→ λ(t)gλ(t)−1. Observe that not only
is P equal to Ln U , but the opposite parabolic P− relative to L is obtained upon
replacing λ with the reciprocal 1-parameter subgroup t 7→ λ(1/t) = λ(t)−1; the
traditional additive notation for characters and cocharacters leads us to denote this
latter cocharacter as −λ rather than as 1/λ.

Remark 2.3.1. For the k-unipotent radical U− of P−, the multiplication map
of k-schemes U− × P = U− × L × U → G = GLn is an open immersion. Indeed,
we may assume k = k, and it is a general fact in algebraic geometry that a map
between smooth k-varieties is an open immersion if it is injective on k-points and
bijective on tangent spaces at k-points of the source.

Injectivity on k-points is clear since U−(k)∩P (k) = 1 by inspection. Using left
translation by U−(k) and right translation by P (k) reduces bijectivity on tangent
spaces at k-points to the bijectivity of the addition map Lie(U−)⊕Lie(P )→ Lie(G).
Under the adjoint action of GL1 on Lie(G), Lie(U−) is the span of the negative
weight spaces and Lie(P ) is the span of the non-negative weight spaces.

The above considerations with GLn inspire the following generalization to GL1-
actions on arbitrary affine group schemes of finite type over fields. First, we make a
definition over rings. For any ring R and map of affine R-schemes f : (GL1)R → X,

we say “limt→0 f(t) exists” if f extends to an R-scheme map f̃ : A1
R → X, which is

to say that f∗ : R[X]→ R[T, 1/T ] lands inside R[T ]. Such an f̃ is obviously unique

if it exists, in which case the R-point f̃(0) ∈ X(R) is referred to as limt→0 f(t).

Lemma 2.3.2. Let (t, x) 7→ t.x be a GL1-action on an affine scheme X of finite
type over a field k. The functor of points x ∈ X such that limt→0 t.x exists is
represented by a closed subscheme of X.

Proof. The coordinate ring k[X] is the direct sum of its weight spaces k[X]n
under the GL1-action (with n ∈ Z); i.e., GL1 acts on k[X]n via t.f = tnf . The
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ideal generated by the k-subspaces k[X]n for n < 0 defines a closed subscheme of
X which does the job. See [CGP, Lemma 2.1.4] for details. �

2.3.3. In the special case that GL1 acts on an affine k-group scheme G of finite
type through conjugation against a k-homomorphism λ : GL1 → G, we denote the
closed subscheme ofG arising from Lemma 2.3.2 as PG(λ). Since (t.g)(t.g′) = t.(gg′)
for points g, g′ of G valued in a common k-algebra, it is clear that PG(λ) is stable
under multiplication inside G. Likewise, PG(λ) passes through the identity point
and is stable under inversion, so PG(λ) is a k-subgroup scheme of G.

The scheme-theoretic intersection

ZG(λ) := PG(λ) ∩ PG(−λ)

represents the functorial centralizer of λ in G because for any k-algebra R the only
R-scheme maps P1

R → GR into the affine target GR are constant maps to elements
of G(R). Finally, the scheme-theoretic kernel

UG(λ) := ker(PG(λ) −→ G)

of the map g 7→ limt→0 t.g clearly has trivial schematic intersection with ZG(λ).
For any positive integer m we have

(2.3.3) PG(λm) = PG(λ), UG(λm) = UG(λ), ZG(λm) = ZG(λ)

since whether or not an element of R[T, 1/T ] lies in R[T ] is unaffected by replacing
T with Tm; in particular, the k-subgroups PG(λ), UG(λ), ZG(λ) only depend on λ
through the subset Q>0 · λ ⊂ X∗(T )Q.

By functorial considerations, if G′ is an affine k-group scheme of finite type and
G ⊂ G′ is a k-subgroup inclusion (always a closed immersion [SGA3, VIB, 1.4.2])
then obviously

G ∩ PG′(λ) = PG(λ), G ∩ UG′(λ) = UG(λ), G ∩ ZG′(λ) = ZG(λ).

The case G′ = GLn thereby helps to reduce some problems for general G to the
case of GLn. For example, UG(λ) is always a unipotent k-group scheme because
upon choosing a k-subgroup inclusion of G into GLn (as we may always do [CGP,
Prop. A.2.3]), UG(λ) is a k-subgroup scheme of the k-group UGLn

(λ) that has been
seen to be the unipotent radical of a parabolic k-subgroup of GLn.

Remark 2.3.4. Unipotence for a k-group scheme is defined without smoothness
hypotheses in [SGA3, XVII, 1.3]: it means that over k there is a finite composition
series of closed subgroup schemes such that each successive quotient is isomorphic
to a k-subgroup of Ga. A review of this notion for our purposes is given in [CGP,
A.1.3–A.1.4].

The main properties of the preceding dynamic group scheme constructions are
recorded in the following important result.

Theorem 2.3.5. Define g = Lie(G) equipped with the GL1-action through the
adjoint representation. Let g0 = gGL1 , define g+ to be the span of the weight spaces
in g for the positive weights, and define g− likewise with negative weights.

(i) Inside g, Lie(ZG(λ)) = g0 and Lie(UG(±λ)) = g±.
(ii) The natural multiplication map ZG(λ) n UG(λ) → PG(λ) is an isomor-

phism of k-schemes, and the natural multiplication map

ΩG(λ) := UG(−λ)× PG(λ) −→ G
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is an open immersion. In particular, if G is smooth then PG(λ), ZG(λ),
and UG(λ) are smooth, and if G is connected then each of these three
k-groups is connected.

(iii) If H ⊂ G is a closed k-subgroup through which λ factors then H∩ΩG(λ) =
ΩH(λ).

(iv) The unipotent k-group scheme UG(λ) is connected, and if G is smooth
then the smooth connected unipotent k-group UG(λ) is k-split.

Proof. The details are given in [CGP, Prop. 2.1.8] (which works more gener-
ally over rings) except for the k-split assertion in (iv) that is [CGP, Prop. 2.1.10].
Here we limit ourselves to a few remarks.

The proof of (i) is a consequence of the functorial characterizations of ZG(λ)
and UG(±λ) applied to points valued in the dual numbers over k. The crux of the
first isomorphism in (ii) is that for any g ∈ PG(λ)(R) (with a k-algebra R), the
limit limt→0 t.g ∈ G(R) lies in ZG(λ)(R). The intuition is that for any point t′ of
GL1, the limiting behavior of t′.(tg) = (t′t).g as t→ 0 is independent of t′.

The open immersion assertion in (ii) has been discussed earlier for GLn, and
the general case is reduced to this by applying (iii) to an inclusion G ↪→ GLn.
That is, (iii) has to be proved before (ii). The idea behind the proof of (iii) is to
pick a linear representation of G for which H is the scheme-theoretic stabilizer of a
line, and to study how that description of H interacts with the dynamically-defined
k-subgroups under consideration; this is a non-trivial task.

The connectedness of UG(λ) in (iv) is clear because any geometric point u
of UG(λ) is connected to the identity via a rational curve arising from the map
A1
k
→ UG(λ)k extending t 7→ t.u. The k-split property of UG(λ) for smooth G

lies much deeper because we cannot deduce the general case from the easy case of
GLn via an inclusion of G into some GLn; the problem is that k-split unipotent
smooth connected k-groups often contain non-split smooth connected k-subgroups
when k is imperfect! (For example, if p = char(k) > 0 and c ∈ k − kp then the
smooth connected 1-dimensional k-subgroup yp = x− cxp of the k-split G2

a is not
k-split [CGP, B.2.3].) To overcome this difficulty, one has to use substantial input
from Tits’ unpublished work [Ti2] on the general structure of smooth connected
unipotent groups over imperfect fields; see [CGP, App. B] for a modern account of
that structure theory. �

In the general theory of pseudo-reductive groups G over a field k, the role of par-
abolic k-subgroups for the reductive case is replaced with the dynamically-defined
subgroups PG(λ) for 1-parameter k-subgroups λ. To see why this is done, con-
sider a nontrivial purely inseparable finite extension of fields k′/k and a connected
reductive k′-group G′ with a proper parabolic k′-subgroup P ′. The quotient

Rk′/k(G′)/Rk′/k(P ′) ' Rk′/k(G′/P ′)

is never proper [CGP, Ex. A.5.6]. On the other hand, the parabolic k′-subgroups of
G′ are precisely the k′-subgroups of the form PG′(λ

′) for 1-parameter k′-subgroups
λ′ : GL1 → G′ [CGP, Prop. 2.2.9], so choosing λ′ such that PG′(λ

′) = P ′ yields
the description

Rk′/k(P ′) = Rk′/k(PG′(λ
′)) = PRk′/k(G′)(λ)

where λ : GL1 → Rk′/k(G′) corresponds to λ′ via the mapping property of Rk′/k

[CGP, Prop. 2.1.13].
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The k-subgroups Q ⊂ G of the form PG(λ) generally do not admit a charac-
terization in terms of properties of G/Q beyond the reductive case (see Remark
4.2.5). To make a definition for this class of k-subgroups applicable beyond the
pseudo-reductive case (as is sometimes convenient in proofs) we incorporate the
k-unipotent radical:

Definition 2.3.6. If G is a smooth connected affine group over a field k then
a k-subgroup P of G is pseudo-parabolic if P = PG(λ)Ru,k(G) for a 1-parameter
k-subgroup λ : GL1 → G.

Example 2.3.7. If k′/k is a finite extension of fields and G′ is a connected
reductive k′-group then the pseudo-parabolic k-subgroups of Rk′/k(G′) are pre-
cisely the k-subgroups Rk′/k(P ′) for parabolic k′-subgroups P ′ of G′; see [CGP,
Prop. 2.2.13] for a generalization.

If G is a pseudo-reductive k-group and P is a pseudo-parabolic k-subgroup of G
then Ru,k(P ) is k-split since writing P = PG(λ) implies Ru,k(P ) = UG(λ) (because
the torus centralizer ZG(λ) is pseudo-reductive). In the reductive case this recovers
the well-known fact that k-unipotent radicals of parabolic k-subgroups are k-split.

Pseudo-parabolicity behaves well under passage to quotients in the pseudo-
reductive case. More generally, we have the extremely useful:

Proposition 2.3.8. If f : G � G is an arbitrary surjective homomorphism
between smooth connected affine k-groups and λ : GL1 → G is a 1-parameter k-
subgroup then for λ = f ◦ λ the inclusions

(2.3.8) f(PG(λ)) ⊂ PG(λ), f(UG(λ)) ⊂ UG(λ), f(ZG(λ)) ⊂ ZG(λ),

are equalities.

See [CGP, Cor. 2.1.9] for a more general result without smoothness hypotheses
but assuming f to be flat.

Proof. The inclusions have closed image, so f(ΩG(λ)) is a closed subset of the
dense open ΩG(λ). But f(ΩG(λ)) is dense in G since f is dominant, so it follows

that f(ΩG(λ)) = ΩG(λ). Hence, all three inclusions above are equalities. �

Applying the preceding to the maximal pseudo-reductive quotient q : G �
G/Ru,k(G) of a smooth connected affine k-group G, if P is a pseudo-parabolic k-
subgroup ofG then q(P ) is a pseudo-parabolic k-subgroup ofG/Ru,k(G). Moreover,
P 7→ q(P ) is a bijection between the sets of pseudo-parabolic k-subgroups of G and
G/Ru,k(G) with inverse P 7→ q−1(P ) [CGP, Prop. 2.2.10].

We will now prove the following useful result which shows that there is consid-
erable flexibility in the choice of λ : GL1 → G in the description of pseudo-parabolic
k-subgroup P in Definition 2.3.6.

Lemma 2.3.9. Let G be a smooth connected affine group over a field k and
P = PG(λ)Ru,k(G) a pseudo-parabolic k-subgroup of G. Let T be a maximal k-torus
of P . There exists g ∈ Ru,k(P )(k) such that the k-homomorphism µ : GL1 → G
given by t 7→ gλ(t)g−1 is valued in T and P = PG(µ)Ru,k(G).

Proof. Let π : P → P := P/Ru,k(P ) be the quotient map. The k-group

U := Ru,k(P ) contains UG(λ)Ru,k(G), so P is a quotient of ZG(λ). Hence, the

image of λ in P is a central torus, so it lies in the maximal k-torus T := π(T )
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of P . We conclude that λ(GL1) is contained in the smooth connected solvable
k-subgroup H := π−1(T ) = T n U . All maximal k-tori of H are U(k)-conjugate
to each other [Bo2, 19.2], so there exists g ∈ U(k) such that the 1-parameter k-
subgroup µ : t 7→ gλ(t)g−1 is valued in T . Since PG(µ) = gPG(λ)g−1, we see that
PG(µ)Ru,k(G) = P . �

Remark 2.3.10. The flexibility in the choice of λ for describing a given P leads
to some subtleties:

(i) It is not obvious if pseudo-parabolicity descends through arbitrary sep-
arable extension of the ground field (even in the Galois case). This is
a contrast with parabolicity, whose geometric definition clearly descends
through any extension of the ground field. It is true that for separable field
extensions K/k (especially ks/k), a k-subgroup P of a pseudo-reductive k-
group G is pseudo-parabolic when PK is pseudo-parabolic in GK (the con-
verse is obvious), and this is essential for the utility of pseudo-parabolicity.
The proof of this descent result requires substantial input from the theory
of root groups in pseudo-reductive groups; see Proposition 4.3.4.

(ii) Since there is no “geometric” characterization of pseudo-parabolicity in
the spirit of parabolicity (see Remark 4.2.5 for a precise statement), it
is not at all evident if pseudo-parabolicity is transitive with respect to
subgroup inclusions: for a pseudo-parabolic k-subgroup P of a smooth
connected affine k-group G and a smooth connected k-subgroup Q of P ,
is Q pseudo-parabolic in G if and only if Q is pseudo-parabolic in P?

Neither implication is obvious. For instance, if Q is pseudo-parabolic
in G then it isn’t clear if Ru,k(P ) ⊂ Q, and if Q = PP (λ)Ru,k(P ) for a
1-parameter k-subgroup λ : GL1 → P then generally Q 6= PG(λ)Ru,k(G)
(as one sees even in the split reductive case by considering the positions of
closed half-spaces relative to roots). This problem is settled affirmatively
by using root systems for pseudo-reductive groups; see Corollary 4.3.5.

(iii) If P is a pseudo-parabolic k-subgroup of a pseudo-reductive k-group G
and Q is a smooth closed k-subgroup of G containing P then is Q pseudo-
parabolic in G? This is not easy, in contrast with the analogue for parabol-
icity, and the affirmative proof involves many arguments with root sys-
tems; see Proposition 4.3.7.

In the next section we use dynamic methods to develop a theory of root systems
and root groups in the pseudo-reductive setting.

3. Roots, root groups, and root systems

3.1. Root groups. For a split connected reductive group H over a field F , a
split maximal F -torus S ⊂ H, and a ∈ Φ(H,S), the root group Ua admits a dy-
namic description as follows. Consider the codimension-1 subtorus Sa := (ker a)0

red

killed by a. The centralizer ZH(Sa) is a connected reductive F -group containing
S whose set of S-roots is Φ(H,S) ∩ Q · a = {±a} (as the root system Φ(H,S)
is reduced). The natural map Sa × a(GL1) → S is an isogeny and ZH(Sa) is an
isogenous quotient of Sa × Ha, where Ha := 〈Ua, U−a〉 is F -isomorphic to SL2 or
PGL2 with a(GL1) going over to the diagonal F -torus.

Since U±a ' Ga and the S-action on U±a is thereby identified with multiplica-
tion on Ga through ±a, inspection of the open cell U−a × S ×Ua ⊂ ZH(Sa) shows
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that PZH(Sa)(±a∨) = S · U±a. Thus, U±a = UZH(Sa)(±a∨). It is useful to modify
this to remove the appearance of the coroot, as follows.

For a cocharacter λ : GL1 → S such that λ(GL1) is an isogeny-complement
to Sa inside S (equivalently, 〈a, λ〉 6= 0), by replacing λ with −λ if necessary to
arrange that 〈a, λ〉 > 0 we may use the same reasoning to obtain

Ua = UZH(Sa)(λ).

This dynamic description of root groups in the reductive case motivates:

Definition 3.1.1. A smooth connected affine group G over a field k is pseudo-
split if there exists a split maximal k-torus T ⊂ G. We denote by Φ(G,T ) the set of
nontrivial T -weights occurring on Lie(G), and for a ∈ X(T )Q−{0} the codimension-
1 subtorus of T killed by every na ∈ X(T ) with integers n 6= 0 is denoted Ta. Define
U(a) = UG(a) := UZG(Ta)(λa) for any λa ∈ X∗(T ) satisfying 〈a, λa〉 > 0.

Remark 3.1.2. The k-split unipotent smooth connected k-subgroup U(a) ⊂ G
is independent of λa due to (2.3.3) because the isogeny Ta ×GL1 → T via (t, x) 7→
t · λa(x) implies that for any other choice λ′a there exist integers m,m′ > 0 such
that m′λ′a = mλa+µ for some µ ∈ X∗(T ) valued in the central torus Ta of ZG(Ta).

Example 3.1.3. Let k′/k be a finite purely inseparable extension of fields and
G′ a connected reductive k′-group with a split maximal k′-torus T ′. The pseudo-
reductive k-group G := Rk′/k(G′) is pseudo-split because the split maximal k-torus
T in Rk′/k(T ′) is a maximal k-torus in G (as the natural map Gk′ → G′ is surjective
with smooth connected unipotent kernel [CGP, Prop. A.5.11(1),(2)]).

We have ZG(T ) = Rk′/k(ZG′(T
′)) = Rk′/k(T ′) [CGP, Prop. A.5.15(1)], and

under the natural identification X(T ) ' X(T ′) the set Φ(G,T ) is carried onto
Φ(G′, T ′) [CGP, Ex. 2.3.2]. If a′ ∈ Φ(G′, T ′) corresponds to a ∈ Φ(G,T ) then
inspection of Lie algebras shows that the evident inclusion Rk′/k(Ua′) ⊂ UG(a) of

smooth connected k-subgroups of G is an equality. (Here we use the natural iden-
tification of the functor Lie ◦ Rk′/k with “underlying Lie algebra over k” [CGP,
Cor. A.7.6].)

For any k-torus S ⊂ G the functorial definition of ZG(S) implies via consid-
eration of points valued in the dual numbers that Lie(ZG(S)) = Lie(G)S . Thus,
for nonzero a ∈ X(T )Q, Lie(ZG(Ta)) is the span of Lie(ZG(T )) = Lie(G)T and the
T -weight spaces for all b ∈ Φ(G,T ) that are trivial on Ta (equivalently b ∈ Q · a).
Hence, by Theorem 2.3.5(ii) and T -weight space considerations we obtain all but
the final assertion in:

Proposition 3.1.4. The Lie algebra Lie(U(a)) is the span of the T -weight
spaces for all b ∈ Φ(G,T ) ∩Q>0 · a; in particular, U(a) 6= 1 if and only if Q>0 · a
meets Φ(G,T ). The k-subgroups ZG(T ) and {U(a)}a∈Φ(G,T ) generate G. If G is
perfect then the U(a)’s, for a ∈ Φ(G,T ), generate G.

Proof. We just need to explain why the k-subgroup N generated by the U(a)’s
coincides with G when G is perfect. Since each ZG(T ) normalizes U(a) (as we may
verify using ks-points), so ZG(T ) normalizes N , and G is generated by N and
ZG(T ), it follows that N is normal in G. The quotient G/N has trivial T -action on
its Lie algebra since Lie(G/N) = Lie(G)/Lie(N), so for the maximal torus image T
of T in G/N we see that the inclusion ZG/N (T ) ⊂ G/N between smooth connected
affine k-groups is an equality on Lie algebras and hence is an equality.
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In other words, G/N is a perfect smooth connected affine k-group with a central
maximal k-torus. But then the quotient by that central maximal torus is unipotent
(as any smooth connected affine k-group which does not contain a nontrivial k-torus
is unipotent), so G/N is solvable. Perfectness of G/N then forces G/N = 1; i.e.,
N = G. �

Now we focus on pseudo-split pseudo-reductive G, for which we shall see that
the k-subgroups U(a) have some structural properties reminiscent of root groups in
the reductive case. Example 3.1.3 illustrates that such U(a) can be vector groups
over k with very large dimension, in contrast with the split reductive case that al-
ways has 1-dimensional root groups, though such examples arise from 1-dimensional
vector groups over a finite extension k′/k.

A consequence of the subsequent structure theory of pseudo-reductive groups
will be that in the pseudo-split case such U(a)’s always arise from 1-dimensional
vector groups over finite extensions of k except when k is imperfect with char(k) = 2
(for which counterexamples are given by constructions in §7.3, §7.2, §8.2–§8.3, and
§10.1). The first step towards establishing good properties of U(a)’s in the pseudo-

reductive case is to relate Φ(G,T ) to Φ(Gred
k
, Tk) up to rational multipliers:

Lemma 3.1.5. Let G be a pseudo-reductive k-group with a split maximal k-torus
T . Each a ∈ Φ(G,T ) admits a unique Q>0-multiple in Ψ := Φ(Gred

k
, Tk) and every

element of Ψ arises in this way from some such a. Moreover, for all a ∈ Φ(G,T )
the k-group U(a) is commutative and if char(k) = p > 0 then U(a) is p-torsion.

Proof. By Proposition 2.3.8 and the compatibility of torus centralizers with
quotient maps between smooth affine groups, for any nonzero a ∈ X(T )Q = X(Tk)Q
the quotient map π : Gk � Gred

k
=: H carries (UG(a))k onto UH(a) upon identifying Tk

with a maximal torus in H. It is a general fact that a smooth connected k-subgroup
U of G satisfying Uk ⊂ Ru(Gk) must be trivial [CGP, Lemma 1.2.1], so UG(a) 6= 1

if and only if UH(a) 6= 1. This implies that each a ∈ Φ(G,T ) admits a Q>0-multiple

in Ψ := Φ(Gred
k
, Tk), with the multiplier being unique since Ψ is reduced. Similarly,

Proposition 3.1.4 implies that any element of Ψ admits a Q>0-multiple in Φ(G,T ).
For any a ∈ Φ(G,T ) we have UH(a) = Ga, so π(D(UG(a))k) = 1, forcing D(UG(a)) =

1; i.e., UG(a) is commutative. By the same reasoning, if p = char(k) > 0 then UG(a) is

killed by p since UH(a) is killed by p. �

A p-torsion commutative smooth connected affine group over a field k of char-
acteristic p > 0 need not be a vector group (i.e., a direct product of copies of Ga)
when k is imperfect; e.g., if c ∈ k− kp then the 1-dimensional yp = x− cxp is not a
vector group [CGP, B.2.3]. But the k-groups UG(a) considered in Lemma 3.1.5 will

turn out to always be vector groups because they satisfy an additional property:
they are normalized by T , and the resulting T -action on their Lie algebra has only
nontrivial T -weights (in fact, only Q>0-multiples of a).

Tits proved the remarkable fact [CGP, Thm. B.4.3] that every p-torsion smooth
connected commutative unipotent group U in characteristic p > 0 equipped with
an action by a torus T such that Lie(U)T = 0 is necessarily a vector group and even
admits a linear structure (i.e., Ga-module scheme structure) that is T -equivariant.
Combining this with the unique (algebraic exponential) isomorphism U ' Lie(U)
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inducing the identity on Lie algebras for commutative unipotent groups U in char-
acteristic 0 yields the first part of:

Proposition 3.1.6. Let G be a pseudo-reductive k-group admitting a split max-
imal k-torus T .

(i) For each a ∈ Φ(G,T ), U(a) is a vector group admitting a T -equivariant
linear structure.

(ii) If a, b ∈ Φ(G,T ) and ra + sb 6∈ Φ(G,T ) for all r, s ∈ Q>0 then U(a)

commutes with U(b).

Proof. Let π : Gk → Gred
k

=: H be the canonical quotient map. Lemma 3.1.5

provides q, q′ ∈ Q>0 such that qa, q′b ∈ Φ(H,Tk), and the images π((UG(a))k) and

π((UG(b))k) respectively coincide with the root groups UHqa and UHq′b in H for the

respective roots qa and q′b.
Necessarily q′b 6= −qa, as otherwise 2a + (q′/q)b = a ∈ Φ(G,T ), contradicting

the hypotheses. Since qa + q′b is not a root of H (again, due to the hypotheses),
it follows that the root groups UHqa and UHq′b in the reductive group H commute.

Hence, the commutator (U(a), U(b)) is killed by π over k, so this commutator is
trivial since G is pseudo-reductive [CGP, Lemma 1.2.1]. �

For any pseudo-split pseudo-reductive k-group G and split maximal k-torus T ,
Lemma 3.1.5 gives that the two subsets Φ(G,T ) and Φ(Gred

k
, Tk) of X(T ) = X(Tk)

coincide up to Q>0-multipliers on their elements. It is important that these rational
multipliers can be very tightly controlled:

Theorem 3.1.7. The sets Φ(G,T ) and Φ(Gred
k
, Tk) coincide except possibly

when k is imperfect of characteristic 2 and Gred
k

contains a connected semisim-

ple normal subgroup that is simply connected of type Cn (n > 1). In general
Φ(Gred

k
, Tk) ⊂ Φ(G,T ), and if a ∈ Φ(G,T ) is not a Tk-root for Gred

k
then 2a is

such a root.

This result is proved in [CGP, Thm. 2.3.10], and the basic idea goes as follows.
From the explicit description of irreducible root systems, we see that the only
irreducible and reduced semisimple root datum admitting a root that is twice a
weight is simply connected type C. Thus, we can replace G with D(ZG(Ta)) for
suitable nonzero a ∈ X(T )Q to reduce to the case dimT = 1 (using [CGP, Lemma
1.2.5(iii)] to control dim(T ∩D(ZG(Ta)))). In the rank-1 case, Gred

k
is isomorphic to

SL2 or PGL2. Nontrivial computations using Proposition 3.1.6(i) and the position
of roots in the character lattices of SL2 and PGL2 eventually yield the result.

Remark 3.1.8. The exceptional case in Theorem 3.1.7 with a root that is twice
another root does occur over any imperfect field of characteristic 2, with Φ(Gred

k
, Tk)

of type Cn for any desired n > 1. The construction of such G is a highly nontrivial
matter (as we shall discuss in §8).

Definition 3.1.9. Let G be a pseudo-split pseudo-reductive k-group, and T ⊂
G a split maximal k-torus. Elements of Φ(G,T ) are called roots, and a ∈ Φ(G,T )
is called divisible (resp. multipliable) if a/2 ∈ Φ(G,T ) (resp. 2a ∈ Φ(G,T )).
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The preceding terminology is reasonable because Φ(G,T ) is a root system in
its Q-span inside X(T )Q (though in contrast with the reductive case, it can be non-
reduced when k is imperfect with characteristic 2); see Proposition 3.2.7. Note in
particular that Φ(Gred

k
, Tk) is always the set of non-multipliable elements of Φ(G,T ).

Corollary 3.1.10. For a ∈ Φ(G,T ) there exists a unique smooth connected
k-subgroup Ua ⊂ G normalized by T such that Lie(Ua) is the a-weight space in
Lie(G) when a is not multipliable and is the span of the weight spaces for a and 2a
when a is multipliable. The k-group Ua is a vector group admitting a T -equivariant
linear structure, and this linear structure is unique when a is not multipliable.

We call Ua the root group associated to a.

Proof. When a is not divisible then U(a) does the job. If a is divisible then
upon choosing a T -equivariant linear structure on U(a), the a-weight space for this
linear structure does the job. If a is not divisible then the uniqueness of Ua is a con-
sequence of the good behavior of the dynamic constructions with respect to inter-
sections against equivariant subgroups, but the divisible case requires rather more
effort (using centralizers of µ2-actions in characteristic 2); see [CGP, Prop. 2.3.11]
for details. �

By uniqueness (or by construction), the formation of Ua commutes with any
separable extension on k. Hence, by working over ks and using uniqueness we see
that Ua is normalized by ZG(T ).

Remark 3.1.11. The pseudo-semisimple derived group D(G) of a pseudo-split
pseudo-reductive k-group G is pseudo-split and generated by the root groups Ua
relative to a split maximal k-torus T . To prove this, choose a T -equivariant lin-
ear structure on Ua. The absence of the trivial T -weight on Lie(Ua) implies that
(T,Ua) = Ua. Hence, each Ua lies inside D(G).

The maximal k-torus T ′ = T ∩ D(G) of D(G) [CGP, Cor. A.2.7] is certainly
split, and if Z is the maximal central k-torus in G then the natural map T ′×Z → T
is an isogeny [CGP, Lemma 1.2.5(iii)]. Thus, under the finite-index inclusion
X(T ) ↪→ X(T ′) ⊕ X(Z) we see that Φ(G,T ) is identified with Φ(D(G), T ′) × {0}.
In particular, the T -root groups of G are the same as the T ′-root groups of D(G).
Since D(G) is perfect, we may conclude via the final assertion in Proposition 3.1.4
(applied to D(G)).

3.2. Pseudo-simplicity and root systems. The core of the theory of con-
nected semisimple k-groups is the absolutely simple case, characterized by irre-
ducibility of the root system over ks. One source of the importance of irreducibility
is that the Weyl group of an irreducible root system acts transitively on the set
of roots with a given length. In the study of pseudo-reductive groups, the case of
irreducible root systems over ks will play a similarly important role.

Before discussing root systems in the pseudo-reductive context, it is convenient
to develop the analogue of “absolutely simple” by group-theoretic means (to be
informed by the properties of Gred

k
from the existing structure theory of reductive

groups). We begin with an elementary lemma (see [CGP, Def. 3.1.1, Lemma 3.1.2]):

Lemma 3.2.1. Let G be a smooth connected affine group over a field k. The
following conditions are equivalent:
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(i) G is non-commutative and it does not contain a nontrivial smooth con-
nected proper normal k-subgroup;

(ii) G is pseudo-semisimple and the connected semisimple maximal reductive
quotient Gred

kp
over the perfect closure kp of k is kp-simple.

Any G satisfying the equivalent conditions in Lemma 3.2.1 is called pseudo-
simple (over k); if Gks is pseudo-simple then we say that G is absolutely pseudo-
simple. In other words, an absolutely pseudo-simple k-group is a pseudo-semisimple
k-group G such that the connected semisimple group Gred

k
is simple.

Just as every nontrivial connected semisimple k-group is a central isogenous
quotient of the direct product of its k-simple smooth connected normal k-subgroups
(which pairwise commute), we have an analogue in the pseudo-semisimple case.
This rests on lifting kp-simple connected semisimple “factors” of Gred

kp
to pseudo-

simple normal k-subgroups of G (the latter built by means of Galois descent and
root groups over ks):

Proposition 3.2.2. Let G be a pseudo-semisimple k-group. For each pseudo-
semisimple normal k-subgroup N ⊂ G, let N denote the connected semisimple nor-
mal image of Nkp in G := Gred

kp
. Then N 7→ N is a bijection (inclusion-preserving in

both directions) between the sets of perfect smooth connected normal k-subgroups of
G and smooth connected normal kp-subgroups of G. Moreover, N is pseudo-simple

(over k) if and only if N is kp-simple.

Proof. The asserted properties of N 7→ N permit us to reduce to the case
k = ks via Galois descent, so all k-tori are split and hence we may build root groups.
Let T be a maximal k-torus in G, so T := Tk is a maximal torus in the connected

semisimple k-group G = Gred
k

. We may assume G 6= 1, so G 6= 1. Let Φ = Φ(G,T ),

and let {Φi}i∈I be its (non-empty) set of irreducible components.
The structure theory of connected reductive groups ensures that the minimal

nontrivial smooth connected normal subgroups of G pairwise commute and that
the set of these subgroups is in natural bijective correspondence with I, where to
i ∈ I we associate the k-subgroup N i generated by the root groups Ua for a ∈ Φi.
Likewise, the set of connected semisimple normal subgroups of G is in bijective
correspondence with the set of subsets of I, by associating to any J ⊂ I the k-
subgroup NJ generated by {N j}j∈J .

For each i ∈ I we define Ni to be the k-subgroup of G generated by the groups
U(a) for a ∈ Φi. Since every non-multipliable element of Φ(G,T ) lies in Φ, it follows
that the Ni’s generate the same k-subgroup that is generated by the U(a)’s for all
a ∈ Φ(G,T ). The final assertion in Proposition 3.1.4 ensures the Ni’s generate G,
and Proposition 3.1.6(ii) implies that Ni′ commutes with Ni for all i′ 6= i. Hence,
each Ni is normal in G, so Ni is pseudo-reductive and (Ni)k has image N i in G.

The intersection Ti := T ∩ Ni is a maximal k-torus in Ni [CGP, Cor. A.2.7]
and (Ti)k maps isomorphically onto the maximal torus T ∩ N i in N i. In view

of the identification of Φi with Φ(N i, T i) (compatibly with the equality X(T )Q =⊕
i X(T i)Q), the restriction a|Ti

is nontrivial for all a ∈ Φi. Hence, a choice of
T -equivariant linear structure on U(a) shows that (Ti, U(a)) = U(a) for all a ∈ Φi,
so U(a) ⊂ D(Ni) for all a ∈ Φi. In view of how Ni was defined, it follows that
Ni = D(Ni) for all i.

For any J ⊂ I, the smooth connected k-subgroup NJ of G generated by
{Nj}j∈J is perfect and normal, hence pseudo-semisimple. The image of (NJ)k
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in G is NJ , so for each N we have built an N giving rise to N . The construction
of N from N rests on the choice of T , but N is independent of that choice since all
such T are G(k)-conjugate to each other and the subgroups N ⊂ G and N ⊂ G are
normal. By construction, it is clear that N 7→ N is inclusion-preserving.

It remains to show that if N ′ is a perfect smooth connected normal k-subgroup
of G such that N ′

k
is carried onto N then N ′ = N . For the perfect smooth connected

normal k-subgroup N ′′ := (N,N ′), the natural map N ′′
k
→ N is surjective. The

smooth connected affine quotients N/N ′′ and N ′/N ′′ are therefore unipotent (as
we may check over k, using that ker(Gk � G) is unipotent), yet each quotient is
perfect, so these quotients are trivial. Hence, N ′ = N ′′ = N as desired. �

Remark 3.2.3. The perfectness condition on N and N in Proposition 3.2.2
can be considerably relaxed: a different method of proof (unrelated to root groups)
yields a generalization to arbitrary smooth connected affine k-groups G (see [CGP,
Prop. 3.1.6]), using smooth connected normal subgroups that are “generated by
tori” (these constitute a larger class than smooth connected perfect subgroups). In
that generality, perfectness of N is equivalent to the same for N . The “generated
by tori” hypothesis cannot be dropped since smooth connected normal k-subgroups
of a pseudo-semisimple k-subgroup need not be perfect (see [CGP, Ex. 1.6.4] for
counterexamples over every imperfect field).

Part (ii) of the following result is a pseudo-semisimple analogue of the isogeny
decomposition of a connected semisimple k-group into k-simple “factors”.

Proposition 3.2.4. Let G be a pseudo-reductive k-group, and {Ni}i∈I the set
of minimal nontrivial perfect smooth connected normal k-subgroups.

(i) The Ni’s are pseudo-simple over k and pairwise commute.
(ii) The natural map π :

∏
i∈I Ni → D(G) is surjective with central kernel

that contains no nontrivial smooth connected k-subgroup.
(iii) The set of perfect smooth connected normal k-subgroups of G is in bijective

correspondence with the set of subsets J of I, where to each J we associate
the k-subgroup NJ generated by {Nj}j∈J . Moreover, NJ ⊂ NJ′ if and only
if J ⊂ J ′.

See [CGP, Prop. 3.1.8] for a generalization to arbitrary smooth connected affine
k-groups. Beware that in (ii), kerπ generally has positive dimension (unlike the
reductive case); see [CGP, Ex. 3.1.9] for such examples over any imperfect field.

Proof. The case of commutative G is trivial (using empty I), so we may as-
sume G is non-commutative; i.e., the pseudo-semisimple derived group D(G) is
nontrivial. By Proposition 2.1.2 in the case of perfect normal k-subgroups, normal-
ity is transitive among perfect smooth connected k-subgroups. (The more general
assertion in Proposition 2.1.2 without perfectness hypotheses cannot be used here
since the proof in that generality uses the present proposition to reduce to the set-
tled case of perfect subgroups!) Thus, we may replace G with D(G) to reduce to
the case where G is pseudo-semisimple. The same transitivity implies that the Ni’s
are pseudo-simple over k.

If the result is settled over ks in general then by Galois descent and the transi-
tivity of normality in the perfect case it would follow that the pseudo-simple normal
k-subgroups of G correspond to the Gal(ks/k)-orbits of pseudo-simple normal ks-
subgroups of Gks . Thus, by Galois descent we may and do now assume k = ks.
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The construction of all N ’s (in the proof of Proposition 3.2.2) from the smooth con-
nected normal subgroups of Gred

k
yields everything we wish except for the assertions

concerning kerπ in (ii).
For any (ni) ∈ kerπ valued in a k-algebra A, we have that ni ∈ Ni(A)∩N ′i(A)

where N ′i is the k-subgroup generated by {Ni′}i′ 6=i. Clearly Ni commutes with
N ′i and these two k-subgroups generate G, so Ni ∩N ′i is contained in the scheme-
theoretic center ZG of G. In other words, ni ∈ ZG(A) for all i, so kerπ is central.

To show that the only smooth connected k-subgroup H ⊂ kerπ is the trivial
subgroup, observe that by centrality of kerπ any such H has central image in each
Ni. But Ni is pseudo-simple over k, so H has trivial image in Ni. The inclusion
H ↪→

∏
Ni therefore has trivial image, so H = 1. �

Corollary 3.2.5. If G is pseudo-semisimple and ZG = 1 then G ' Rk′/k(G′)
for a finite étale k-algebra k′ and smooth affine k′-group G′ whose fiber over each
factor field of k′ is absolutely pseudo-simple with trivial center. The pair (k′/k,G′)
is unique up to unique isomorphism: for another (k′′/k,G′′), any k-isomorphism
Rk′/k(G′) ' Rk′′/k(G′′) arises from a unique pair (α,ϕ) where α : k′ ' k′′ is a
k-algebra isomorphism and ϕ : G′ ' G′′ is a group isomorphism over α.

Proof. This is a straightforward exercise in Galois descent (using Proposition
3.2.4(iii) over ks); see [CP, Lemma 6.3.13]. �

Corollary 3.2.6. Pseudo-split pseudo-simple k-groups are absolutely pseudo-
simple.

Proof. Let T be a split maximal k-torus in a pseudo-split pseudo-simple k-
group G, so Tks is a maximal ks-torus in Gks . Let {Ni} be as in Proposition 3.2.4(i)
applied to Gks . By construction in the proof of Proposition 3.2.2, the pseudo-simple
normal ks-subgroups Ni of Gks correspond to the irreducible components Φi of

Φ(Gred
k
, Tk) ⊂ X(Tk) = X(Tks); explicitly, Ni is generated by the ks-groups U

Gks

(a)

for a ∈ Φi. But T is k-split, so X(Tks) = X(T ) and hence the k-groups UG(a) make

sense inside G for all a ∈ Φi. It follows that every Ni descends to a nontrivial
perfect smooth connected normal k-subgroup of G, but G is pseudo-simple over k,
so there is only one Ni. This says that Gks is pseudo-simple, or in other words that
G is absolutely pseudo-simple. �

We are finally in a position to construct coroots and thereby define the root
datum associated to a pseudo-split pseudo-reductive k-group G. Let T be a split
maximal k-torus of G, so Φ(Gred

k
, Tk) is the set of non-multipliable elements of

Φ(G,T ). Recall from Remark 3.1.11 that for the split maximal k-torus T ′ :=
T ∩ D(G) ⊂ D(G) [CGP, Cor. A.2.7] that is an isogeny complement in T to
the maximal central k-torus Z, we have Φ(G,T ) = Φ(D(G), T ′) via the natural
identification of X(T ′)Q as a direct summand of X(T )Q.

For each non-multipliable a ∈ Φ(G,T ), define a∨ ∈ X∗(T ) = X∗(Tk) to cor-

respond to the coroot for ak ∈ Φ(Gred
k
, Tk). If a ∈ Φ(G,T ) is multipliable then

we define a∨ = 2(2a)∨ ∈ X∗(T ). The set of cocharacters a∨ for a ∈ Φ(G,T ) is
denoted Φ(G,T )∨, and its elements are called coroots for (G,T ). It is clear from
the reductive case over k that a 7→ a∨ is a bijection from Φ(G,T ) onto Φ(G,T )∨.

Proposition 3.2.7. Let G be a pseudo-split pseudo-reductive k-group, and T ⊂
G a split maximal k-torus.
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(i) The 4-tuple R(G,T ) := (X(T ),Φ(G,T ),X∗(T ),Φ(G,T )∨) is a root datum.
(ii) The finite étale k-group W (G,T ) := NG(T )/ZG(T ) is constant and the

natural map W (G,T )(k)→ Aut(X(T )) is injective onto W (Φ(G,T )).
(iii) Let Z be the maximal central k-torus in G and {Gi} the set of pseudo-

simple normal k-subgroups of G. For the associated k-split maximal k-tori
Ti = Gi ∩ T ⊂ Gi, the multiplication map Z ×

∏
Ti → T is an isogeny

identifying {Φ(Gi, Ti)} with the set of irreducible components of Φ(G,T ).

In particular, for the split maximal k-torus T ′ := T ∩ D(G) ⊂ D(G) that is an
isogeny complement to Z in T , Φ(G,T ) is a root system with Q-span X(T ′)Q and
if G is pseudo-semisimple then it is (absolutely) pseudo-simple if and only if Φ(G,T )
is irreducible.

A finer analysis shows that the inclusion NG(T )(k)/ZG(T )(k) ↪→W (G,T )(k) =
W (Φ(G,T )) is bijective; we will address this in Proposition 4.1.3.

Proof. Apart from the final assertion relating (absolute) pseudo-simplicity
and irreducibility of a root system in the pseudo-semisimple case, the rest is largely
an exercise in bootstrapping from the reductive case by using Propositions 3.2.2
and 3.2.4; see [CGP, Lemma 1.2.5(ii), 3.2.5–3.2.10] for the details.

Now assume G is pseudo-semisimple, so by the classical link between simple
isogeny factors of a split connected semisimple group and the irreducible compo-
nents of its root system it follows that the connected semisimple k-group Gred

k
is

simple if and only if the root system Φ(Gred
k
, Tk) is irreducible. But Φ(Gred

k
, Tk) is

the set of non-multipliable elements of Φ(G,T ), and a root system is irreducible if
and only if the root system of its non-multipliable elements is irreducible. Thus, it
remains to observe that G is absolutely pseudo-simple if and only if the connected
semisimple Gred

k
is simple, due to Proposition 3.2.2. �

Remark 3.2.8. For any a ∈ Φ(G,T ), the 1-dimensional torus a∨(GL1) is max-
imal in an absolutely pseudo-simple k-subgroup of G attached to a similarly to the
reductive case, as follows. Defining Ga := 〈Ua, U−a〉, the equality a∨(GL1) = T∩Ga
is an easy consequence of the well-known analogue for Gred

k
; see [CGP, Prop. 3.2.3].

The absolute pseudo-simplicity of Ga shall now be deduced from a description of
Ga in terms of derived groups and centralizers of k-subgroup schemes of tori.

If a is not divisible then, as in the reductive case, we have Ga = D(ZG(Ta))
for the codimension-1 subtorus Ta = (ker a)0

red ⊂ T killed by a; this is easy to
prove since (i) the pseudo-split pseudo-reductive ZG(Ta) has as its roots only {±a}
or {±a,±2a} due to the non-divisibility of a, and (ii) the pseudo-split pseudo-
semisimple group D(ZG(Ta)) is generated by its root groups (Proposition 3.1.4). If
instead a is divisible (so k is imperfect with characteristic 2) then similar arguments
show that Ga = D(Ha) for Ha = ZZG(Ta)(µ)0 with µ denoting the infinitesimal k-
group scheme (T ∩Ga)[2] ' µ2, but the pseudo-reductivity of Ha lies much deeper
than that of ZG(Ta); see [CGP, Prop. 3.4.1] for further details. The description
of Ga in each case implies that T ∩ Ga is a maximal k-torus in Ga (because the
intersection of a maximal k-torus with a smooth connected normal k-subgroup N
is a maximal k-torus in N [CGP, Cor. A.2.7]).

3.3. Open cell. For a split connected reductive k-group (G,T ) and the Borel
k-subgroup B containing T for which Φ(B, T ) coincides with a given positive system
of roots Φ+ in Φ(G,T ), the k-unipotent radical Ru,k(B) is directly spanned in any
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order by the positive root groups {Ua}a∈Φ+ ; i.e., if {a1, . . . , an} is any enumeration
of Φ+ then the multiplication map

∏
Uai → Ru,k(B) is an isomorphism of k-

schemes. The analogous result for k-unipotent radicals of parabolic k-subgroups
containing B is classical. Traditional proofs of these results rest crucially on the
1-dimensionality of the root groups and on an inductive procedure to build up Φ+

from well-chosen subsets.
In the pseudo-reductive case such a “direct spanning” result holds for the k-

unipotent radicals of pseudo-parabolic k-subgroups, but the proof is necessarily
completely different from the traditional arguments in the reductive case since the
root groups are generally not 1-dimensional. Rather generally, one considers a split
k-torus S acting on any smooth affine k-group G and seeks to describe certain S-
stable smooth connected k-subgroups H ⊂ G in terms of the subsemigroup of X(S)
generated by the S-weights that occur in Lie(H). With the aid of dynamic methods
(especially the k-groups UH′(λ) for S-stable smooth connected k-subgroups H ′ ⊂ G
and λ ∈ X∗(S)), a study of the S-action on coordinates rings of geometrically
integral closed subschemes of G passing through 1 yields a crucial result [CGP,
Prop. 3.3.6]:

Proposition 3.3.1. If A ⊂ X(S) is a subsemigroup then among all S-stable
smooth connected k-subgroups H ⊂ G such that all S-weights on Lie(H) lie in A,
there is one such k-subgroup HA(G) that contains all others. If 0 6∈ A then HA(G)
is unipotent.

Example 3.3.2. If G is pseudo-reductive with a split maximal k-torus T and
a ∈ Φ(G,T ) then for the semigroup A = 〈a〉 of multiples na with positive integers
n, the k-subgroup HA(G) is the a-root group Ua. This special case is easily proved
since Lie(Ua) is the span of all T -weight spaces in Lie(G) for weights in A.

By investigating the functorial behavior of HA(G) upon varying A and G (e.g.,
for an S-stable smooth closed k-subgroup G′ ⊂ G, when does G′ ∩ HA(G) =
HA(G′)?), as is carried out in [CGP, 3.3.8–3.3.10], one obtains a vast generalization
[CGP, Thm. 3.3.11] of the direct spanning of Ru(B) by positive root groups in the
connected reductive case:

Theorem 3.3.3. Let S be a split k-torus and U a nontrivial smooth connected
unipotent k-group equipped with an S-action such that the set Ψ of S-weights oc-
curring on Lie(U) does not contain 0. For any decomposition Ψ =

∐n
j=1 Ψj into

disjoint non-empty subsets such that the semigroup Aj = 〈Ψj〉 is disjoint from Ψj′

for all j′ 6= j, the natural multiplication map

HA1(U)× · · · ×HAn(U) −→ U

is an isomorphism of k-schemes.

Example 3.3.4. Let G be a pseudo-split pseudo-reductive group, with T a
split maximal k-torus. Let Φ+ be a positive system of roots in Φ := Φ(G,T ), so
by general facts in the theory of root systems (see [CGP, Prop. 2.2.8(3)]) Φ+ is
the locus where Φ meets an open half-space {λ > 0} for some λ ∈ X∗(T ) that
is non-vanishing on Φ. We apply Theorem 3.3.3 to U = UG(λ) and Ψ = Φ+

with Ψj ’s taken to be where Ψ meets half-lines in X(T )Q (so each Ψj is either
a singleton consisting of a non-divisible non-multipliable positive root or has the
form {a, 2a} for a multipliable positive root a). It follows that the root groups Ua
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for non-divisible a ∈ Φ+ directly span in any order a smooth connected unipotent
k-subgroup UΦ+ ⊂ G. (This k-subgroup is UG(λ) by another name, but clearly
depends only on Φ+ rather than on the choice of λ.)

If {a1, . . . , an} is an enumeration of the non-divisible elements of Φ+ then by
Theorem 2.3.5(ii) the natural multiplication map∏

U−ai × ZG(T )×
∏

Uai = U−Φ+ × ZG(T )× UΦ+ −→ G

is an open immersion; this is called the open cell attached to Φ+. The k-subgroup
PΦ+ = ZG(T ) n UΦ+ = PG(λ) is pseudo-parabolic, and Φ+ 7→ PΦ+ is a bijection
from the set of choices of Φ+ onto the set of minimal pseudo-parabolic k-subgroups
P of G such that T ⊂ P (see Proposition 3.3.7 below); in the reductive case this
recovers the well-known link between Borel subgroups and positive systems of roots
(but by an entirely different method of proof!).

Since we will use root systems to control pseudo-parabolic subgroups, we now
recall the combinatorial notion that corresponds to pseudo-parabolicity:

Definition 3.3.5. A subset Ψ of a root system Φ is parabolic if it is closed
(i.e., a+ b ∈ Ψ for any a, b ∈ Ψ such that a+ b ∈ Φ) and Ψ ∪ −Ψ = Φ.

Letting V be the Q-span of Φ, it is a classical fact (see [CGP, Prop. 2.2.8])
that the parabolic subsets are precisely the intersections

Φλ>0 := Φ ∩ {λ > 0}
for linear forms λ : V → Q; in geometric terms, these are precisely the intersections
of Φ with a closed half-space in VR. For λ that is non-vanishing at all points of
Φ (the “generic” case), the resulting parabolic subsets Φλ>0 = Φλ>0 are precisely
the positive systems of roots. (Moreover, closed subsets of Φ are precisely the
intersections Φ ∩A with a subsemigroup A ⊂ V [CGP, Prop. 2.2.7].)

Example 3.3.6. If G is pseudo-reductive and pseudo-split with a split maximal
k-torus T , for the pseudo-parabolic k-subgroups P ⊂ G containing T the subsets
Φ(P, T ) ⊂ Φ (consisting of nontrivial T -weights occuring in Lie(P )) are precisely the
parabolic subsets of Φ. Indeed, we can choose λ : GL1 → T such that P = PG(λ)
by Lemma 2.3.9, so then Φ(P, T ) = Φλ>0 by Theorem 2.3.5(i),(ii).

Proposition 3.3.7. Let G be a pseudo-split pseudo-reductive k-group, with T
a split maximal k-torus and Φ = Φ(G,T ). Consider pseudo-parabolic k-subgroups
P of G that contain T . The set Φ(P, T ) is a positive system of roots in Φ if and
only if P is minimal as a pseudo-parabolic k-subgroup of G, and P 7→ Φ(P, T ) is a
bijection from the set of such minimal P onto the set of positive systems of roots
in Φ.

Since W (G,T )(k) = W (Φ) by Proposition 3.2.7(ii), we have a simply transitive
action of W (G,T )(k) on the set of such P since W (Φ) acts simply transitively on
the set of positive systems of roots in Φ for any root system Φ.

Proof. By Lemma 2.3.9 we can choose λ ∈ X∗(T ) such that P = PG(λ), so
Theorem 2.3.5(i),(ii) implies

Φ(P, T ) = Φλ>0 := {a ∈ Φ | 〈a, λ〉 > 0}.
This is a positive system of roots precisely when λ is non-vanishing on all elements
of Φ. Suppose that Φ(P, T ) is not a positive system of roots, so the hyperplane
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{λ = 0} in X(T )Q meets Φ. Choose λ′ ∈ X∗(T )Q sufficiently near λ so that it is
positive on the finite set Φλ>0 and negative on Φλ<0 but non-vanishing on Φλ=0.
Hence, for µ := nλ′ ∈ X∗(T ) with an integer n > 0 that is sufficiently divisible,
the set Φµ>0 = Φµ>0 is a positive system of roots contained in Φλ>0. Thus, for
the pseudo-parabolic k-subgroup Q := PG(µ) the containment Q∩P = PQ(λ) ⊂ Q
between smooth connected k-subgroups is an equality on Lie algebras and so is an
equality of groups; i.e., Q ⊂ P . But Lie(Q) is a proper subspace of Lie(P ), so P is
not minimal in G. In other words, if P is minimal then Φ(P, T ) is a positive system
of roots.

Suppose instead that P is not minimal. We wish to show that Φ(P, T ) is not a
positive system of roots. For this purpose it is harmless to extend scalars to ks. It
is likewise harmless to replace T with a P (k)-conjugate. Letting P ′ be a pseudo-
parabolic k-subgroup of G strictly contained in P , consider a maximal k-torus
T ′ ⊂ P ′. Note that T ′ is split since we have arranged (for present purpose) that
k = ks. It is a well-known result of Grothendieck that maximal tori in a smooth
affine group over a separably closed field are rationally conjugate to each other
[CGP, Prop. A.2.10] (this is much more elementary than the rational conjugacy of
maximal split tori in smooth affine – or even just connected reductive! – groups
over general fields, which we will address in Theorem 4.2.9). Hence, via suitable
P (k)-conjugation to carry T onto T ′ we can assume T ⊂ P ′.

The strict containment of P ′ in P implies a strict containment Lie(P ′) (
Lie(P ). Since T ⊂ P ′, so P ′ = PG(λ′) for some λ′ ∈ X∗(T ) by Lemma 2.3.9,
clearly P ′ ⊃ ZG(λ′) ⊃ ZG(T ). Thus, Lie(G)T ⊂ Lie(P ′) and each of Lie(P ′) and
Lie(P ) is spanned by Lie(G)T and the root spaces for roots respectively in Φ(P ′, T )
and Φ(P, T ). Hence, the parabolic subset Φ(P ′, T ) of Φ inside Φ(P, T ) must be a
proper subset of Φ(P, T ), so Φ(P, T ) is not a positive system of roots.

Now we return to general k and consider minimal pseudo-parabolic k-subgroups
P and Q of G that contain T such that Φ(P, T ) = Φ(Q,T ). We need to show that
P = Q. But each of P and Q is generated by ZG(T ) and root groups of G for the
T -weights that appear in the respective Lie algebras (e.g., if a ∈ Φ(P ′, T ) = Φλ′>0

then the containment UP
′

(a) ⊂ U
G
(a) is an equality on Lie algebras and thus an equality

of k-groups, so UG(a) ⊂ P
′), so obviously P = Q. �

4. Structure theory

4.1. Bruhat decomposition. For a connected reductive k-group G, the sub-
group structure of G(k) is governed by the Bruhat decomposition as follows. If S is a
maximal split k-torus (with associated relative root system kΦ = Φ(G,S) that may
be non-reduced) and P is a minimal parabolic k-subgroup of G containing S then
the relative Weyl group kW := NG(S)(k)/ZG(S)(k) (which maps isomorphically
onto W (kΦ)) labels the P (k)-double cosets in G(k): the natural map

kW −→ P (k)\G(k)/P (k)

is bijective.
Writing nw ∈ NG(S)(k) to denote a representative of w ∈ kW , in the split

case the locally closed subsets PnwP constitute a stratification of G whose closure
relations can be expressed entirely in terms of the combinatorics of Coxeter groups
and root systems (via the “Bruhat order” on kW defined by a choice of basis of

kΦ). If G is not assumed to be split then P = ZG(S) n U where U := Ru,k(P ) is
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k-split and directly spanned in any order by the root groups associated to members
of the positive system of roots Φ(P, S) ⊂ kΦ, and the Bruhat decomposition

G(k) =
∐

w∈kW

P (k)nwP (k)

has only group-theoretic rather than geometric meaning.
The preceding Bruhat decomposition is a consequence of general results con-

cerning groups equipped with a Tits system [Bou, Ch. IV, §2.3, Thm. 1], so the
main work in its proof is to show that the 4-tuple (G(k), P (k), NG(S)(k), R) is a
Tits system (see Definition 4.1.6), where R = {ra}a∈∆ is the set of reflections in

kW = W (kΦ) associated to a basis ∆ of kΦ. The equality kW = W (kΦ) is an
essential step in relating the structure of G(k) to the theory of Coxeter groups, and
it rests on finding na ∈ NG(S)(k) inducing the reflection ra : x 7→ x − 〈x, a∨〉a in
each root a ∈ kΦ.

An analogous structure is available for pseudo-reductive groups, both in the
pseudo-split case (using root systems and root groups as introduced in §3) as well
as in the general case. This development involves a Bruhat decomposition for G(k)
relative to maximal k-split tori S and minimal pseudo-parabolic k-subgroups P ⊃ S,
as well as G(k)-conjugacy of all such pairs (S, P ). The general G(k)-conjugacy
results will be discussed in §4.2 and §5.1, and we now focus on the pseudo-split
case because ultimately the proof of the general k-rational Bruhat decomposition
in §5.2 rests on the ks-rational Bruhat decomposition.

Remark 4.1.1. We shall see (in the proof of Theorem 4.1.7) that Tits sys-
tems are used to prove the Bruhat decomposition in the pseudo-split case. In con-
trast, the Bruhat decomposition in the general pseudo-reductive case over k [CGP,
Thm. C.2.8] rests on the settled (pseudo-split) case over ks, whereas (akin to the
general connected reductive case) verifying the Tits system axioms over k [CGP,
Thm. C.2.20] rests on the Bruhat decomposition over k. This will be discussed more
fully in §5.3.

As a first step, for a pseudo-reductive k-group G and split maximal k-torus
T we shall construct representatives in NG(T )(k) for reflections in W (Φ(G,T ))
attached to roots in Φ(G,T ). It is instructive to recall motivation from the rank-1
split connected semisimple case:

Example 4.1.2. Let G be a split connected semisimple k-group of rank 1,
T ⊂ G a split maximal k-torus, and a ∈ Φ(G,T ) one of the two roots. Choose a
nontrivial element u ∈ Ua(k) − {1}. We may pick an isomorphism from G onto
SL2 or PGL2 carrying T onto the diagonal k-torus such that Ua is carried into
the upper-triangular unipotent k-subgroup. In this way, u goes over to an element
( 1 x

0 1 ) with x ∈ k×.
An elementary calculation with SL2 and PGL2 shows that there exist unique

u′, u′′ ∈ U−a(k) such that m(u) := u′uu′′ ∈ NG(T )(k), and that necessarily u′ =
u′′ 6= 1 with m(u) representing the unique nontrivial element in NG(T )(k)/T (k).

Explicitly, u′ = u′′ = ( 1 0
−1/x 1 ) = m(u)um(u)−1 and m(u)2 = diag(−1,−1) =

a∨(−1) regardless of the choice of u.

We want to adapt Example 4.1.2 to the rank-1 pseudo-split pseudo-semisimple
case. Two immediate difficulties are: (i) there is no concrete description of the
rank-1 possibilities at this stage of the theory, and (ii) over imperfect fields of
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characteristic 2 the cases with root system BC1 are especially difficult to describe
even after we have developed a lot more theory.

Proposition 4.1.3. Let G be a pseudo-split pseudo-reductive k-group and T ⊂
G a split maximal k-torus. Choose a ∈ Φ := Φ(G,T ), u ∈ Ua(k) − {1}. There
exist unique u′, u′′ ∈ U−a(k) such that m(u) := u′uu′′ ∈ NG(T )(k). Moreover,
u′ = u′′ = m(u)um(u)−1 6= 1, m(u)2 = a∨(−1), and the image of m(u) in W (Φ) is
the reflection ra : x 7→ x− 〈x, a∨〉a arising from the root datum R(G,T ).

In particular, the natural inclusion NG(T )(k)/ZG(T )(k) ↪→W (Φ) is an equality
and hence if G is absolutely pseudo-simple (so Φ is irreducible) then NG(T )(k) acts
transitively on the set of roots in Φ with a given length.

See Proposition 5.4.2 (and Proposition 5.3.1 and Theorem 5.3.2(i)) for a version
beyond the pseudo-split case.

Proof. We provide a sketch of the main ideas, referring the reader to [CGP,
Prop. 3.4.2] for complete details. Let N = NG(T ) and U± = U±a, and let C
denote the Cartan k-subgroup ZG(T ). By using Galois descent and centralizer
considerations as near the end of Remark 3.2.8, the general case reduces to the
rank-1 case with non-divisible a and k = ks that we now address.

The two possibilities for Φ are {±a} or {±a,±2a} (the latter only possible when
k is imperfect of characteristic 2), and N(k)/C(k) = (N/C)(k) = W (Φ) has order
2 (see Proposition 3.2.7(ii)). Thus, C and N − C are the connected components
of N , so upon choosing n ∈ N(k) − C(k) = (N − C)(k) we have N − C = nC.
Note that U− = nU+n−1 since the nontrivial n-conjugation on T must act via a
nontrivial automorphism of the rank-1 root system Φ and hence negates the roots.

The natural quotient map π : Gk → Gred
k

need not be injective on G(k) (since
C may have nontrivial étale p-torsion when k is imperfect with characteristic p
[CGP, Ex. 1.6.3]). However, the kernels ker(π|U±(k)) are trivial. To prove this
triviality, first note that ker(π|U±(k)) ⊂ Ru(Gk). Thus, by pseudo-reductivity of
G and [CGP, Lemma 1.2.1], the Zariski closure of ker(π|U±(k)) has trivial identity
component. This says that ker(π|U±(k)) is finite. Each restriction π|U±(k) is equi-

variant with respect to T (k)→ T (k), so ker(π|U±(k)) is stable inside U±(k) under

conjugation by T (k). But U± admits a T -equivariant linear structure with only
nontrivial weights, so the finite group ker(π|U±(k)) must be trivial; i.e., π|U±(k) is
injective.

Since π carries the “open cell” (U− × C × U+)k ⊂ Gk into the corresponding

open cell in Gred
k

, the injectivity of π|U±(k) reduces the proofs of the uniqueness of

u′, u′′ (given their existence!) and the identities u′ = u′′ = m(u)um(u)−1 6= 1 in
U−(k) to the settled reductive case over k. Hence, the main problem is existence
of u′ and u′′.

Remark 4.1.4. The other desired identity, m(u)2 ?
= a∨(−1), does not take

place inside U±(k) and so does not reduce to the reductive case over k. Its proof
involves separate arguments depending on whether or not char(k) = 2. If char(k) =
2 then we use that U±(k) is 2-torsion, and if char(k) 6= 2 then we use that there
exists t ∈ T (k) such that a(t) = −1 6= 1 (since k = ks and a root is at worst
divisible by 2 in X(T )).

Continuing with the proof, we shall construct u′ and u′′ such that u′uu′′ ∈
N −C = nC by studying the multiplication map µ : U−×U+×U− → G. Working
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with points valued in k-algebras, an identity of the form u′uu′′ = nc for u′, u′′ ∈ U−
and c ∈ C can be rewritten as n−1u = (n−1u′

−1
n)cu′′

−1 ∈ U+ × C × U−. Since
n−1u ∈ G(k) and the multiplication map U+×C×U− → G is an open immersion,
it suffices to construct u′ and u′′ as k-points! We likewise see that the preimage
µ−1(N − C) projects isomorphically onto the open subscheme Ω ⊂ U+ of points
whose left n−1-translate lies in the open cell U+CU− ⊂ G. Thus, it suffices to
prove U+(k)− {1} ⊂ Ω.

Injectivity of π|U+(k) ensures that U+(k) − {1} is disjoint from R := R(Gk).

Thus, it suffices to show that U+

k
∩ (Gk − R) ⊂ Ωk (in fact, equality holds), or

equivalently that

(4.1.4) n(U+

k
∩ (Gk −R)) ⊂ (U+CU−)k.

For this purpose we can replace G with 〈U+, U−〉 = D(G) since R ∩ N = Ru(N)
for any smooth connected subgroup N ⊂ Gk [CGP, Prop. A.4.8] (applied with

N = D(G)k). Now G is pseudo-semisimple and Gred
k

is equal to SL2 or PGL2.

Hence, the analogue of (4.1.4) for Gred
k

is a trivial calculation, so to prove (4.1.4) it

suffices to show (U+CU−)k is the preimage of its image under π.
In other words, for λ = a∨

k
we need to show that UGk

(λ)PGk
(−λ) is stable

under right multiplication against R. But R is normal in Gk, so it is the same to
show that

UGk
(λ)PGk

(−λ) = UGk
(λ)RPGk

(−λ).

Since R is a solvable smooth connected affine group, it coincides with its own
“open cell” relative to any GL1-action [CGP, Rem. 2.1.11, Prop. 2.1.12(1)]. Hence,
making GL1 act on the normal subgroup R ⊂ Gk through λ-conjugation, the open
immersion UR(λ) × PR(−λ) → R via multiplication is an isomorphism and so we
are done. �

Remark 4.1.5. By Proposition 3.2.7 we have (NG(T )/ZG(T ))(k) = W (Φ), so
Proposition 4.1.3 implies that the short exact sequence of k-groups

1 −→ ZG(T ) −→ NG(T ) −→ NG(T )/ZG(T ) −→ 1

induces a short exact sequence on k-points. This is remarkable because it admits
no cohomological explanation. To explain this point, note that the cohomological
obstruction to short-exactness on k-points lies in H1(k, ZG(T )). If G is reductive
then this cohomology group vanishes by Hilbert’s Theorem 90 since ZG(T ) = T is
a split k-torus.

The general structure of the commutative pseudo-reductive k-group ZG(T ) is
mysterious (as the unipotent ZG(T )/T never contains Ga as a k-subgroup [CGP,
Ex. B.2.8]), so it isn’t clear if H1(k, ZG(T )) vanishes. In fact, over imperfect k with a
sufficiently nontrivial Brauer group there exist “standard” pseudo-split absolutely
pseudo-simple k-groups G for which H1(k, ZG(T )) 6= 1 (this occurs whenever k
coincides with the rational function field κ(u, v) over an algebraically closed field κ
with positive characteristic); see [CGP, Ex. 3.4.4] for such examples.

Finally, we can adapt techniques from the Borel–Tits structure theory of arbi-
trary connected reductive groups to establish the Bruhat decomposition for pseudo-
split pseudo-reductive groups (to be generalized to smooth connected affine groups
in Theorem 5.2.2). The complete result in this case involves the following important
notion from [Bou, IV, §2]:
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Definition 4.1.6. A BN-pair for a group G is an ordered pair (B,N) of sub-
groups such that:

(BN1) B ∪ N generates G, and B ∩ N is normal in N,
(BN2) W := N/(B∩N) is generated by a set R of elements of order 2 that do not

normalize B,
(BN3) for any n ∈ N and representative s ∈ N of an element of R, sBn ⊂

BnB ∪ BsnB.

If there exists a nilpotent normal subgroup U ⊂ B such that B = (B ∩ N)U
then the BN-pair is weakly split, and if B ∩N =

⋂
w∈W wBw−1 then the BN-pair is

saturated. Any such 4-tuple (G,B,N,R) is called a Tits system.

The group W is called the Weyl group of the BN-pair, and the set R is uniquely
determined by the triple (G,B,N) [Bou, IV, §2.4, Rem.(1)].

Theorem 4.1.7. Let G be a pseudo-split pseudo-reductive k-group with a split
maximal k-torus T . Let P be a minimal pseudo-parabolic k-subgroup of G contain-
ing T , and define N = NG(T ) and Z = ZG(T ).

(i) The pair (P (k), N(k)) is a saturated BN-pair for G(k) with associated
Weyl group W (Φ(G,T )).

(ii) (Bruhat decomposition) The natural map

(4.1.7) N(k)/Z(k) −→ P (k)\G(k)/P (k)

is bijective.

We have not yet addressed (and do not presently need) the G(k)-rational con-
jugacy of all pairs (T, P ); this will be proved in §4.2 and §5.1 (not relying on the
present considerations).

Proof. We shall sketch the proof, and refer the reader to [CGP, Thm. 3.4.5]
for omitted details. Let N = NG(T ), Z = ZG(T ), and Φ = Φ(G,T ). Define
Γ ⊂ G(k) to be the subgroup generated by Z(k) and {Ua(k)}a∈Φ. (Eventually we
will see that Γ = G(k), but we do not yet know this.)

Since the natural map N(k) → W (Φ) is surjective by Proposition 4.1.3, for
each a ∈ Φ we may define a Z(k)-coset Ma ⊂ N(k) to be the preimage in N(k) of
the reflection ra ∈W (Φ) attached to a (i.e., ra : x 7→ x− 〈x, a∨〉a). In the work of
Bruhat–Tits on the structure of reductive groups over local fields, the notion of a
“generating root datum” (of type Φ) [BrTi, (6.1.1)] is defined via 6 axioms and a
generating property that we do not state here.

The data (Z(k), (Ua(k),Ma)a∈Φ) satisfies the 6 axioms due to several earlier re-
sults: Theorem 2.3.5(ii), the direct spanning of Ru,k(P ) by its T -root groups in any
order (see Example 3.3.4), and Proposition 4.1.3 (as well as [CGP, Cor. 3.3.13(2)]).
The remaining ingredient to establish that (Z(k), (Ua(k),Ma)a∈Φ) is a generating
root datum (of type Φ) is that Γ = G(k).

By Proposition 3.3.7, Φ+ := Φ(P, T ) is a positive system of roots in Φ. For
the k-groups U±Φ+ as in Example 3.3.4, clearly U±Φ+(k) are generated by the
subgroups {Ua(k)}a∈±Φ+ . Thus, for the open cell Ω := U−Φ+ ×Z ×UΦ+ ↪→ G (via
multiplication), clearly Ω(k) ⊂ Γ. Hence, to prove Γ = G(k) it is enough to show
that Ω(k) generates G(k). More specifically, we claim that for every g ∈ G(k), the
dense open Ωg := gΩ ∩ Ω ⊂ G contains a k-point. This is rather more delicate
than in the reductive case since G is generally not unirational (see Example 2.1.5).
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Nonetheless, dynamic arguments establish that Ωg(k) is non-empty. (The idea for
proving Ωg(k) 6= ∅ when k is infinite is to show that Ωg(k)/P (k) = (Ωg/P )(k), a
useful equality because Ωg/P is clearly a dense open subscheme of the k-scheme
Ω/P = U− that is an affine space and hence has Zariski-dense locus of k-points.
The case of finite k is part of the standard Borel–Tits structure theory for connected
reductive groups.)

Let ∆ be the set of simple roots in Φ+. Since (Z(k), (Ua(k),Ma)a∈Φ) is
a generating root datum for G(k), by [BrTi, 6.1.11(ii), 6.1.12] it follows that
(G(k), P (k), N(k), {ra}a∈∆) is a saturated Tits system with Weyl group N(k)/Z(k)
(as N ∩ P = Z, since W (Φ) acts freely on the set of positive systems of roots in
Φ). But N(k)/Z(k) = W (Φ) by Proposition 4.1.3, so the Bruhat decomposition in
(ii) is a consequence of the Bruhat decomposition for groups equipped with a Tits
system [Bou, Ch. IV, §2.3, Thm. 1]. �

4.2. Pseudo-completeness. A lacuna in our formulation of the Bruhat de-
composition for G(k) in the pseudo-split pseudo-reductive case in Theorem 4.1.7 is
that we have not yet proved G(k)-conjugacy of all pairs (T, P ) (with minimal P ).
A new concept will be required in order to settle this issue.

To motivate where the difficulty lies, recall that in the split connected reductive
case such conjugacy results are proved via Borel’s fixed point theorem for the action
of a k-split solvable smooth connected affine group on a proper k-scheme; the proper
k-scheme to which this is applied is G/P . But in the pseudo-split pseudo-reductive
case the quotient G/P modulo a proper pseudo-parabolic k-subgroup P is generally
not proper (see [CGP, Ex. A.5.6]), so Borel’s fixed point theorem does not apply.
Fortunately, G/P satisfies a weaker property that is adequate for establishing an
analogue of Borel’s theorem:

Definition 4.2.1. A k-scheme X is pseudo-complete if it is separated, of finite
type, and satisfies the valuative criterion for properness with discrete valuation
rings R over k whose residue field is separable over k.

This is only of interest for imperfect k, as otherwise all extensions of k are
separable and hence pseudo-completeness over k recovers properness (due to the
valuation criterion). By [CGP, Prop. C.1.2], pseudo-completeness is insensitive to
separable extension of the ground field and to check pseudo-completness we only
need to consider those R that are also complete and have separably closed residue
field. Arguments with Artin approximation imply that it is even enough to consider
only R = ks[[x]] (see [CGP, Rem. C.1.4]); we will never use this, but it recovers the
definition considered by Tits.

Example 4.2.2. Let k′/k be a finite extension of fields, G′ a connected reduc-
tive k′-group, and P ′ ⊂ G′ a proper parabolic k′-subgroup. Let G = Rk′/k(G′)
and P = Rk′/k(P ′), so G is pseudo-reductive over k and P is a proper pseudo-
parabolic k-subgroup of G (see [CGP, Prop. 2.2.13]). The quotient G/P is iden-
tified with Rk′/k(G′/P ′) where G′/P ′ is smooth and projective with positive di-
mension. Hence, if k′/k is not separable then G/P is never proper (see [CGP,
Ex. A.5.6]). Nonetheless, G/P is pseudo-complete.

More generally, if X ′ is a projective k′-scheme then we claim that the separated
k-scheme Rk′/k(X ′) of finite type is pseudo-complete. Since pseudo-completness is
insensitive to separable extension on k, we may extend scalars to ks at the cost of
replacing k′ with the individual factor fields of k′⊗kks (and X ′ with its base change
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over such fields) to reduce to the case that k′/k is purely inseparable. By definition,
we need to show that if A is a discrete valuation ring over k with fraction fieldK such
that the residue field F of A is separable over k then Rk′/k(X ′)(A) = Rk′/k(X ′)(K),
or equivalently X ′(k′⊗k A) = X ′(k′⊗kK). Since X ′ is pseudo-complete over k′, it
suffices to show that if k/k is any purely inseparable extension then A := k⊗k A is
a discrete valuation ring with fraction field k⊗k K and residue field k⊗k F . For a
uniformizer t of A it suffices to prove every nonzero element of A is a unit multiple
of tn for a unique n > 0, so we may assume [k : k] < ∞. But then A is visibly
noetherian and local with 1 ⊗ t a non-nilpotent element generating the maximal
ideal (as k⊗k κ is a field, since κ/k is separable), so A is a discrete valuation ring
by [Ser, Prop. 2, §2, Ch. I].

The proof of Borel’s fixed point theorem for a k-split solvable smooth connected
affine k-group acting on a proper k-scheme with a k-point involves extending to P1

certain k-scheme maps from Ga or GL1. By elementary denominator-chasing, these
extension problems only involve the completed local ring k[[x]] at 0 or∞, so we only
need to work with R = k[[x]] to construct the desired extension. This establishes:

Proposition 4.2.3. If H is a k-split solvable smooth connected affine k-group
and X is a pseudo-complete k-scheme equipped with an action by H such that
X(k) 6= ∅ then X(k) contains a point fixed by H.

Pseudo-completeness underlies a generalization [CGP, Prop. C.1.6] of Example
4.2.2:

Theorem 4.2.4. If P is a pseudo-parabolic k-subgroup of a smooth connected
affine k-group G then G/P is pseudo-complete over k.

Proof. We may assume k = ks and G is pseudo-reductive (as Ru,k(G) ⊂ P by
definition of pseudo-parabolicity, with P/Ru,k(G) pseudo-parabolic in G/Ru,k(G)
by Proposition 2.3.8). Let G′ denote the maximal geometric reductive quotient
Gred
k

of G, and let P ′ be the image of Pk in G′. If k is perfect, so k = k, then there
is nothing to do because over k pseudo-completeness coincides with properness and
pseudo-parabolicity in G coincides with parabolicity by [CGP, Prop. 2.2.9]. Hence,
we may assume p = char(k) > 0.

We explain why P ′ is parabolic in G′, and refer the reader to the proof of
[CGP, Prop. C.1.6] for the rest of the argument. By definition, P = PG(λ) for
some λ : GL1 → G. For the maximal geometric reductive quotient G′ = Gred

k
of

Gk, the image P ′ of Pk in G′ is PG′(λk) by Proposition 2.3.8. Thus, P ′ is parabolic
in G′ [CGP, Prop. 2.2.9]. �

Remark 4.2.5. It is natural to ask if the converse to Theorem 4.2.4 holds
(providing a “geometric” characterization of pseudo-parabolicity). Unfortunately,
the converse essentially always fails away from the reductive case, thereby explaining
why pseudo-parabolicity is developed via dynamic rather than geometric means.

To make this failure precise, assume G is pseudo-reductive (a harmless hy-
pothesis since P 7→ P/Ru,k(G) is a bijection between the sets of pseudo-parabolic
k-subgroups of G and G/Ru,k(G) [CGP, Prop. 2.2.10]). By [CGP, Thm. C.1.9],
the following two conditions are equivalent:

(i) the smooth closed k-subgroups Q of G for which G/Q is pseudo-complete
are precisely the pseudo-parabolic k-subgroups,
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(ii) every Cartan k-subgroup of G is a torus.

Since parabolicity and pseudo-parabolicity are the same in the connected reductive
case [CGP, Prop. 2.2.9], it follows that for connected reductive G the parabolic
k-subgroups are precisely the smooth closed k-subgroups Q ⊂ G such that G/Q
is pseudo-complete. If instead G is pseudo-reductive but not reductive (so k is
imperfect) then the equivalent conditions (i) and (ii) always fail except for precisely
the special cases to be described in Theorem 7.3.3 that occur over k if and only if
k is imperfect with characteristic 2.

As an application of the analogue of the Borel fixed point theorem in the
pseudo-complete setting (Proposition 4.2.3), we can establish rational conjugacy
theorems in the smooth connected affine case that generalize well-known results in
the connected reductive case. To get started, we require a nontrivial lemma:

Lemma 4.2.6. If G is a smooth connected affine k-group and P is a pseudo-
parabolic k-subgroup then G(k)→ (G/P )(k) is surjective.

The connected reductive case is part of [Bo2, 20.5].

Proof. This problem is not easily reduced to the pseudo-reductive case be-
cause Ru,k(G) might not be k-split. The general case is treated in [CGP, Lemma
C.2.1], and here we give a proof when G is pseudo-reductive with G(k) Zariski-dense
in G. (This case plays a role in the proof for general G, via an inductive argument
to handle the possibility that G(k) may not be Zariski-dense in G, as can happen
even for pseudo-reductive G over infinite k; see Example 2.1.5.)

Assume G is pseudo-reductive, so P = PG(λ) for some λ : GL1 → G, and that
G(k) is Zariski-dense in G. For the dense open subscheme Ω := UG(−λ)× P ⊂ G
(via multiplication), the translates {gΩ}g∈G(k) constitute an open cover of G (as

this can be checked on k-points, using that G(k) is Zariski-dense in Gk). Passing

to the quotient modulo P , for the dense open Ω := Ω/P ⊂ G/P the translates
{gΩ}g∈G(k) constitute an open cover of G/P . But UG(−λ)(k)→ Ω(k) is bijective,
so we are done for such G. �

Lemma 4.2.7. Let G be a smooth connected affine k-group and P a pseudo-
parabolic k-subgroup. Every k-split solvable smooth connected k-subgroup H ⊂ G
admits a G(k)-conjugate contained in P . In particular, P contains a G(k)-conjugate
of any split k-torus S ⊂ G.

Proof. For g ∈ G(k) we have g−1Hg ⊂ P if and only if HgP ⊂ gP , which
is to say that the image of g in (G/P )(k) is fixed under the left H-action. But
G/P is pseudo-complete by Theorem 4.2.4, so the fixed point theorem (Proposition
4.2.3) provides a point in (G/P )(k) fixed by the left H-action. By Lemma 4.2.6,
this k-point of G/P lifts to G(k), so we get the desired G(k)-conjugate of H. �

Proposition 4.2.8. Let G be a pseudo-split pseudo-reductive k-group. A pseudo-
parabolic k-subgroup P of G is minimal if and only if P/Ru,k(P ) is commutative.

Proof. A split maximal k-torus of G admits a G(k)-conjugate contained in P
by Lemma 4.2.7, so P contains a split maximal k-torus T of G. Choose λ ∈ X∗(T )
such that P = PG(λ); such λ exists by Lemma 2.3.9. Clearly P = ZG(λ) n UG(λ)
and Ru,k(P ) = UG(λ), so P/Ru,k(P ) ' ZG(λ).
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As T ⊂ ZG(T ) ⊂ ZG(λ) and the Cartan k-subgroup ZG(T ) is commutative,
ZG(λ) is commutative if and only if the inclusion ZG(T ) ⊂ ZG(λ) is an equality.
Such equality of smooth connected groups is equivalent to equality of their Lie
algebras. These Lie algebras coincide if and only if Φλ=0 is empty, which is the
case if and only if Φλ>0 is a positive system of roots. Applying Proposition 3.3.7
therefore finishes the proof. �

Theorem 4.2.9 (Borel–Tits). Any two maximal split k-tori in a smooth con-
nected affine k-group G are conjugate under G(k).

Proof. We proceed by induction on dimG, the 0-dimensional case being clear.
If G admits a proper pseudo-parabolic k-subgroup P then by Lemma 4.2.7 every
split k-torus in G admits a G(k)-conjugate contained in P . Thus, we may rename P
as G and conclude by induction on dimension. Hence, we may assume that G does
not contain a proper pseudo-parabolic k-subgroup, so the pseudo-reductive quo-
tient G := G/Ru,k(G) also does not contain a proper pseudo-parabolic k-subgroup

[CGP, Prop. 2.2.10]. In other words, for every k-homomorphism λ : GL1 → G we
have

G = PG(−λ) = ZG(−λ) n UG(−λ),

so UG(λ) = 1. Likewise, UG(−λ) = 1, so G = ZG(λ). This says that every λ is

central in G, so every k-split torus in G is central! In particular, there is a unique
maximal k-split torus S in G and it is central.

Consider the preimage H of S under π : G � G. It is clear that every k-split
torus in G must be carried by π into S and so lies inside H. Thus, the problem for
G reduces to the same for H. But H is a smooth connected solvable k-group, and
in such a group any two maximal k-tori (and hence any two maximal split k-tori)
are conjugate to each other by an element of H(k) [Bo2, 19.2]. �

4.3. Properties of pseudo-parabolic subgroups. In addition to torus cen-
tralizers, proper parabolic k-subgroups P in connected reductive k-groups are a
useful source of inductive arguments since Ru,k(P ) is k-split and P/Ru,k(P ) is
reductive of smaller dimension. The relative root system kΦ = Φ(G,S) for a maxi-
mal split k-torus S (all choices of which are G(k)-conjugate to each other) controls
the collection of P ’s containing S as well as the structure of Ru,k(P ) in terms of
S-root groups for such P . These root groups can have large dimension and kΦ
can be non-reduced (for k of any characteristic, even k = R). For semisimple G,
k-anisotropicity is equivalent to G having no proper parabolic k-subgroup.

The analogous notion of relative roots for pseudo-reductive G will be discussed
in §5.3, resting on a robust theory of pseudo-parabolic subgroups in the pseudo-
split case (such as over ks). In this section we will address several basic structural
results for pseudo-parabolic k-subgroups of pseudo-reductive groups, sometimes
in the pseudo-split case and sometimes more generally. Everything we do in the
pseudo-split case here will be extended to the general case in §5.3–§5.4.

Proposition 4.3.1. Consider a pseudo-reductive k-group G containing a split
maximal k-torus T . Let Φ = Φ(G,T ) and P be a pseudo-parabolic k-subgroup of G
containing T .

(i) The subspace Lie(P ) ⊂ Lie(G) is the span of Lie(ZG(T )) and the T -weight
spaces for roots in Φ(P, T ), and if P ′ is a second pseudo-parabolic k-
subgroup containing T then P ′ = P if and only if Lie(P ′) = Lie(P ).
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(ii) If A is the subsemigroup of Φ spanned by the set Ψ of non-divisible roots
in Φ(P, T ) outside −Φ(P, T ) then Ru,k(P ) = HA(G) is the k-subgroup
directly spanned by the root groups for roots in Ψ.

(iii) For pseudo-parabolic k-subgroups P,Q containing T , the following are
equivalent: P ⊂ Q, Lie(P ) ⊂ Lie(Q), Φ(P, T ) ⊂ Φ(Q,T ).

This result (along with Proposition 4.2.8) is [CGP, Prop. 3.5.1], for which
Lie(ZG(T )) in (i) is mistakenly written as Lie(T ), a typographical error not affecting
the proof there.

Proof. The essential point is to reconstruct P from the set Φ(P, T ) of non-
trivial T -weights on Lie(P ). By Lemma 2.3.9, there exists λ ∈ X∗(T ) such that
P = PG(λ) = ZG(λ) n UG(λ), so UG(λ) = Ru,k(P ). By Example 3.3.6 we have
Φ(P, T ) = Φλ>0. For each a ∈ Φ(P, T ), the dynamic definition of U(a) and the

parabolicity of Φ(P, T ) imply that UG(a) = UP(a) ⊂ P . Since ZG(T ) ⊂ ZG(λ) ⊂ P ,

so ZG(T ) = ZP (T ), by applying Proposition 3.1.4 to P we conclude that P is gen-
erated by ZG(T ) and {UG(a)}a∈Φ(P,T ). Passing to Lie algebras yields (i) and (iii).

In the setting of (ii) we have A ∩ Φ = Φλ>0, so Ru,k(P ) = UG(λ) ⊂ HA(G) by
the maximality property of HA(G) in Proposition 3.3.1. This containment between
smooth connected k-subgroups of G induces an equality on Lie algebras, so it is an
equality of k-subgroups, establishing (ii). �

Remark 4.3.2. Based on experience in the reductive case, it is natural to
inquire if the equivalence of “P ⊂ Q” and “Lie(P ) ⊂ Lie(Q)” in Proposition
4.3.1(iii) is valid more generally for arbitrary pseudo-parabolic k-subgroups P,Q
in a pseudo-reductive k-group G without assuming P and Q share a common split
maximal k-torus. The answer is affirmative; see Proposition 5.1.4(i) (whoose proof
uses Proposition 4.3.1(iii) over ks).

Proposition 4.3.3. Let G be a pseudo-reductive k-group with a split maximal
k-torus T . Let G′ = Gred

k
, and let T ′ ⊂ G′ be the (isomorphic) image of Tk.

Assigning to each pseudo-parabolic k-subgroup P ⊂ G containing T the image P ′ of
Pk → G′ := Gred

k
is an inclusion-preserving bijection in both directions between the

set of such P and the set of parabolic subgroups of G′ that contain T ′. Moreover,
Φ(P ′, T ′) = Φ(P, T ) ∩ Φ(G′, T ′) inside X(T ) = X(T ′).

Proof. By Lemma 2.3.9, the k-groups P are exactly PG(λ) for λ ∈ X∗(T ).
In particular, the image P ′ of Pk in G′ is PG′(λk) by Proposition 2.3.8 (applied
to Gk � G′). The parabolic subgroups of G′ containing T ′ are exactly PG′(µ) for
µ ∈ X∗(T

′), by [CGP, Prop. 2.2.9]. Since X∗(T ) = X∗(Tk) via λ 7→ λk, as we
vary P ⊃ T the associated subgroups P ′ ⊂ G′ vary through precisely the parabolic
subgroups of G′ containing T ′.

Let Φ = Φ(G,T ) and Φ′ = Φ(G′, T ′), so Φ′ is the set of non-multipliable
elements of Φ (Theorem 3.1.7). For any root system spanning a vector space V ,
the parabolic subsets are precisely those with non-negative pairing against a linear
form [CGP, Prop. 2.2.8], so Ψ 7→ Ψ∩Φ′ is an inclusion-preserving bijection (in both
directions) between the sets of parabolic subsets of Φ and of Φ′. By Proposition
4.3.1(iii), if P,Q ⊂ G are pseudo-parabolic k-subgroups containing T , then P ⊂ Q
if and only if Φ(P, T ) ⊂ Φ(Q,T ) inside Φ(G,T ). Thus, to complete the proof we
just have to establish the formula Φ(P, T ) ∩ Φ′ = Φ(P ′, T ′). Writing P = PG(λ)
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with λ ∈ X∗(T ), we have P ′ = PG′(λ
′) for λ′ = λk. Thus, Φ(P, T ) = Φλ>0 and

Φ(P ′, T ′) = Φ′λ′>0. Since Φλ>0 ∩ Φ′ = Φ′λ′>0, we are done. �

Now we are finally in a position to address some subtle points that were noted
at the end of §2.3: does pseudo-parabolicity descend through separable extension
of the ground field, and is it transitive with respect to subgroup inclusions? For-
tunately, both answers are affirmative. We begin with separable extension of the
ground field, as an application of Proposition 4.3.1.

Proposition 4.3.4. Let G be a smooth connected affine k-group, P a smooth
connected k-subgroup, and K/k a separable extension of fields. Then P is pseudo-
parabolic in G if and only if PK is pseudo-parabolic in GK , and for a maximal
k-torus T ⊂ G the map P 7→ Φ((P/Ru,k(G))ks , Tks) is a bijection between the set
of pseudo-parabolic k-subgroups of G containing T and the set of Gal(ks/k)-stable
parabolic sets of roots in Φ((G/Ru,k(G))ks , Tks).

Proof. By Galois descent and Proposition 4.3.1(i), the bijectivity assertion
follows from the equivalence of pseudo-parabolicity for P and PK . Since it is
obvious that PK is pseudo-parabolic when P is pseudo-parabolic, we assume PK
is pseudo-parabolic and must show that P is pseudo-parabolic. By definition of
pseudo-parabolicity and the equality in (1.2.1.1) for separable K/k, we have

Ru,k(G)K = Ru,K(GK) ⊂ PK ,
so Ru,k(G) ⊂ P . Thus, we may pass to G/Ru,k(G) so that G is pseudo-reductive.

Suppose k = ks, and choose a maximal k-torus T ⊂ P . By Lemma 2.3.9
(applied to the pseudo-parabolic K-subgroup PK ⊂ GK containing the K-split
TK) there exists λ ∈ X∗(TK) = X∗(T ) such that PK = PGK

(λK) = PG(λ)K ,
so P = PG(λ) is pseudo-parabolic as desired. Hence, our remaining problem for
general k is one of descent from ks to k.

Let T be a (possibly non-split) maximal k-torus in P , so it is also maximal
in G. By Lemma 2.3.9, we may write Pks = PGks

(µ) for some µ ∈ X∗(Tks),
and the problem is that µ might not be Gal(ks/k)-invariant. Indeed, if µ were
Galois-invariant then it would descend to a k-homomorphism µ0 : GL1 → T and
so Pks = PGks

((µ0)ks) = PG(µ0)ks , yielding that P = PG(µ0) is pseudo-parabolic
as desired. To overcome this problem we shall use Proposition 4.3.1.

Let k′/k be a finite Galois extension splitting T , so a k′-homomorphism µ′ :
GL1 → Tk′ exists that descends µ. For each σ ∈ Gal(k′/k), the natural iden-
tification of Gk′ with its σ-twist σ∗(Gk′) implies that as k′-subgroups of Gk′ we
have

Pk′ = σ∗(Pk′) = PGk′ (σ.µ
′).

Comparing Lie algebras yields

Φσ.µ′>0 = Φµ′>0,

so for each a ∈ Φ either 〈a, σ.µ′〉 > 0 for all σ or 〈a, σ.µ′〉 < 0 for all σ. Hence, for
the Galois-invariant λ′ =

∑
σ σ.µ

′ we have 〈a, λ′〉 > 0 precisely when 〈a, µ′〉 > 0,
which is to say Φ(Pk′ , Tk′) = Φλ′>0 = Φ(PGk′ (λ

′), Tk′). By Proposition 4.3.1(i) it
follows that Pk′ = PGk′ (λ

′). As we saw above, this implies the pseudo-parabolicity
of the k-subgroup P in G since λ′ is Gal(k′/k)-invariant. �

As an application of the two preceding propositions, we can establish the tran-
sitivity of pseudo-parabolicity:
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Corollary 4.3.5. Let P be a pseudo-parabolic k-subgroup of a smooth con-
nected affine k-group G. A smooth connected k-subgroup Q of P is pseudo-parabolic
in P if and only if it is pseudo-parabolic in G.

The idea behind the proof of Corollary 4.3.5 is as follows. By Proposition 4.3.4
we may assume k = ks (so all k-tori are split). The argument for pseudo-reductive
G involves a detailed study of root groups, building on the description of Ru,k(P )
in Proposition 4.3.1(ii). The most difficult part is to show that every pseudo-
parabolic k-subgroup of P/Ru,k(P ) is the image of a pseudo-parabolic k-subgroup
of G contained in P . This rests on a description (given in [CGP, Prop. 2.2.8(2)])
of parabolic sets of roots in terms of a basis of a root system (rather than via the
construction Φλ>0). We refer the reader to [CGP, Lemma 3.5.5] for the details.

In the theory of connected reductive groups, it is an important theorem that
every parabolic subgroup is its own normalizer. In traditional developments this
is proved at the level of geometric points, and the stronger result of equality with
its scheme-theoretic normalizer is [SGA3, XXII, 5.8.5]. (See [CGP, p. 469] for the
existence of the scheme-theoretic normalizer of any smooth closed k-subgroup of
a smooth k-group.) In the general case the same strengthened normalizer result
holds for pseudo-parabolic subgroups:

Proposition 4.3.6. Every pseudo-parabolic k-subgroup P of a smooth con-
nected affine k-group G coincides with its own scheme-theoretic normalizer.

Proof. We may assume k = ks. For a smooth k-subgroup H ⊂ and h ∈
H(k) let fh(g) = hgh−1g−1 (so fh(1) = 1). Since H(k) is Zariski-dense in the
k-smooth H, the scheme-theoretic normalizer NG(H) of H in G is

⋂
h∈H(k) f

−1
h (H)

by construction. The pointed map fh induces AdG(h) − id on the tangent space
Lie(G) at 1, so

Lie(NG(H)) = {X ∈ Lie(G) |AdG(h)(X)−X ∈ Lie(H) for all h ∈ H(k)}.

The first step is to show that Lie(P ) = Lie(NG(P )), which is to say that the
smooth closed k-subgroup P of NG(P ) has full Lie algebra and hence coincides
with NG(P )0 as schemes; in particular, NG(P ) would then be k-smooth. Pick a
maximal k-torus T ⊂ P , so T is split. If the inclusion Lie(P ) ⊂ Lie(NG(P )) of T -
stable subspaces of Lie(G) were strict then (as T is split) we could find an element
X in a T -weight space of Lie(NG(P )) such that X is not in Lie(P ). Let a ∈ X(T ) be
the eigencharacter for X. Writing P = PG(λ)Ru,k(G) for some λ ∈ X∗(T ) (Lemma
2.3.9), we have (a(t) − 1)X ∈ Lie(P ) for all t ∈ T (k). This forces a = 1, which is
to say

X ∈ Lie(G)T = Lie(ZG(T )) ⊂ Lie(ZG(λ)) ⊂ Lie(P ),

a contradiction.
We have proved that NG(P ) is smooth with identity component P , so since

k = ks it remains only to show that any g ∈ G(k) normalizing P lies in P (k). We
may pass to G/Ru,k(G) since Ru,k(G) ⊂ P , so now G is pseudo-reductive. Since
P (k) is Zariski-dense in P (as k = ks), it is the same to show that P (k) is its
own normalizer in G(k) (i.e., every g ∈ G(k) satisfying gP (k)g−1 = P (k) lies in
P (k)). Choose a minimal pseudo-parabolic k-subgroup B ⊂ P of G such that B
contains T , as may be done by Propositions 3.3.7, 4.3.1, and 4.3.4. By Theorem
4.1.7, (B(k), NG(T )(k)) is a BN-pair for G(k). For any group G equipped with a
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BN-pair (B,N), every subgroup P ⊂ G containing B is equal to its own normalizer
in G [Bou, IV, §2.6, Thm. 4(iv)]. Thus, we are done. �

In Remark 2.3.10(iii) we noted that (in contrast with parabolicity) it is not at
all obvious if a smooth closed subgroup Q of a smooth connected affine k-group
G is necessarily pseudo-parabolic when it contains a pseudo-parabolic k-subgroup.
As in the reductive case, the answer is affirmative:

Proposition 4.3.7. A smooth closed k-subgroup Q of a smooth connected affine
k-group G is pseudo-parabolic if it contains a pseudo-parabolic k-subgroup P ⊂ G.

Proof. There is no harm in assuming k = ks, shrinking P to be minimal,
and passing to G/Ru,k(G), so G is pseudo-reductive. Choose a maximal k-torus
T ⊂ P , so Φ(P, T ) is a positive system of roots in G. Writing P = PG(λ) for some
λ ∈ X∗(T ) not vanishing on Φ, the image P ′ of Pk in Gred

k
is the (pseudo-)parabolic

subgroup PGred
k

(λk) that is visibly a Borel subgroup (as Φ(G,T ) and Φ(Gred
k
, Tk)

coincide up to rational multipliers). Hence, the image Q′ of Qk in Gred
k

contains a

Borel subgroup, so it is parabolic. Thus, Q′ corresponds to a parabolic set of roots
in Φ(Gred

k
, Tk) containing Φ(P ′, Tk); i.e., it is the set of roots with non-negative

pairing against some µ ∈ X∗(Tk) = X∗(T ).
The idea is to use an analysis of root groups to show that PG(µ) ⊂ Q, and to

show that this inclusion is an equality on Lie algebras, so PG(µ) = Q0. It would then
follow that Q normalizes the pseudo-parabolic PG(µ), so Proposition 4.3.6 would
imply that Q = PG(µ). The study of root groups to compare PG(µ) and Q rests on
first showing that the natural map W (Q,T )→ W (Q′, Tk) is an isomorphism (and
using transtivity of the W (Q′, Tk)-action on the set of positive systems of roots in

Φ(Q′
red
, Tk)); see the proof of [CGP, Prop. 3.5.8] for the details. �

5. Refined structure theory

5.1. Further rational conjugacy. As a supplement to Theorem 4.2.9 we
wish to establish G(k)-conjugacy of all minimal pseudo-parabolic k-subgroups, as
well as rational conjugacy for maximal k-split unipotent and maximal k-split solv-
able smooth connected k-subgroups. We begin with two preliminary results, the
first of which is an application of Tits’ structure theory for unipotent groups in
positive characteristic [CGP, App. B]:

Theorem 5.1.1 (Tits). For any smooth connected affine k-group H, the forma-
tion of its maximal k-split smooth connected unipotent normal k-subgroup Rus,k(H)
commutes with separable extension on k and Ru,k(H)/Rus,k(H) does not contain
Ga as a k-group.

See [CGP, Cor. B.3.5] for a proof. In general, a smooth connected unipotent k-
group U not containing Ga as a k-subgroup is called k-wound (see [CGP, Def. B.2.1,
Prop. B.3.2] for alternative characterizations). A very useful property of such k-
groups is that they admit no nontrivial action by a k-torus [CGP, Prop. B.4.4].
This is used in the proof of:
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Proposition 5.1.2. For a smooth connected affine k-group G, pseudo-parabolic
k-subgroup P , and a maximal split k-torus S in P , the centralizer ZG(S) is con-
tained in P (so S is maximal as a k-split torus in G). Moreover, P is minimal in
G if and only if P = ZG(S)Rus,k(P ).

In the reductive case this is a well-known result (essentially part of [Bo2, 20.6]).

Proof. Assuming ZG(S) ⊂ P , so ZG(S) normalizes every normal k-subgroup
of P , we claim that ZG(S)Rus,k(P ) = ZG(S)Ru,k(P ) or equivalently that the image
of S in P/Rus,k(P ) centralizes U := Ru,k(P )/Rus,k(P ). But U is k-wound, so any
action on it by a k-torus must be trivial [CGP, Prop. B.4.4].

For the rest of the argument we may and do consider Ru,k(P ) instead of
Rus,k(P ). Since Ru,k(G) ⊂ Ru,k(P ) by definition of pseudo-parabolicity, and
the image of S in P/Ru,k(G) is clearly a maximal split k-torus, we can pass to
G/Ru,k(G) so that G is pseudo-reductive. Now P = PG(λ) for some λ : GL1 → P ,
so Ru,k(P ) = UG(λ). Let T be a maximal k-torus of P containing S. We can
assume that λ is valued in T (Lemma 2.3.9) and then, as S is the maximal split
subtorus of T , λ is actually valued in S. Thus, ZG(S) ⊂ ZG(λ) ⊂ PG(λ) = P . In
particular, ZG(S) = ZP (S).

The pseudo-parabolic k-subgroups of P are precisely the pseudo-parabolic k-
subgroups of G that are contained in P (Corollary 4.3.5), so P is minimal in G if
and only if the pseudo-reductive quotient P := P/Ru,k(P ) does not contain any

proper pseudo-parabolic k-subgroup. The image S of S in P is clearly a maximal
split k-torus in P , and ZP (S)→ ZP (S) is surjective. Thus, we may rename P as G
to reduce to showing that if G is pseudo-reductive then it has no non-central split
k-tori if and only if it has no proper pseudo-parabolic k-subgroup. This equivalence
is [CGP, Lemma 2.2.3(1)]. �

Theorem 5.1.3 (Borel–Tits). The minimal pseudo-parabolic k-subgroups of a
smooth connected affine k-group G are pairwise G(k)-conjugate.

Proof. Let P be a minimal pseudo-parabolic k-subgroup of G and let Q be
any pseudo-parabolic k-subgroup of G. We seek a G(k)-conjugate of P that is
contained in Q. By Proposition 5.1.2, P = ZG(S)U for a maximal split k-torus
S ⊂ G and U := Rus,k(P ). The smooth connected affine k-group H := SU = SnU
is k-split solvable, so by Lemma 4.2.7 applied to H and Q we can replace the triple
(P, S, U) by a suitable G(k)-conjugate so that H ⊂ Q. But maximality of S in G
implies that S is a maximal split k-torus in Q, so Q contains ZG(S) by Proposition
5.1.2. Hence, Q contains ZG(S)U = P . �

In §5.2–§5.4 we will extend to general smooth connected affine k-groups the
Borel–Tits structure theory of arbitrary connected reductive k-groups (replacing
parabolic k-subgroups with pseudo-parabolic k-subgroups). This requires the fol-
lowing generalization of a well-known result in the reductive case:

Proposition 5.1.4. Consider pseudo-parabolic k-subgroups P,Q of a smooth
connected affine k-group G.

(i) The k-group scheme P∩Q is smooth and connected, and its maximal k-tori
are maximal in G. Moreover, P ⊂ Q if and only if Lie(P ) ⊂ Lie(Q).

(ii) The image of P ∩Q in P/Ru,k(P ) is pseudo-parabolic.
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(iii) If P ∩ Q is pseudo-parabolic then the k-subgroups P and Q are G(k)-
conjugate if and only if P = Q.

Proof. Without loss of generality we may assume k = ks and G is pseudo-
reductive. We shall first use the pseudo-split Bruhat decomposition in Theorem
4.1.7 to find a (split) maximal k-torus T of G contained in both P and Q. For
this purpose, there is no harm in first shrinking P and Q to be minimal. Now
choose a maximal k-torus S of G contained in P ; we shall find a P (k)-conjugate
of S contained in Q. By Theorem 5.1.3, Q = gPg−1 for some g ∈ G(k) since
P and Q are minimal. The pseudo-split Bruhat decomposition provides p, p′ ∈
P (k) and n ∈ NG(S)(k) such that g = pnp′. Hence, Q = pnPn−1p−1, so Q
contains pnSn−1p−1 = pSp−1. But clearly P also contains pSp−1, so T := pSp−1

is contained in both P and Q.
We can describe P and Q in terms of the Cartan k-subgroup ZG(T ) and suitable

T -root groups. This provides a mechanism one can use to prove smoothness of P∩Q
in (i) via the study of Lie algebras as T -representation spaces, after which the final
assertion in (i) is clear since Lie(P ∩ Q) = Lie(P ) ∩ Lie(Q). A lengthy analysis of
root systems and root groups is required to deduce (ii). The reader is referred to
the proof of [CGP, Prop. 3.5.12] for the details. �

The results on rational conjugacy of maximal split tori (Theorem 4.2.9) and
minimal pseudo-parabolic subgroups (Theorem 5.1.3) admit analogues announced
by Borel and Tits for maximal split (smooth connected) unipotent subgroups and
maximal split (smooth connected) solvable subgroups. The essential step is to prove
that the maximal k-split smooth connected unipotent k-subgroups of a pseudo-
reductive k-group are precisely Rus,k(P ) for minimal pseudo-parabolic k-subgroups
P . A proof inspired by ideas of Kempf [Kem] is given in [CGP, C.3], to which we
also refer for a complete discussion of the following consequences:

Theorem 5.1.5. Let U be a k-split smooth connected unipotent k-subgroup of
a pseudo-reductive k-group G, and let H be a (possibly disconnected) smooth closed
k-subgroup of G normalizing U . There exists a pseudo-parabolic k-subgroup P of G
containing H such that U ⊂ Rus,k(P ).

In the special case H = 1 this says that there exists a pseudo-parabolic k-
subgroup P satisfying U ⊂ Rus,k(P ). But if a k-subgroup Q ⊂ P is pseudo-
parabolic (either in P or in G, equivalent conditions on Q by Corollary 4.3.5) then
Rus,k(P ) is normal in Q and hence by computing over ks we see that Rus,k(P ) ⊂
Rus,k(Q).

Thus, a special case of Theorem 5.1.5 is that the maximal k-split smooth con-
nected unipotent k-subgroups U in a pseudo-reductive k-group G are precisely
Rus,k(Q) for the minimal pseudo-parabolic k-subgroups Q of G, all of which are
G(k)-conjugate to each other by Theorem 5.1.3. (In Corollary 5.1.7 we will see
that this description of the maximal U remains valid without a pseudo-reductivity
hypothesis on G.)

It follows that if G is an arbitrary smooth connected affine k-group with no
proper pseudo-parabolic k-subgroup (equivalently, all k-split tori in G/Ru,k(G)
are central [CGP, Lemma 2.2.3(1)]) then the image in G/Ru,k(G) of any k-split
smooth connected unipotent k-group U ⊂ G must be trivial and so U ⊂ Ru,k(G).
But Ru,k(G)/Rus,k(G) is k-wound, so it receives no nontrivial k-homomorphism
from U , forcing U ⊂ Rus,k(G). In other words:
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Theorem 5.1.6. If a smooth connected affine k-group G has no proper pseudo-
parabolic k-subgroup then Rus,k(G) contains every k-split unipotent smooth con-
nected k-subgroup of G. In particular, if G is pseudo-reductive then it contains a
non-central GL1 if and only if it contains Ga as a k-subgroup.

Corollary 5.1.7. For a smooth connected affine k-group G, the maximal k-
split smooth connected unipotent k-subgroups U of G are precisely Rus,k(P ) for the
minimal pseudo-parabolic k-subgroups P of G.

Proof. Since all such P are G(k)-conjugate to each other by Theorem 5.1.3,
we may choose one such P and seek a G(k)-conjugate of U contained in Rus,k(P ).
By Lemma 4.2.7, by passing to such a conjugate we can arrange that U ⊂ P . But
P := P/Ru,k(P ) is a pseudo-reductive k-group with no proper pseudo-parabolic

k-subgroup (due to the minimality of P and Corollary 4.3.5), so P does not contain
any nontrivial k-split smooth connected unipotent k-subgroup. Hence, U has trivial
image in P , so U ⊂ Ru,k(P ). The k-wound quotient Ru,k(P )/Rus,k(P ) receives no
nontrivial k-homomorphism from the k-split U , so U ⊂ Rus,k(P ). �

Beware that the assertion in Theorem 5.1.6 relating non-central split tori and
split unipotent subgroups in pseudo-reductive groups has no analogue without the
“split” hypothesis, even in the semisimple case. More specifically, for suitable k
there exist k-anisotropic connected semisimple groups that contain (necessarily k-
wound!) nontrivial smooth connected unipotent k-subgroups. Examples of adjoint
type A over every local function field are given in [CGP, Rem. C.3.10], and exam-
ples in the simply connected case are given in [GQ].

Theorem 5.1.3 and Corollary 5.1.7 yield the unipotent case of:

Theorem 5.1.8. For a smooth connected affine k-group G, the maximal k-
split unipotent smooth connected k-subgroups of G are pairwise G(k)-conjugate and
likewise for the maximal k-split solvable smooth connected k-subgroups of G.

By using Proposition 5.1.2, the conjugacy of maximal k-split solvable smooth
connected k-subgroups can be deduced without difficulty from the conjugacy of
maximal k-split unipotent smooth connected k-subgroups if G is pseudo-reductive
(as pseudo-reductivity of G implies that Ru,k(P ) is k-split for any pseudo-parabolic
k-subgroup P ⊂ G). However, for general G we cannot pass to the pseudo-reductive
case since the quotient map G → G/Ru,k(G) can fail to be surjective on k-points
when Ru,k(G) is not k-split. See [CGP, Thm. C.3.12] for the additional arguments
to overcome this problem.

Proposition 5.1.9. Let G be a smooth connected affine k-group that is quasi-
reductive (i.e., Rus,k(G) = 1). Any maximal proper smooth connected k-subgroup
M of G either is quasi-reductive or is pseudo-parabolic in G.

Proof. Assume M is not quasi-reductive, so U := Rus,k(M) 6= 1. By applying
Theorem 5.1.5 to the images of U and M in the maximal pseudo-reductive quotient
G/Ru,k(G) of G, we obtain a pseudo-parabolic k-subgroup P of G containing M
such that U ⊂ Rus,k(P ). Since Rus,k(P ) 6= 1 (as U 6= 1), P is a proper k-subgroup
of G. Thus, maximality of M implies that M = P . �

The following result was proved by V. V. Morozov over fields of characteristic
0 and was announced by Borel and Tits in general in [BoTi3].
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Proposition 5.1.10. Let G be a smooth connected affine k-group. A smooth
closed k-subgroup H of G is pseudo-parabolic if and only if it is the maximal smooth
closed k-subgroup of G normalizing U := Rus,k(H0).

Proof. If H is pseudo-parabolic in G then H(ks) is the normalizer in G(ks)
of U(ks) by [CGP, Cor. 3.5.10], so the desired maximality property for H holds.

Now assume that H is the maximal smooth closed k-subgroup of G normalizing
U . Let P be a pseudo-parabolic k-subgroup of G containing H such that U ⊂
Rus,k(P ); the existence of such a P is easily seen by applying Theorem 5.1.5 to
the images of U and H in the maximal pseudo-reductive quotient G/Ru,k(G) of G.
We will show that U = Rus,k(P ), so P normalizes U . Then the maximality of H
forces the inclusion H ⊂ P to be an equality, establishing the desired converse.

Let V = Rus,k(P ), and define V0 to be the center of V if char(k) = 0 and to
be the maximal k-split smooth connected p-torsion central k-subgroup of V when
char(k) = p > 0 (so V0 6= 1 when V 6= 1, using [CGP, Cor. B.3.3] if char(k) > 0).
Iterate this for V/V0 to obtain k-split smooth connected k-subgroups V0 ⊂ V1 ⊂
· · · ⊂ Vn = V normalized by P such that V0 is central in V and Vj/Vj−1 is central
in V/Vj−1 for 0 < j 6 n.

Suppose Vj normalizes U , as happens for j = 0 (by centrality of V0 in V ⊃ U).
The smooth connected k-subgroup 〈H,Vj〉 ⊂ G containing H normalizes U , so the
maximality hypothesis on H forces 〈H,Vj〉 = H; i.e., Vj ⊂ H. But Vj is then
normal in H (since H ⊂ P and Vj is normal in P ), so the k-split smooth connected
unipotent Vj is contained in U . Now U/Vj makes sense and is a k-subgroup of
V/Vj . If j < n then the central Vj+1/Vj ⊂ V/Vj certainly normalizes U/Vj , so
Vj+1 normalizes U . We may induct on j to eventually obtain that V = Vn ⊂ U , so
V = U as desired. �

5.2. General Bruhat decomposition. We will give a proof of a general
Bruhat decomposition (announced by Borel and Tits) that removes the pseudo-split
and pseudo-reductivity hypothesis in Theorem 4.1.7. This requires an important
preliminary result:

Proposition 5.2.1. The intersection of two pseudo-parabolic k-subgroups in a
smooth connected affine k-group G contains ZG(S) for some maximal split k-torus
S ⊂ G.

Proof. Let P and P ′ be two pseudo-parabolic k-subgroups of G. By Propo-
sition 5.1.4(i) we can find a maximal k-torus T of G contained in P ∩ P ′. Let T0

be the maximal split k-torus in T . By Lemma 2.3.9, there exist λ, λ′ ∈ X∗(T ) such
that P = PG(λ)Ru,k(G) and P ′ = PG(λ′)Ru,k(G). The k-homomorphisms λ, λ′ :
GL1 ⇒ T are valued in T0, so clearly ZG(T0) ⊂ ZG(λ)∩ZG(λ′) ⊂ P ∩P ′. Let S be
a maximal k-split torus of G containing T0. Then ZG(S) ⊂ ZG(T0) ⊂ P ∩ P ′. �

Theorem 5.2.2 (General Bruhat decomposition). Let G be a smooth connected
affine k-group. For any maximal split k-torus S and minimal pseudo-parabolic k-
subgroup P containing S, G(k) =

∐
w∈W P (k)nwP (k) where W := N(k)/Z(k) for

N = NG(S) and Z = ZG(S) with nw ∈ N(k) a representative of w ∈W .

Proof. First we show that every P (k)-double coset in G(k) meets N(k). For
g ∈ G(k), by Proposition 5.2.1 we may choose a maximal split k-torus S′ of G
contained in P ∩ gPg−1, so the tori S, S′, and g−1S′g are maximal split k-tori in
P . They are P (k)-conjugate by Theorem 4.2.9, so we obtain p, p′ ∈ P (k) such that
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pS′p−1 = S = p′g−1S′gp′
−1

. Hence, p−1 and gp′
−1

each conjugate S into S′, so

pgp′
−1 ∈ N(k); i.e., g ∈ p−1N(k)p′. (Note that the proof of Proposition 5.2.1 rests

on Proposition 5.1.4(i), whose proof uses the pseudo-split Bruhat decomposition in
Theorem 4.1.7 over ks.)

By Proposition 5.1.2, in such cases P = ZU for U := Ru,k(P ). Group-theoretic
manipulations resting on Theorem 4.2.9 (given at the end of the proof of [CGP,
Thm. C.2.8]) allow one to reduce the pairwise disjointness of the double cosets to
the disjointness of P (k)nP (k) from P (k) for any n ∈ N(k)−Z(k). An even stronger
statement is true for such n: the locally closed subset PnP ⊂ G is disjoint from P .
Equivalently, we claim that P (k) ∩N(k) = Z(k).

That is, if an element g ∈ P (k) normalizes Sk then we claim that its conjugation
action on Sk is trivial. The natural map S → P/U is a k-subgroup inclusion since
S is a torus and U is unipotent, so it suffices to check that g-conjugation on (P/U)k
is trivial on Sk. But P = ZU with Z = ZG(S), so this is clear. �

Remark 5.2.3. Consider minimal P in the setting of Theorem 5.2.2. In view
of the disjointness of PnP and P inside G for n ∈ N(k) − Z(k) as established in
the proof above, it is natural to ask more generally if the locally closed subsets
PnP and Pn′P are disjoint for n, n′ ∈ N(k) that lie in distinct Z(k)-cosets. This
is equivalent to disjointness of sets P (k)nP (k) and P (k)n′P (k).

The elementary group-theoretic argument which reduces the disjointness of
P (k)nP (k) and P (k)n′P (k) to the disjointness of P (k) and P (k)n−1n′P (k) rests
on Theorem 4.2.9 (which is sensitive to extension of the ground field) and so does
not carry over to the level of geometric points. The disjointness does hold on
geometric points, but its proof requires an entirely different approach, making use of
dynamic considerations (especially that the open immersion in Theorem 2.3.5(ii) is
an equality in the solvable case) after preliminary reduction to the pseudo-reductive
case. See [CGP, Rem. C.2.9] for further details.

5.3. Relative roots. The structure of general connected reductive groups is
controlled by relative root systems (which treat the anisotropic case as a black box),
and in this section we sketch how it can be extended to arbitrary smooth connected
affine groups.

As an application of rational conjugacy theorems for maximal k-split tori and
minimal pseudo-parabolic k-subgroups, as well as the disjointness of P and PnP
(rather than just of P (k) and P (k)nP (k)) for minimal P and n ∈ N(k) − Z(k)
shown in the proof of Theorem 5.2.2, there is a good notion of relative Weyl group
beyond the pseudo-split pseudo-reductive case (in Proposition 4.1.3):

Proposition 5.3.1. Let S be a maximal split k-torus in a smooth connected
affine k-group G. The finite étale quotient W (G,S) := NG(S)/ZG(S) is constant,
and the inclusion NG(S)(k)/ZG(S)(k) ↪→W (G,S)(k) is an equality.

Proof. Let N = NG(S), Z = ZG(S), and W = W (G,S). For any n ∈ N(ks)
and γ ∈ Gal(ks/k), the conjugation actions of n and γ(n) on Sks are related through
γ-twisting (using the canonical ks-isomorphism between Sks and its γ-twist), but
all ks-automorphisms of Sks descend to k-automorphisms of S because S is k-split.
Hence, these two conjugations on Sks coincide, which is to say γ(n)n−1 ∈ Z(ks).
This says exactly that W (ks) has trivial Galois action, or in other words that W is
constant.
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There is a natural action of W (k) = W (ks) = N(ks)/Z(ks) on the set P
of minimal pseudo-parabolic k-subgroups of G containing S: if P is such a k-
subgroup and n ∈ N(ks) then nPksn

−1 only depends on n through its Z(ks)-coset
w ∈W (k) since Z ⊂ P (by Proposition 5.1.2). But γ(n) is in the same coset for all
γ ∈ Gal(ks/k), so nPksn

−1 is Gal(ks/k)-stable inside Gks and thus descends to a
pseudo-parabolic k-subgroup of G containing S. This descent is minimal in G for
dimension reasons, due to Theorem 5.1.3. In this way, W (k) acts on P.

We saw in the proof of Theorem 5.2.2 that for every P ∈ P the inclusion
Z ⊂ P ∩ N is an equality on k-points, so the W (k)-action on P is free. Hence,
to finish the proof it suffices to show that N(k) acts transitively on P, which in
turn is immediate from Theorem 5.1.3 and Theorem 4.2.9 (the latter applied to an
element of P). �

We want to upgrade Proposition 5.3.1 by showing that in the pseudo-reductive
case Φ(G,S) is a root system in its Q-span and that its Weyl group is naturally
identified with W (G,S)(k). For later purposes with Tits systems, it is convenient to
avoid a pseudo-reductivity hypothesis on G, though one cannot expect Φ(G,S) to
be a root system without any hypotheses on Ru,k(G) (e.g., consider the case where
G is a vector group equipped with a linear S-action). If Ru,k(G) is k-wound then
it admits no non-trivial action by a k-torus, so in such cases Ru,k(G) centralizes S
and hence does not contribute to Φ(G,S).

Theorem 5.3.2. Let G be a smooth connected affine k-group, S a maximal
split k-torus, P a minimal pseudo-parabolic k-subgroup containing S.

(i) The set kΦ = Φ(G/Ru,k(G), S) is a root system in its Q-span in X(S)Q,
its subset Φ(P/Ru,k(G), S) is a positive system of roots, and the natural

map NG(S)(k)/ZG(S)(k)→W (kΦ) is an isomorphism.
(ii) The set of pseudo-parabolic k-subgroups of G containing S is in bijec-

tion with the set of parabolic sets of roots in kΦ via P ′ 7→ kΦP ′ :=
Φ(P ′/Ru,k(G), S), and P ′ ⊂ P ′′ if and only if kΦP ′ ⊂ kΦP ′′ .

(iii) There is a root datum (kΦ,X(S), kΦ
∨
,X∗(S)) using a canonically associ-

ated subset kΦ
∨ ⊂ X∗(S)− {0}.

(iv) Assume Ru,k(G) is k-wound. The root system kΦ consists of the nontrivial
S-weights on Lie(G) and its Q-span coincides with X(S′)Q, where S′ is
the subtorus (S ∩ D(G))0

red in S that is an isogeny complement to the

maximal split central k-torus S0 ⊂ G. Moreover, kΦ
∨ ⊂ X∗(S

′).

The proof of this theorem is rather long; we refer to [CGP, Thm. C.2.15] for the
details and explain here just two points: why NG(S)(k)/ZG(S)(k) is unaffected by
passing to G := G/Ru,k(G) (even though G(k)→ G(k) is generally not surjective)
and how coroots are built (since the method has nothing to do with a rank-1
classification as in the reductive case).

We have NG(S)(k)/ZG(S)(k) = W (G,S)(k) by Proposition 5.3.1, and the map
of finite étale (even constant) k-groups W (G,S)→W (G,S) is an isomorphism due
to [CGP, Lemma 3.2.1] (using that ker(G � G) is unipotent), so passing to k-
points gives the desired invariance under passage to G (and so reduces the problem
of relating W (G,S)(k) and W (kΦ) to the case where G is pseudo-reductive).

For each a ∈ kΦ, we shall define the associated cocharacter a∨ ∈ X∗(S) using
the scheme-theoretic kernel ker a that is of multiplicative type (contained in S) and
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so has smooth scheme-theoretic centralizer ZG(ker a) [CGP, Prop. A.8.10(1),(2)].
For Ga := ZG(ker a)0 containing S, by [CGP, Prop. A.8.14] its maximal pseudo-
reductive quotient maps isomorphically onto the analogue Ga for G. The central-
ity of ker a in Ga implies that the finite group W (Ga, S)(k) has order at most
2; its order is actually 2 because NGa

(S)(k) acts transitively on the set of mini-
mal pseudo-parabolic k-subgroups of Ga (Theorem 5.1.3) and there are two such
subgroups [CGP, Lemma C.2.14] (proved by dynamic considerations with the max-
imal pseudo-reductive quotient Ga/Ru,k(Ga) ' Ga in which S is non-central due
to nontriviality of its adjoint representation).

Since W (Ga, S)(k) is naturally a subgroup of W (G,S)(k), we may define
ra ∈ W (G,S)(k) to be the unique nontrivial element in W (Ga, S)(k). The en-
domorphism of S defined by s 7→ s/ra(s) kills ker a because ker a is central in Ga,
so there exists a unique a∨ ∈ X∗(S) such that s/ra(s) = a∨(a(s)) since the map
S/(ker a)→ GL1 defined via a is an isomorphism. This yields the habitual formula
ra(x) = x− 〈x, a∨〉a on X(S).

Building on Theorem 5.3.2, we now associate a BN-pair (in the sense of Defini-
tion 4.1.6) to the triple (G,S, P ), allowing us to analyze the structure of G(k) (es-
pecially when G is pseudo-reductive, or more generally when Ru,k(G) is k-wound):

Theorem 5.3.3. In the setting of Theorem 5.3.2, (P (k), NG(S)(k)) is a BN-
pair for G(k) with associated Weyl group W (kΦ) and distinguished set of involutions
R := {ra}a∈∆ for the basis ∆ of the positive system of roots kΦP ⊂ kΦ.

In the pseudo-split pseudo-reductive case this recovers Theorem 4.1.7.

Proof. We sketch a few main points, referring to [CGP, Thm. C.2.20] for full
details. That P (k) and NG(S)(k) generate G(k) is immediate from the Bruhat
decomposition in Theorem 5.2.2, the proof of which showed P (k) ∩ NG(S)(k) =
ZG(S)(k) (so (BN1) in Definition 4.1.6 holds). Hence, the final assertion in Theorem
5.3.2(i) identifies the associated Weyl group with W (kΦ), and by the theory of root
systems the latter is generated by R.

To verify (BN2), it remains to show that elements r ∈ R (or rather, their
representatives in NG(S)(k)) do not normalize P (k). Such elements certainly do not
normalize P , since P = NG(P ) by Proposition 4.3.6 and P ∩NG(S)(k) = ZG(S)(k),
but working with just P (k) rather than P will require a finer technique with “root
groups” for G (not assumed to be pseudo-reductive) since P (k) is generally not
Zariski-dense in P (see Example 2.1.5).

For any b ∈ X(S)−{0}, define the smooth connected root group Ub := H〈b〉(G)
via the construction in Proposition 3.3.1. This is unipotent, and in the pseudo-split
pseudo-reductive case it recovers the notion of root group considered already in such
cases in Corollary 3.1.10 when Ub 6= 1 (since in any root system, such as kΦ, the
only possible root that is a nontrivial Q>0-multiple of a given root c is either 2c or
c/2 and not both). We do not make any claims yet concerning the commutativity
of Ub for non-multipliable b ∈ kΦ, even assuming G is pseudo-reductive but possibly
not pseudo-split (we will address this later, in Proposition 5.4.2).

Since the basis ∆ lies inside the positive system of roots kΦP , Ua ⊂ P for any
a ∈ ∆ due to the dynamic description of P := P/Ru,k(G) inside G := G/Ru,k(G).

(Indeed, P = PG(λ) for some λ ∈ X∗(S) satisfying 〈a, λ〉 > 0, so the inclusion

Ua ∩ P = PUa
(λ) ⊂ Ua between smooth connected k-groups is an equality on

Lie algebras and hence an equality of k-groups. Thus, Ua ⊂ P ; by the dynamic
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construction of Ua := H〈a〉(G) in the proof of Proposition 3.3.1, the quotient map

G → G carries Ua into Ua ⊂ P and so Ua ⊂ P as desired.) Hence, the ra-
conjugate of P contains Ura(a) = U−a, so to verify (BN2) it is sufficient to show
that U−a(k) 6⊂ P (k) for a ∈ ∆. This is established using properties of the “HA(G)”-
construction (for subsemigroups A of X(S)).

The verification of (BN3) is essentially the same as in the connected reductive
case, using calculations with the Bruhat decomposition (which can be applied here,
due to Theorem 5.2.2). �

Remark 5.3.4. The BN-pair (B,N) arising in Theorem 5.3.3 is well-defined
up to G(k)-conjugation, and is called standard for G(k) (relative to the specifi-
cation of the k-group G). This BN-pair satisfies some additional properties, as
follows. Firstly, the associated Weyl group W is obviously finite; this is the spher-
ical condition. Moreover, the BN-pair is saturated and weakly split in the sense
of Definition 4.1.6 (using U := Rus,k(P )(k) for the nilpotent normal subgroup of
B in the weakly-split property); the verification of these two properties is given in
[CGP, Rem. C.2.22]. Finally, by root group considerations, if k is infinite then
B ∩ rBr−1 is of infinite index in B for any r ∈ R.

Remarkably, there is a converse result when k is infinite and Ru,k(G) is k-
wound (e.g., G is pseudo-reductive): any weakly-split saturated spherical BN-pair
(B,N) for G(k) (with associated set of involutions in its Weyl group denoted as
R) such that B ∩ rBr−1 is of infinite index in B for all r ∈ R must arise from a
pair (S, P ) in G provided that the BN-pair satisfies a further mild group-theoretic
hypothesis related to the k-isotropic minimal normal k-simple pseudo-semisimple
k-subgroups of G; see [P, Thm. B, Rem. 1] for a precise statement.

5.4. Applications of refined structure. The formalism of BN-pairs pro-
vides a unified approach to properties of the subgroup structure of G(k) for con-
nected semisimple k-groups G (of interest with finite k for finite group theory, and
k = R for Lie theory); uniform simplicity proofs for G(k)/ZG(k) with simply con-
nected G are an especially useful application of this perspective. For any group G
equipped with a BN-pair (B,N) and the associated set R of involutions in the Weyl
group W, there are 2#R subgroups of G containing B; these are parameterized by
the subsets I of R [Bou, IV, §2.5, Thm. 3(b)].

Relative to the Bruhat decomposition G =
∐
w∈W BwB, the subgroup GI associ-

ated to I is uniquely determined by the conditions that it contains B and meets N in
the preimage of the subgroup WI ⊂W generated by I. Equivalently, the B-double
cosets in GI are precisely the ones labelled by WI via the Bruhat decomposition.
When this result for BN-pairs is applied to G = G(k) equipped with its stan-
dard BN-pair, one gets precise group-theoretic control over the pseudo-parabolic
k-subgroups of G (even though P (k) need not be Zariski-dense in P !):

Theorem 5.4.1. Let G be a smooth connected affine k-group, and choose a
minimal pseudo-parabolic k-subgroup P and a maximal split k-torus S ⊂ P . The
map Q 7→ Q(k) is a bijection from the set of smooth closed k-subgroups of G con-
taining P onto the set of subgroups of G(k) containing P (k). Moreover, for any
two such Q and Q′, we have Q ⊂ Q′ if and only if Q(k) ⊂ Q′(k).

Proof. We saw above that the set of subgroups of G(k) containing P (k) is
naturally labeled by the set of subsets of the basis ∆ of kΦP . By construction, this
labeling is inclusion-preserving in both directions (i.e., G(k)I ⊂ G(k)I′ if and only
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if I ⊂ I ′). Since the sets of pseudo-parabolic k-subgroups of G containing S and of
G = G/Ru,k(G) containing (the naturally isomorphic image of) S are in bijective
correspondence via reduction modulo Ru,k(G), it follows that the possibilities for
Q can be labelled after passing to the pseudo-reductive case (but beware that
Q(k)→ (Q/Ru,k(G))(k) can fail to be surjective when Ru,k(G) is not k-split).

Recall from Theorem 4.3.7 that any smooth closed k-subgroup of G containing
P is pseudo-parabolic. For pseudo-reductive G, the map Q 7→ Φ(Q,S) is a bijection,
inclusion-preserving in both directions, from the set of Q’s containing S onto the set
of parabolic subsets of Φ(G,S) (see Theorem 5.3.2(ii),(iv)). Hence, if G is pseudo-
reductive then the set of those Q containing P is labeled by the set of parabolic
subsets of Φ(G,S) containing the positive system of roots Φ(P, S). But for any
root system Ψ, it is well-known that the set of parabolic subsets containing a given
positive system of roots Ψ+ is naturally labeled by the set of subsets of the basis
of simple roots in Ψ+ [Bou, VI, §1.7, Lemma 3]. Thus, the possibilities for Q ⊃ P
are parameterized by the set of subsets of ∆.

In the proof of Theorem 5.3.2(ii) (Step 5 in the proof of [CGP, Thm. C.2.15])
it is shown that for pseudo-reductive G these two bijections onto the set of subsets
of ∆ are compatible with the map Q 7→ Q(k), and both bijections just considered
are inclusion-preserving in each direction, so the pseudo-reductive case is settled.
For more general G additional arguments are required; see [CGP, Thm. C.2.23] for
a complete treatment. �

As a further application of the general Bruhat decomposition in Theorem 5.2.2,
we can prove an important extension of Proposition 4.1.3 to the general pseudo-
reductive case (i.e., no pseudo-split hypothesis), as follows. Consider a pseudo-
reductive k-group G, and a maximal split k-torus S ⊂ G, so Φ = Φ(G,S) is a
root system (Theorem 5.3.2(i)). For each a ∈ Φ we defined the unipotent smooth
connected root group Ua := H〈a〉(G) ⊂ G in the proof of Theorem 5.3.3. Inspired
by the case of relative root groups in connected reductive groups, we now prove
that Ua is a vector group when a is not multipliable, and much more:

Proposition 5.4.2. Using notation and hypotheses as above, if a is not multi-
pliable then Ua is a vector group whereas if a is multipliable then U2a is central in
Ua and Ua/U2a is commutative. For any nontrivial u ∈ Ua(k), the following hold:

(i) There exists unique u′, u′′ ∈ U−a(k) such that m(u) := u′uu′′ ∈ NG(S)(k).
The effect of m(u)-conjugation on X(S) is ra, and u′, u′′ 6= 1.

(ii) If a is not multipliable then u′ = u′′ = m(u)−1um(u) and m(u)2 ∈ S(k).
(iii) The formation of m(u) is ZG(S)-equivariant in the sense that for any ex-

tension field k′/k and z ∈ ZG(S)(k′) satisfying zuz−1 ∈ Ua(k), necessarily
zu′z−1, zu′′z−1 ∈ U−a(k) and m(zuz−1) = zm(u)z−1.

The method of proof for the pseudo-split case in Proposition 4.1.3 involves
bootstrapping from calculations with Gred

k
after passing to the rank-1 case. The

proof of Proposition 5.4.2 is entirely different, involving no use of k-groups; this
allows the result to be extended (with appropriate formulation) to a wider class
of smooth connected affine k-groups (including those whose k-unipotent radical is
k-wound); see [CGP, Prop. C.2.24] for this additional generality.

Proof. We sketch the proof of (i) (and the proofs of (ii) and (iii) amount to
group-theoretic computations, aided by the dynamic relation UG(−λ)∩PG(λ) = 1);
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for further details we refer to [CGP, Prop. C.2.24]. As a first step, by replacing
G with ZG(ker a)0 (pseudo-reductive due to [CGP, Prop. A.8.14(2)]) we can pass
to the case of a rank-1 root system in which a is non-divisible. Now Φ = {±a}
or Φ = {±a,±2a}. By [CGP, Lemma 3.3.8] (and its proof), Una is a normal k-
subgroup of Ua with (Ua, Una) ⊂ U(n+1)a and each Una/U(n+1)a is a vector group
admitting an S-equivariant linear structure with na as the unique S-weight on the
Lie algebra when this quotient is nontrivial. That settles the assertions concerning
Ua and (in the multipliable case) U2a.

Define N = NG(S) and Z = ZG(S), so N(k)− Z(k) = Z(k)ra since the Weyl
group N(k)/Z(k) has order 2. (We adopt the standard abuse of notation by writing
ra where we really intend a representative of ra in N(k); for our calculations this
will be harmless, but note that the representative may not be an involution.) Fix a
nontrivial element u ∈ Ua(k), and consider the Bruhat decomposition relative to the
minimal pseudo-parabolic k-subgroup P = Z n U−a. Dynamic considerations via
Theorem 2.3.5(ii) imply that Ua∩P = 1, so the nontrivial u lies in the complement

G(k)−P (k) = P (k)raP (k) = U−a(k)Z(k)raU−a(k) = U−a(k)(N(k)−Z(k))U−a(k).

This provides u′, u′′ ∈ U−a(k) such that u = u′
−1
nu′′

−1
for some n ∈ N(k)−Z(k),

so u′uu′′ = n acts on S through ra. This proves existence of u′ and u′′ in (i).
For uniqueness in (i), observe that if elements u′, u′′ ∈ U−a(k) satisfy u′uu′′ ∈

N(k) then necessarily u′uu′′ ∈ N(k) − Z(k) = Z(k)ra because otherwise u ∈
u′
−1
Z(k)u′′

−1 ⊂ U−a(k)Z(k) = P (k), contradicting that P ∩ Ua = 1. Hence,
to prove uniqueness we are reduced to showing that if elements v′, v′′ ∈ U−a(k)
and n ∈ N(k) satisfy v′nv′′ = nz for some z ∈ Z(k) then v′ = 1 = v′′. But
v′nv′′n−1 = nzn−1 ∈ Z(k) and nv′′n−1 ∈ Ua(k), so it is enough to prove that
(U−a(k)Ua(k)) ∩ Z(k) = 1. This triviality is immediate since P ∩ Ua = 1.

Finally, to prove that u′, u′′ 6= 1 it suffices to show that U−a(k)(Ua(k) − {1})
is disjoint from N(k). Suppose an element n ∈ N(k) has the form n = v′v for v′ ∈
U−a(k) and nontrivial v ∈ Ua(k). Clearly v′ = nv−1 = (nv−1n−1)n ∈ U−a(k)n, so

n ∈ U−a(k) and hence v = v′
−1
n ∈ U−a(k). This is an absurdity since P ∩ Ua = 1

and we assumed v 6= 1. �

In [St, Thm. 5.4], Steinberg gave a new proof of the Isomorphism Theorem for
split connected reductive groups over a field k. Given two such groups G and G′

equipped with respective split maximal k-tori T ⊂ G and T ′ ⊂ G′, we assume
that an isomorphism of root data φ : R(G,T ) ' R(G′, T ′) is given and we wish to
construct a k-isomorphism of pairs f : (G′, T ′) ' (G,T ) giving rise to φ (and to
show that f is unique up to the action of (T/ZG)(k)).

The idea of Steinberg’s proof is to construct f by constructing its graph Γf
as a k-subgroup of G′ × G satisfying specified conditions (e.g., the graph of the
isomorphism T ′ ' T arising from φ is a split maximal k-torus in this graph).
Briefly, φ determines which root group of (G′, T ′) is to be carried to a given root
group of (G,T ), the isomorphism between such root groups is specified for roots
from compatible bases, and then the isomorphism is extended to all matching pairs
of root groups via Weyl-group actions. In effect, we try to build Γf as the smooth
connected k-subgroup of G′ ×G generated by the graphs of specific isomorphisms
between certain root groups, and the work is to show that such a k-subgroup has
desired properties (e.g., it is reductive and projects isomorphically onto G′).
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Steinberg’s method for constructing a k-subgroup of G′ × G with specified
properties is generalized in Theorem 5.4.3 below to prove a much more general result
concerning the existence and uniqueness inside a given smooth connected affine k-
group of pseudo-reductive k-subgroups for which we have specified its maximal
split k-torus S, its S-centralizer, a basis ∆ for its relative root system, and the root
groups for the roots in ∆. This is extremely powerful: it provides a unified approach
to the construction of certain “exotic” non-standard pseudo-reductive groups (built
as k-subgroups of a Weil restriction), it implies the existence of Levi k-subgroups of
pseudo-split pseudo-reductive groups (see Theorem 5.4.4, a very useful result), and
it leads to an “Isomorphism Theorem” for pseudo-split pseudo-reductive groups
[CP, Thm. 6.1.1].

Theorem 5.4.3. Let G be a smooth connected affine k-group, and let S ⊂ G
be a nontrivial split k-torus. Fix a smooth connected k-subgroup C ⊂ ZG(S) in
which S is a maximal split k-torus, and a non-empty linearly independent subset
∆ ⊂ X(S).

For each a ∈ ∆ let Fa be a pseudo-reductive k-subgroup of G containing S such
that ZFa

(S) = C and {±a} ⊂ Φ(Fa, S) ⊂ Za. Let U±a be the ±a-root groups of
Fa, and assume Ua commutes with U−b for all distinct a, b ∈ ∆. Let F ⊂ G be the
smooth connected k-subgroup generated by {Fa}a∈∆.

(i) The k-group F is pseudo-reductive with S as a maximal split k-torus,
ZF (S) = C, ∆ is a basis of Φ(F, S), and the ±a-root groups of F are U±a
for all a ∈ ∆.

(ii) If each Fa is reductive then so is F .
(iii) The k-group F is functorial with respect to isomorphisms in the 5-tuple

(G,S,C,∆, {Fa}a∈∆).

Note that C is generally not commutative (when S is not a maximal k-torus
in the Fa’s). As a special case, a criterion in [PR, Thm. 2.2] for a pair of quasi-
split connected semisimple subgroups of a connected semisimple group to generate
a quasi-split semisimple subgroup is an immediate consequence of Theorem 5.4.3.

Proof. We refer the reader to [CGP, Thm. C.2.29] for a complete proof (as
well as for a more general result in which the pseudo-reductivity hypotheses and
conclusion are relaxed). Here we just sketch some ideas in the proof.

Since ∆ is linearly independent, we may choose a cocharacter λ ∈ X∗(S) sat-
isfying 〈a, λ〉 > 0 for all a ∈ ∆ (this corresponds to λ lying in a specific connected
component of the complement in X∗(S)R of the union of the hyperplanes killed
by the elements of ∆). Such λ can also be chosen to not annihilate any of the
finitely many nontrivial S-weights that occur on Lie(G), so ZG(λ) = ZG(S) (hence
ZF (λ) = ZF (S)). Although we know very little about the structure of F , we may
nonetheless apply Theorem 2.3.5(ii) to get an open immersion

UF (−λ)× ZF (S)× UF (λ) −→ F

via multiplication. Since C ⊂ F , clearly C ⊂ ZF (S).
For a fixed sign, let U± ⊂ UF (±λ) be the smooth connected k-subgroup gen-

erated by {U±a}a∈∆, so the multiplication map

U− × C × U+ −→ F

is a locally closed immersion. An inductive argument now shows that the Zariski
closure of this locally closed subset is stable under left multiplication by U±a for
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all a ∈ ∆, as well as obviously stable under left multiplication by C, so it is stable
under left multiplication by F and therefore coincides with F .

We conclude that U− × C × U+ is open in F , so the closed immersion

U− × C × U+ ↪→ UF (−λ)× ZF (S)× UF (λ)

is an equality. In other words, ZF (S) = C and U± = UF (±λ). This implies that S
is a maximal split k-torus in F (by the maximality hypothesis on S in C) and that
(for a fixed sign) the S-weights occurring in Lie(UF (±λ)) lie in the subsemigroup
A± ⊂ X(S) − {0} generated by ±∆. In other words, the set Φ(F, S) of nontrivial
S-weights occuring in Lie(F ) is contained in A+ ∪A−.

Systematic application of properties of the unipotent HΣ(·)-construction from
Proposition 3.3.1 with varying subsemigroups Σ ⊂ X(S) not containing 0 (especially
the direct spanning property in Theorem 3.3.3) enables one to prove that U±a =
H±a(F ) for all a ∈ ∆ (so U±a is the ±a-root group of F once F is shown to
be pseudo-reductive) and that no positive integral multiple of any a ∈ ∆ is a
weight on Lie(Ru,k(F )). In particular, ∆ is contained in the root system kΦ :=
Φ(F/Ru,k(F ), S) that in turn lies inside the set of S-weights Φ(F, S) ⊂ A+ ∪ A−.

Thus, ∆ satisfies the condition that uniquely characterizes a basis of kΦ, so by
Theorem 5.3.2(i) applied to F the Weyl group kW of this root system is generated
by reflections {ra}a∈∆ represented by elements of NF (S)(k).

The k-group C is pseudo-reductive since it is a torus-centralizer in the pseudo-
reductive k-group Fa for any a ∈ ∆, so the smooth connected unipotent normal
k-subgroup U := Ru,k(F ) of F cannot be contained in C = ZF (S) if it is nontrivial.
Assuming U 6= 1, we seek a contradiction. The S-action on U must be nontrivial,
so there exists a nontrivial S-weight b occurring in Lie(U). This S-weight lies in
A+ or A−, and we have shown that ∆ is a basis of kΦ, so by normality of U in F
we may use the action of kW to arrange that b ∈ A+. The long Weyl element w
in kW relative to ∆ carries b into A−. An inductive argument using an expression
for w in reflections ra (a ∈ ∆) eventually produces an element of ∆ that occurs as
an S-weight in Lie(U), a contradiction. Thus, U = 1, which is to say F is pseudo-
reductive. This finishes our sketch of the proof of (i). By applying (i) over k we
immediately get (ii).

The proof of (iii) amounts to a generalization of Steinberg’s graph method for
proving the Isomorphism Theorem in the split connected reductive case. More
specifically, the graph of the isomorphism we seek to build must be a pseudo-
reductive k-subgroup of G′ × G, where (G′, S′, C ′,∆′, {F ′a′}a′∈∆′) is the other 5-
tuple under consideration. This pseudo-reductive k-subgroup of G′ × G can be
constructed as an application of (i) in exactly the same way that Steinberg proved
the Isomorphism Theorem. �

An important application of Theorem 5.4.3 is the existence of Levi k-subgroups
of pseudo-split pseudo-reductive groups. Recall that a Levi k-subgroup of a smooth
connected affine k-group G is a smooth connected k-subgroup L such that the
natural map Lk → Gred

k
is an isomorphism.

Such subgroups need not exist in positive characteristic, even over an alge-
braically closed ground field. For example, if F is algebraically closed of positive
characteristic then for any n > 2 the F -group corresponding to SLn(W2(F )) (with
W2 denoting the functor of length-2 Witt vectors) has no Levi F -subgroup; see
[CGP, A.6] for a proof.



60 BRIAN CONRAD AND GOPAL PRASAD

The existence of Levi k-subgroups in the pseudo-split pseudo-reductive case is
proved in [CGP, Thm. 3.4.6] by an indirect process. We now give a completely
different and conceptually simpler proof by using Proposition 5.4.2 and Theorem
5.4.3 (adapting the proof of a more general existence result in [CGP, Thm. C.2.30]
for split connected reductive k-subgroups of smooth connected affine k-groups):

Theorem 5.4.4. Let G be a pseudo-split pseudo-reductive k-group, and T ⊂ G
a split maximal k-torus. Let ∆ be a basis of the reduced root system Φ′ of non-
multipliable roots in Φ(G,T ), and UGa the a-root group of G for a ∈ Φ(G,T ).

For each set {Ea}a∈∆ of 1-dimensional smooth connected k-subgroups Ea ⊂ UGa
normalized by T , there exists a unique Levi k-subgroup L of G containing T such
that ULa = Ea for all a ∈ ∆.

The hypothesis that G is pseudo-split cannot be dropped: for any local or
global function field k over a finite field, [CGP, Ex. 7.2.2] provides an absolutely
pseudo-simple k-group with no Levi k-subgroup.

Proof. Define the k-subgroup scheme M :=
⋂
a∈Φ′ ker a ⊂ T of multiplica-

tive type. Any Levi k-subgroup L of G containing T is generated by its max-
imal central k-torus (necessarily contained in T ) and its T -root groups. But
Φ(L, T ) = Φ′ for any such L by Theorem 3.1.7, so all root groups of L are cen-
tralized by M and hence L is centralized by M . Thus, all Levi k-subgroups L
containing T are contained in ZG(M)0. This identity component inherits pseudo-
reductivity from G since M is a k-subgroup of T (see [CGP, Prop. A.8.14(2)]), and
since X(T/M) =

∑
a∈Φ′ Za =

⊕
c∈∆ Zc we have Φ(ZG(M)0, T ) = Φ′ by [CGP,

Prop. A.8.14(3)]. Thus, we may replace G with ZG(M)0 so that Φ := Φ(G,T ) is
reduced. In particular, Φ(Gred

k
, Tk) = Φ.

Next we prove that any L ⊃ T is determined inside G by its T -root groups
for the roots in ∆. Since L is generated by T and its root groups for roots in ±∆
(as ∆ is a basis for Φ = Φ(L, T )), it suffices to show that for each a ∈ Φ (or even
just a ∈ ∆), UL−a is uniquely determined inside G by ULa and T . Pick a nontrivial

ua ∈ ULa (k) (this exists since ULa ' Ga). By Proposition 5.4.2(i),(ii), there exists a
(necessarily nontrivial) unique u−a ∈ UG−a(k) such that

na := u−auau−a ∈ NG(T )(k),

and na-conjugation on T induces the reflection ra on X(T )Q. By Proposition
5.4.2(i) applied to L, we see that u−a ∈ UL−a(k). Since u−a is nontrivial and there

exists a k-isomorphism UL−a ' Ga carrying T -conjugation over to scaling against
the nontrivial character −a, the Zariski-closure in G of the T -orbit of u−a coincides
with UL−a. Thus, the uniqueness for L is established.

For any a ∈ Φ, reducedness of Φ implies that UGa is a vector group admitting a
T -equivariant linear structure (see Corollary 3.1.10), so there exists a T -equivariant
isomorphism between UGa and a direct sum of copies of the 1-dimensional repre-
sentation of T through a. Hence, any 1-dimensional smooth connected k-subgroup
E ⊂ UGa that is normalized by T is a line in the T -representation space UGa . In
particular, E ' Ga, so E(k) 6= 1. Upon choosing such Ea ⊂ UGa for all a ∈ ∆, we
seek a Levi k-subgroup L ⊂ G containing T such that ULa = Ea for all a ∈ ∆.

Step 1. The first task is to define a candidate E−a ⊂ UG−a for UL−a. Motivated

by the preceding calculations, choose ua ∈ Ea(k)− {1} and define u′a ∈ UG−a(k) in

terms of ua via Proposition 5.4.2(i): it is the unique element of UG−a(k) such that
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na := u′auau
′
a ∈ NG(T )(k). Define E−a to be the smooth connected Zariski-closure

in UG−a of the T -orbit of u′a under conjugation; this is a line in the T -representation

space UG−a. To see that E−a is unaffected if we replace ua with another nontrivial

u ∈ Ea(k), note that u = tuat
−1 for some t ∈ T (k) since a : T (k)→ k

×
is surjective,

so the associated u′ satisfies u′ = tu−at
−1 by Proposition 5.4.2(iii). Thus, replacing

ua with u replaces (E−a)k with t(E−a)kt
−1 = (E−a)k. This proves that E−a is

independent of the choice of ua.
Consider the smooth connected k-subgroup L ⊂ G generated by {E±a}a∈∆

and T . It remains to prove: L is reductive with T as a (split) maximal k-torus, the
natural map Lk → Gred

k
is an isomorphism, and ULa = Ea for all a ∈ ∆. There is

nothing to do in the reductive case (as L = G in such cases), so we may assume k
is infinite. We will first treat the case where Φ has rank 1, and then we will reduce
the general case to that case.

Step 2. Now assume that the reduced root system Φ has rank 1, so Φ = {±a}
for some nontrivial a ∈ X(T ). For ease of notation, let E± := E±a and n := u′uu′

for a choice of nontrivial u := ua ∈ E(k), so n2 ∈ T (k) and nE+n
−1 = E− by

Proposition 5.4.2(ii). Define the subset

Γ = E+(k){1, n}T (k)E+(k) = E+(k)T (k)
∐

E+(k)nT (k)E+(k)

(disjoint by the Bruhat decomposition for G(k) in Theorem 5.2.2), so Γ generates
a Zariski-dense subgroup of L due to the Zariski-density of T (k) in T and of E±(k)
in E± (recall T is k-split, E± ' Ga, and k is infinite).

Lemma 5.4.5. The subset Γ ⊂ G(k) is a subgroup. In particular, Γ is Zariski-
dense in L.

Proof. It is clear that Γ is stable under left and right multiplication against
E+(k) and T (k) (using that T (k) normalizes E+(k)), so we just have to check
that nΓ ⊂ Γ or more specifically that nE+(k)n−1 ⊂ Γ (as n2 ∈ T (k) and Γ is
stable under left and right multiplication against T (k)E+(k)). Since n = u′uu′ by
definition and u′ = n−1un by Proposition 5.4.2(ii), so

n = n(u′uu′)n−1 = (nu′n−1)(nun−1)(nu′n−1) = u(nun−1)u,

we see that nun−1 = u−1nu ∈ E+(k)nE+(k) ⊂ Γ.
A nontrivial v ∈ E+(k) has the form tut−1 for some t ∈ T (k), so

nvn−1 = (ntn−1)(nun−1)(ntn−1)−1 ∈ (ntn−1)(E+(k)nE+(k))(ntn−1)−1.

Hence, it suffices to show that ntn−1-conjugation preserves E+(k) and carries n
to a k-point in nT (k). The effect of ntn−1-conjugation on (E+)k ' Ga is scaling
against (n−1.a)(t) = a(t)−1 since n acts on X(T ) through the reflection ra, and
a(t) ∈ k× since u, v ∈ E+(k) are nontrivial k-points related through scaling against
a(t). Likewise, the ntn−1-conjugate of n is ntnt−1n−1 ∈ nT (k) (since n normalizes
T ) yet is a k-point since tnt−1 = m(v) by Proposition 5.4.2(iii). �

Clearly Γ = nΓ = E−(k)T (k)E+(k)
∐
nE+(k)T (k) yet Γ is Zariski-dense in L

and nE+(k)T (k) has Zariski-closure nE+ o T ⊂ nUGa o T that is a proper closed
subset of L, so E−(k)T (k)E+(k) is Zariski-dense in L. For λ : GL1 → T satisfying
〈a, λ〉 > 0 we have E± ⊂ UL(±λ), so we have a closed immersion

j : E− × T × E+ ↪→ UL(−λ)× ZL(T )× UL(λ) =: Ω.
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But the multiplication map Ω→ L is an open immersion by Theorem 2.3.5(ii), so
the density of E−(k)T (k)E+(k) in L implies that j is an equality. Equivalently,
ZL(T ) = T and E± = UL(±λ). In particular, the solvable smooth connected
k-subgroups B± := T n E± ⊂ L (via multiplication) have codimension 1.

Since n-conjugation on T swaps the two roots ±a ∈ Φ(G,T ), there exist t ∈
T (k) such that the commutator (ntn−1)t−1 ∈ T (k) is nontrivial. Hence, D(L) is
not unipotent, so the smooth connected affine k-group L is not solvable. It follows
that the k-subgroups B± are Borel subgroups, so Ru(Lk) ⊂ (B±)k. But working
inside the open subscheme Ω ⊂ L shows that B+ ∩ B− = T , so Ru(Lk) ⊂ Tk,
forcing Ru(Lk) = 1; i.e., L is reductive.

The preceding calculations show E± are the T -root groups of L, so Φ(L, T ) =
{±a} = Φ. Thus, the natural map f : Lk → Gred

k
induces an isomorphism between

maximal tori and between the root systems. The induced map fb between root
groups for each common root b is Tk-equivariant and hence is linear between 1-
dimensional root groups, so ker(fb) = 1 (as otherwise ker(fb) is the b-root group
of L, forcing the unipotent normal subgroup scheme ker f = Lk ∩Ru(Gk) in Lk to
contain a nontrivial smooth connected subgroup, contradicting that Ru(Lk) = 1).
Thus, f induces an isomorphism between open cells, so it is an isomorphism. The
case of Φ with rank 1 is done.

Step 3. If Φ is empty then Gred
k

is commutative and hence G is solvable. In
such cases L = T , and this is obviously a Levi k-subgroup of G. Thus, we may
assume Φ has positive rank. The settled rank-1 case applies to Ga := ZG(Ta) for
the codimension-1 torus Ta := (ker a)0

red ⊂ T with any a ∈ ∆, so for all such a the
smooth connected k-subgroup La ⊂ Ga generated by T , Ea, and E−a is reductive
with maximal k-torus T and (La)k → (Ga)red

k
is an isomorphism. In particular, for

dimension reasons E±a are the T -root groups of La.
By [CGP, Prop. A.4.8], the natural map (Ga)red

k
→ Gred

k
is an isomorphism

onto the (Ta)k-centralizer in Gred
k

; i.e., (Ga)red
k

= (Gred
k

)a. These latter groups

generate Gred
k

, so the natural map f : Lk → Gred
k

satisfies three properties: it is
surjective, it carries Tk isomorphically onto a maximal torus of the target, and it
carries (Ea)k isomorphically onto the a-root group of the target for every a ∈ ∆.

Note that L is generated by {La}a∈∆, ZLa
(T ) = T for all a ∈ ∆, and Ea

commutes with E−b for all distinct a, b ∈ ∆ because UGa commutes with UG−b for
such a and b (as ma + n(−b) is not a root for any integers m,n > 1; see [CGP,
Cor. 3.3.13(2)]). Hence, by Theorem 5.4.3 (applied to the collection of k-subgroups
La ⊂ G for a ∈ ∆) the k-group L is reductive with T as a maximal k-torus, and by
design ∆ ⊂ Φ(L, T ) ⊂ Φ(G,T ) =: Φ with Φ a reduced root system having basis ∆.
Moreover, by Theorem 5.4.3(i), ∆ is a basis of Φ(L, T ) and the ±a-root groups of
L are E±a for all a ∈ ∆.

The natural subgroup inclusion W (L, T ) ⊂ W (Φ) is an equality because the
element u′auau

′
a ∈ NL(T )(k) is carried to the reflection ra for every a ∈ ∆ (and such

reflections generate W (Φ)), so W (Φ) ·∆ ⊂ Φ(L, T ). Reducedness of Φ implies that
every W (Φ)-orbit in Φ meets ∆, so Φ(L, T ) = Φ as required. Each root in Φ(L, T )
is NL(T )(k)-conjugate to a root in ∆, so for each b ∈ Φ(L, T ) = Φ the map f carries
the b-root group of Lk isomorphically onto the b-root group of Gred

k
since the special

case b ∈ ∆ has been verified. It follows that f restricts to an isomorphism between
open cells, so it is a birational homomorphism between smooth connected groups
and thus is an isomorphism. �
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There are conditions that provide a complete characterization of semisimplicity,
such as in the following result (proved using Theorem 5.4.4 and additional ideas):

Proposition 5.4.6. Let G be a pseudo-semisimple k-group. If all root groups
of Gks are 1-dimensional then G is reductive. Likewise, if there exists a pseudo-
parabolic k-subgroup P ⊂ G such that G/P is proper and P does not contain any
k-simple pseudo-semisimple normal k-subgroup of G then G is reductive.

See [CGP, Thm. 3.4.9] for a proof. (The assertion concerning G/P is harder,
and the role of properness is to ensure that Pk contains Ru(Gk), due to the Borel
fixed point theorem applied to the translation of Ru(Gk) on Gk/Pk = (G/P )k.)

We finish this section by recording an interesting result going beyond the more
widely-known reductive case:

Theorem 5.4.7. Assume k is infinite, and let G be a k-isotropic pseudo-simple
k-group. Let G(k)+ denote the subgroup of G(k) generated by the maximal k-split
unipotent smooth connected k-subgroups of G. Then G(k)+ is Zariski-dense in G
and is also perfect. Moreover, any non-central subgroup of G(k) that is normalized
by G(k)+ must contain G(k)+. In particular, the quotient of G(k)+ modulo its
center is a simple group.

See [CGP, Thm. C.2.34] for a proof of Theorem 5.4.7 (in a more general formu-
lation); this rests on Proposition 5.4.2 and a generalization of Proposition 4.3.1(ii)
that drops pseudo-split hypotheses (see [CGP, Prop. C.2.26]).

6. Central extensions and standardness

6.1. Central quotients. An important feature of connected reductive k-
groups G is that the formation of the scheme-theoretic center ZG is compatible
with the formation of central quotients G := G/Z (for a closed k-subgroup scheme
Z ⊂ ZG); i.e., ZG = ZG/Z. This property ultimately rests on the structure of
open cells over ks, and is specific to the reductive case; e.g., any smooth connected
unipotent k-group U is nilpotent, so ZU 6= 1 if U 6= 1 and hence ZU/ZU

6= 1 if U
is non-commutative. As a special case, if G is connected reductive then G/ZG has
trivial center (and it is even perfect, or equivalently semisimple).

For a pseudo-reductive k-group G, two new phenomena occur:

• a central quotient G/Z need not be pseudo-reductive (see Example 2.1.3),
• the central quotient G/ZG may not be perfect; e.g., Rk′/k(PGLp) is not

perfect (Example 1.2.4) but it has trivial center [CGP, Prop. A.5.15(1)].

Despite this behavior that deviates from the reductive case, central quotients remain
a useful tool in the pseudo-reductive case due to:

Proposition 6.1.1. If G is a pseudo-reductive k-group then a central quotient
G := G/Z is pseudo-reductive if and only if ZG/Z does not contain a nontrivial
smooth connected unipotent k-subgroup, in which case ZG = ZG/Z. In particu-
lar, G/ZG is pseudo-reductive and has trivial center, and a composition of central
homomorphisms between pseudo-reductive groups is central.

The proof that ZG = ZG/Z when G is pseudo-reductive rests on an analysis
of root groups and open cells over ks; see [CP, Lemma 4.1.1]. The necessity of
the condition that ZG/Z does not contain a nontrivial smooth connected unipotent
k-subgroup is immediate from the observations that ZG lies inside any Cartan
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k-subgroup C ⊂ G and that C is commutative pseudo-reductive if G is pseudo-
reductive (so C cannot contain a nontrivial smooth connected unipotent k-subgroup
in such cases).

The sufficiency of this condition for pseudo-reductivity of G clearly reduces to
the assertion that G/ZG is pseudo-reductive, but such pseudo-reductivity is rather
nontrivial, as it rests on a study of automorphism schemes. Since such automor-
phism schemes pervade proofs of the deeper structure of pseudo-reductive groups,
we now review the relevant existence results and properties for these schemes (and
then illustrate their use to prove the pseudo-reductivity of G/ZG).

Proposition 6.1.2. Let G be a smooth connected affine k-group, and C a
Cartan k-subgroup. The functor AutG,C assigning to any k-algebra R the group
of R-automorphisms of GR restricting to the identity on CR is represented by an
affine k-group scheme AutG,C of finite type. If G is pseudo-reductive then the
maximal smooth closed k-subgroup ZG,C of AutG,C is commutative and Z0

G,C is
pseudo-reductive.

Proof. Let T be the maximal k-torus in C. After extending scalars to ks to
split T , by Proposition 3.1.4 we see that G is generated by C and the (generally
non-commutative!) subgroups U(a) for the nontrivial T -weights a that occur in
Lie(G). Thus, there is a finite sequence {ai}i∈I of such weights (possibly with
repetitions!) such that the multiplication map C ×

∏
i∈I U(ai) → G is dominant.

The representability of AutG,C rests on a detailed study of T -equivariant filtra-
tions of the coordinate rings k[U(a)] and the fact that any R-automorphism f of GR
restricting to the identity on CR must act TR-equivariantly on each (U(a))R. This al-
lows us to realize AutG,C as a subfunctor of the direct product F =

∏
i∈I AutU(ai)

,T

of T -equivariant automorphism functors of the U(ai)’s.
Although the automorphism functor of each U(a) is not representable when

char(k) > 0, the subfunctor AutU(a),T
is representable [CGP, Lemma 2.4.2]. This

allows one (after more work) to identify AutG,C with a closed subfunctor of F . We
refer the reader to [CGP, Thm. 2.4.1] for the details (and see [CGP, Cor. 2.4.4]
for a variant in which C is replaced with a maximal k-torus of G). �

Remark 6.1.3. Assume G is reductive. The representability and structure of
AutG,C can be understood in another way (at the cost of invoking much deeper
input): the automorphism functor of G (without reference to C) is represented
by a smooth k-group AutG/k whose identity component is G/ZG and whose étale
component group over ks injects into the automorphism group of the based root
datum. Since C coincides with its own maximal k-torus T due to reductivity of
G, we conclude that AutG,C = T/ZG; in particular, ZG,C = T/ZG is connected.
This alternative approach through AutG/k is much more sophisticated than the
proof of Proposition 6.1.2 since the existence and structure of AutG/k requires the
Isomorphism Theorem for split reductive groups over k-algebras, not just over fields.

In contrast with the reductive case, the automorphism functor of a general
pseudo-reductive k-group G is not representable (see [CGP, Ex. 6.2.1] for commu-
tative counterexamples). However, representability holds in the pseudo-semisimple
case since the deformation theory of fiberwise maximal tori in smooth affine group
schemes [SGA3, XI] allows one to build an affine representing object as a non-
commutative pushout analogous to the standard construction; see [CP, Prop. 6.2.2]
(which does not depend on earlier results in [CP]).
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Since G = C · D(G) and C ′ := C ∩ D(G) is a Cartan k-subgroup of the
pseudo-semisimple D(G), clearly AutG,C = AutD(G),C′ . Hence, again at the cost
of deeper input, one can alternatively deduce the existence of AutG,C from the
representability of AutD(G)/k. However, this does not illuminate the structure of
ZG,C = ZD(G),C′ since AutD(G)/k is generally not smooth [CP, Ex. 6.2.3] and its
identity component is generally larger than D(G)/ZD(G) [CP, Rem. 6.2.5].

It is true that ZG,C is always connected [CP, Prop. 6.1.4], but this rests on
a comprehensive understanding of the structure of rank-1 pseudo-split absolutely
pseudo-simple groups with trivial center, an especially delicate task in characteristic
2; we will address the connectedness of ZG,C in §9.1.

The merit of Z0
G,C being a commutative pseudo-reductive group is that it allows

us to define a pseudo-reductive k-group

(Go Z0
G,C)/C

as in Proposition 2.2.1 (using the evident k-homomorphism C → Z0
G,C respecting

the natural actions on each on G). The normal image of G under g 7→ (g, 1) mod C
clearly coincides with G/ZG, establishing the pseudo-reductivity of G/ZG!

Root systems and root groups behave as nicely with respect to central quotients
as in the reductive case:

Proposition 6.1.4. Let f : G� G be a central quotient map between pseudo-
reductive k-groups, and assume G admits a split maximal k-torus T . Let T = f(T ).
Then Φ(G,T )→ Φ(G,T ) is bijective and for corresponding roots the map f induces
an isomorphism between the associated root groups.

In particular, if G is a standard pseudo-reductive k-group then the root system
for Gks is reduced.

The invariance under central quotients in Proposition 6.1.4 is a simple applica-
tion of the dynamic definition of root groups and properties of dynamic construc-
tions; see [CGP, Prop. 2.3.15] (which establishes such a result for central quotients
of any smooth connected affine k-group). In the standard case, G is a central
quotient of Rk′/k(G′) o C with a commutative k-group C, so the compatibility of
the formation of root systems with respect to Weil restrictions (see Example 3.1.3)
implies the asserted reducedness of the root system of Gks in the standard case.

6.2. Central extensions. To prove that a large class of pseudo-reductive
groups G is standard, the essential case is when G is absolutely pseudo-simple. Our
aim in this section is to explain how the task of proving standardness of a given
absolutely pseudo-simple k-group G is (under suitable hypotheses) closely related
to the study of certain central extensions. We first seek a mechanism to construct
intrinsically from a central quotient G of Rk′/k(G′), for a purely inseparable finite
extension k′ of k and a semisimple k′-group G′, the pair (k′/k,G′) and the (central)
quotient map from Rk′/k(G′) onto G.

As an initial step we show how k′/k can be recovered from the group Rk′/k(G′).
The key notion for this purpose is “minimal field of definition” for a closed sub-
scheme after a ground field extension, as follows. If X is any scheme over a field
k and Z is a closed subscheme of XK for an extension field K/k then among all
subfields L ⊂ K over k for which Z descends to a closed subscheme of XL there
is one such L that is contained in all others [EGA, IV2, §4.8ff.]; we call L/k the
minimal field of definition over k for Z inside XK .
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Example 6.2.1. Consider a purely inseparable finite extension of fields k′/k
and a nontrivial connected reductive k′-group G′, and define G := Rk′/k(G′). The

k-subgroup Ru(Gk) ⊂ Gk descends to a k′-subgroup of Gk′ since the smoothness of
G′ and structure of k′ ⊗k k′ imply immediately that the natural map q : Gk′ → G′

defined functorially on points valued in any k′-algebra A′ via

Gk′(A
′) = G(A′) = G′(k′ ⊗k A′) = G′(k′ ⊗k k′ ⊗k′ A′) −→ G′(A′)

(using the natural quotient map k′⊗kk′ � k′) is a surjection with smooth connected
unipotent kernel; i.e., ker q is a k′-descent of Ru(Gk). It is a much deeper fact that
k′/k is minimal as a field of definition for the geometric unipotent radical; see
[CGP, Prop. A.7.8(2)] (whose proof establishes that k′/k is even minimal as a
field of definition for Lie(Ru(Gk)) as a k-subspace of Lie(Gk) = Lie(G)k, a rather
surprising fact in positive characteristic).

Ultimately we are interested in central quotients of pseudo-semisimple groups
of the form Rk′/k(G′), so it is essential to know that k′/k is characterized by the
same minimality property for any such (pseudo-reductive) central quotient. This
is a consequence of:

Proposition 6.2.2. Let H be a perfect smooth connected affine k-group and
H := H/Z for a central closed k-subgroup Z ⊂ H. Then the minimal fields of
definition over k for the geometric unipotent radicals of H and H coincide.

Proof. The induced map Hred
k
→ H

red

k between connected semisimple groups
has central kernel, so it induces an isomorphism between maximal adjoint semisim-
ple quotients. Hence, to prove the proposition it suffices to show that the field of
interest for each of H and H is unaffected if we work with the maximal adjoint
semisimple quotient over k rather than with the maximal reductive (equivalently,
semisimple) quotient over k. This is a nontrivial problem due to the possibility that
the scheme-theoretic center of a connected semisimple k-group may not be étale.
We refer the reader to (the self-contained proof of) [CP, Prop. 3.2.6] for this step,
based on the fact that any perfect smooth connected affine ks-group is generated
by its maximal ks-tori [CGP, Cor. A.2.11]. �

Remark 6.2.3. The perfectness of H in Proposition 6.2.2 cannot be dropped.
Indeed, over every imperfect field k there exists a non-reductive pseudo-reductive k-
group H 6= D(H) such that H/ZH is semisimple (of adjoint type) [CGP, Ex. 4.2.6]!
The same example shows that for a smooth connected affine k-group H, the finite
purely inseparable minimal field of definition K/k for the kernel

Ru(Hk) = ker(Hk � Hred
k

)

of projection onto the maximal geometric reductive quotient can be strictly larger
than the analogous subextension K ′/k associated to the kernel of the projec-
tion Hk � Hred

k
/ZHred

k
onto the maximal geometric adjoint semisimple quotient

(whereas the equality K = K ′ holds for perfect H; this is the key step in the proof
of Proposition 6.2.2).

Now we can relate standardness to the splitting of central extensions. This
rests on the following construction:
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Definition 6.2.4. Let G be a smooth connected affine k-group, and let K/k be
the minimal field of definition over k for Ru(Gk) ⊂ Gk (so K/k is purely inseparable

of finite degree). For G′ := Gred
K = GK/Ru,K(GK), define

iG : G −→ RK/k(G′)

to be the natural map corresponding to the quotient map GK � G′ via the
universal property of RK/k. For perfect G we further define ξG to be the unique
map

ξG : G −→ D(RK/k(G′))

through which iG factors.

Example 6.2.5. Consider (k′/k,G′) as in Example 6.2.1 and define G :=
Rk′/k(G′), so K = k′ and iG corresponds to the natural quotient map q : Gk′ → G′

described in Example 6.2.1. By [CGP, Thm. 1.6.2(2)], under the universal prop-
erty of Weil restriction q corresponds to the identity map G → Rk′/k(G′). Thus,
iG is an isomorphism (and is even identified with the identity map of G).

Example 6.2.6. For an imperfect field k with characteristic p and a ∈ k − kp,
let k′ = k(a1/p2n) and k = k(a1/pn) for an integer n > 0. By [CGP, Ex. 5.3.7],

G := Rk′/k(SLpn)/Rk/k(µpn)

is a standard pseudo-reductive k-group that is absolutely pseudo-simple and the
kernel ker iG = ker ξG = Rk′/k(µpn)/Rk/k(µpn) has dimension (pn − 1)2.

We shall be interested in ξG primarily for absolutely pseudo-simple G since the
extension field K/k is a poor invariant for other groups. Nonetheless, this map has
an interesting property in the general pseudo-semisimple case:

Proposition 6.2.7. Let H be a smooth connected affine k-group and H := H/Z
for a central closed k-subgroup Z ⊂ H. If H and H are both pseudo-semisimple
then the surjectivity of ξH is equivalent to that of ξH .

The proof of this proposition, given in [CP, Prop. 4.1.5], rests on a study of
open cells and the insensitivity of root groups and root systems with respect to
central quotient maps between pseudo-reductive groups.

6.2.8. Let G, K/k, and G′ be as in Definition 6.2.4. If G is perfect then
the K-group G′ is semisimple, so for such G it makes sense to consider the simply

connected central cover π : G̃′ � G′. Letting µ′ := kerπ ⊂ ZG̃′ and Z := RK/k(µ′),

we see from [CGP, Prop. 1.3.4] that D(RK/k(G′)) = RK/k(G̃′)/Z . Thus, we can
rewrite ξG as a map

ξG : G −→ RK/k(G̃′)/Z .

Assume G is absolutely pseudo-simple and standard. Then by Example 2.2.8 it
is the central quotient Rk′/k(H ′)/Z for a purely inseparable finite extension k′/k and
a connected semisimple k′-group H ′ that is absolutely simple and simply connected.
As k′ is the minimal field of definition over k for the geometric unipotent radical of
Rk′/k(H ′) (see [CGP, Prop. A.7.8(2)]), k′ = K as a purely inseparable extension
of k by Proposition 6.2.2. Let q : RK/k(H ′)K → H ′ be as in Example 6.2.1 (with
H ′ in place of G′) and define µ = q(ZK) ⊂ ZH′ , so Z ⊂ RK/k(µ). The maximal
reductive quotient of RK/k(H ′)K is H ′, so the maximal reductive quotient G′ of
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GK is H ′/µ. Thus, H ′ is the simply connected central cover of G′ and we identify

it with G̃′ over G′, so µ = µ′.

Hence, if G is absolutely pseudo-simple and standard then G = RK/k(G̃′)/Z,

where π : G̃′ → G′ is the simply connected central cover of G′, Z ⊂ Z , and the

map ξG is the natural quotient map G = RK/k(G̃′)/Z → RK/k(G̃′)/Z between

central quotients of RK/k(G̃′). Thus, ξG is surjective with kernel that is central in
G. Moreover, we claim that if the order of µ′ is not divisible by char(k) (such as
when µ′ = 1; i.e., when G′ is simply connected) then ξG (= iG) is an isomorphism.
To see this we may assume k = ks, so the finite étale K-group µ = µ′ is constant
and hence the only k-subgroup Z ⊂ Z := RK/k(µ′) for which q : ZK → µ′ = µ is
surjective is Z = Z .

Near the end of [Ti3, Cours 1992-93, II], Tits raised the question of character-
izing those non-reductive absolutely pseudo-simple k-groups G for which iG is an
isomorphism. He settled most cases for which the root lattice and weight lattice
in the root system coincide: E8, F4 away from characteristic 2, and G2 away from
characteristic 3. We can now give a criterion for iG to be an isomorphism; we will
revisit the topic in Remark 10.2.12 (after we have a good understanding of the
non-standard case).

Proposition 6.2.9. Let G be a non-reductive absolutely pseudo-simple group
over a field k of characteristic p > 0. Then iG is an isomorphism if and only if G
is standard and the order of the fundamental group of Gss

k
is not divisible by p.

The k-group G = D(RK/k(PGLp)) with K/k purely inseparable of degree p ex-
plicitly exhibits the failure of iG to be surjective when the order of the fundamental
group of Gss

k
is divisible by p.

Proof. Let K be the minimal field of definition over k for the geometric
unipotent radical of G, and define G′ = Gss

K . Let us assume first that iG is an
isomorphism. Then, by definition, G is standard. To prove that p doesn’t divide
the order of the fundamental group of Gss

k
, we may and do assume k = ks. Let

q : G̃′ → G′ be the simply connected central cover of G′. We need to prove that p
doesn’t divide the order of µ′ := ker q.

Surjectivity of iG implies that RK/k(G′) is perfect, and (as we saw in the proof of

Proposition 2.2.7) the derived group of RK/k(G′) coincides with RK/k(G̃′)/RK/k(µ′)

due to the perfectness of RK/k(G̃′). But RK/k(G̃′) and RK/k(G′) have the same

dimension, namely [K : k]d for the common dimension d of G′ and G̃′, so RK/k(µ′)
must be 0-dimensional. If p divides #µ′ then dim RK/k(µp) = 0 since µp ⊂ µ′ (as
K is separably closed and µ′ is finite of multiplicative type). The purely inseparable
finite extension K/k is nontrivial since G is assumed to be non-reductive. Letting
k0/k be a degree-p subextension, we obtain that dim Rk0/k(µp) = 0. But this latter
dimension is p− 1 > 0 (see [CGP, Ex. 1.3.2]), giving a contradiction.

Conversely, if G is standard and the order of the fundamental group of Gss
k

is
not divisible by p, then as we saw in 6.2.8 the map iG is an isomorphism. �

To go further, we require a framework in which certain central quotient maps

Rk′/k(G′)→ Rk′/k(G′)/Z
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(with simply connected semisimple G′) satisfy properties reminiscent of the “simply
connected central cover” of a connected semisimple k-group. This begins with:

Definition 6.2.10. Let Z be a commutative affine k-group scheme of finite
type. We say that Z is k-tame if it does not contain a nontrivial unipotent k-
subgroup scheme. A central extension

1 −→ Z −→ E −→ G −→ 1

of an affine k-group scheme G of finite type is k-tame if Z is k-tame.

Example 6.2.11. If K/k is any finite extension of fields and M is a K-group
scheme of multiplicative type then RK/k(M) is k-tame (use the universal property
of RK/k); the same holds more generally if M is a K-tame commutative affine K-
group of finite type, and clearly a closed k-subgroup of a k-tame group is k-tame.

For example, if E = Rk′/k(G′) for a nonzero finite reduced k-algebra k′ and
smooth affine k′-group G′ with connected reductive fibers over the factor fields of k′

then the center ZE = Rk′/k(ZG′) is k-tame. Hence, every central closed k-subgroup
of such E is k-tame.

Arguments with specialization and relative Verschiebung morphisms in positive
characteristic ensure that if k′/k is a separable extension of fields then Z is k-tame
if and only if Zk′ is k′-tame [CP, Prop. 5.1.2]. This is used frequently without
comment, especially for k′ = ks.

The interest in k-tameness is that the perfect smooth connected affine k-tame
central extensions E of an arbitrary perfect smooth connected affine k-group G be-
have similarly to connected semisimple central extensions of connected semisimple
groups. To make this precise, if E1 and E2 are two such k-tame central extensions
of such a G then a morphism f : E1 → E2 is a k-homomorphism over G. It is easy
to verify that such an f is unique if it exists (as E1 is perfect) and is automatically
surjective; this defines a partial ordering (“E1 > E2”) among such k-tame central
extensions of G.

Theorem 6.2.12. Fix a perfect smooth connected affine k-group G, and let
K/k be the minimal field of definition for Ru(Gk) ⊂ Gk. The functor E  Ered

K :=
EK/Ru,K(EK) is an equivalence between the category of perfect smooth connected
k-tame central extensions of G and the category of connected semisimple central
extensions of the connected semisimple K-group Gred

K .

The perfect smooth connected k-tame central extension G̃ of G corresponding
to the simply connected central cover of Gred

K satisfies the following properties:

(i) G̃ is initial among all smooth k-tame central extensions of G,

(ii) if G is pseudo-semisimple then so is G̃,

(iii) the formation of G̃ is compatible with separable extension on k.

Proposition 6.2.2 ensures that Ered
K is reductive (so also semisimple, as it is

perfect).

Proof. To establish the equivalence of categories, by Galois descent we may
and do assume k = ks (so all k-tori are split). The essential step is to make
a natural construction in the opposite direction: given a connected semisimple
central extension E′ of G′ := Gred

K , we seek a perfect smooth connected k-tame
central extension E of G such that Ered

K ' E′ over G′.
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The simply connected central cover G̃′ of G′ is identified with that of E′, so

µE′ := ker(G̃′ � E′), µ := ker(G̃′ � G′)

satisfy µE′ ⊂ µ. Hence, it makes sense to form the fiber product

G (E′) = G×RK/k(G̃′)/RK/k(µ) (RK/k(G̃′)/RK/k(µE′)).

The evident projection G (E′) → G is clearly surjective with central kernel that is
k-tame since

RK/k(µE′)/RK/k(µ) ⊂ RK/k(µE′/µ)

with µE′/µ of multiplicative type.
The k-group scheme G (E′) is generally not smooth (see [CP, Ex. 5.1.6] for

non-smooth examples over any imperfect field), so this does not provide the desired
reverse construction. Arguments with an “open cell” ΩG(λ) as in Theorem 2.3.5(iii)
yield that the maximal smooth closed k-subgroup

E := D((G (E′)sm)0)

inside G (E′) is a perfect connected k-group for which the projection E → G is
central and surjective; see the proof of [CP, Thm. 5.1.3] for the details (showing
that E′  E is the sought-after reverse construction).

To verify (i), (ii), and (iii) we return to considering general k. Properties (i)
and (ii) are rather formal, and explained near the beginning of [CP, §5.2]. For (iii)
we recall that if Z is k-tame then Zk′ is k′-tame for separable k′/k. �

In view of Theorem 6.2.12(i), we call G̃ the universal smooth k-tame central
extension of G.

Example 6.2.13. If G = Rk′/k(G̃′)/Z as in 6.2.8 for k-tame Z then G̃ is equal

to Rk′/k(G̃′) equipped with the evident central quotient map onto G.

Here is an interesting application of the existence of G̃:

Proposition 6.2.14. An absolutely pseudo-semisimple k-group G is standard
if and only if Gks is standard.

This result holds for any pseudo-reductive k-group, but we do not need that
generality until much later and so postpone it to Corollary 10.2.8.

Proof. It is immediate from the definition of standardness that if G is stan-
dard then so is Gks . Conversely, assume Gks is standard. Let K/k be the minimal
field of definition for the geometric unipotent radical of G, so Ks = K⊗k ks has the

same property for Gks over ks by Galois descent. Let G′ = GK/Ru,K(GK) and G̃′

be the simply connected cover of G′. Then, by 6.2.8 the ks-group Gks is a central

quotient RKs/ks(G̃′Ks
)/Z. Since Z is ks-tame by Example 6.2.11, RKs/ks(G̃′Ks

) is
the universal smooth ks-tame central extension of Gks .

By Theorem 6.2.12, the universal smooth k-tame central extension G̃ of G

is pseudo-semisimple and G̃ks is the universal smooth ks-tame central extension

RKs/ks(G̃′Ks
) of Gks (so G̃ is absolutely pseudo-simple). Since every pseudo-

reductive central quotient of a standard pseudo-semisimple group is standard (by
Example 2.2.8 and the preservation of centrality under composition of quotient

maps in Proposition 6.1.1), we may replace G with G̃ to reduce to the case that
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Gks ' RKs/ks(G̃′Ks
). Thus, iGks

(= (iG)ks) is an isomorphism (see 6.2.8). But then
iG is an isomorphism, so G is certainly standard. �

Recall that if G is standard then the root system of Gks is reduced (Proposition
6.1.4). We saw in 6.2.8 that ker ξG is central in the standard absolutely pseudo-
simple case. An important ingredient in standardness proofs is a partial converse:

Proposition 6.2.15. Let G be a pseudo-reductive k-group such that Gks has a
reduced root system. Then ker iG (= ker ξG) is central in G.

Proof. A detailed proof of this important result is given in [CP, Prop. 2.3.4],
and here we sketch the main ideas. We may replace k with ks to arrange that k is
separably closed. Let K and G′ = GK/Ru,K(GK) be as in Definition 6.2.4. Let T
be a maximal k-torus of G and Φ = Φ(G,T ). View T ′ := TK as a maximal K-torus
of G′, so Φ(G′, T ′) = Φ since the root system Φ has been assumed to be reduced.
For a ∈ Φ, let Ua be the corresponding root group of G, and U ′a that of G′.

Using the natural actions of T on Ua and of T ′ on U ′a, these commutative
smooth connected unipotent groups over k and K respectively admit unique linear
structures equivariant for the respective actions (by Corollary 3.1.10). Using the
resulting linear structure on RK/k(U ′a), the map iG|Ua

: Ua → RK/k(U ′a) is equivari-
ant with respect to the inclusion T ↪→ RK/k(T ′) and thus is linear, so ker(iG|Ua

)
is a vector group. This kernel is therefore a smooth connected k-subgroup, but
its geometric fiber is contained in Ru(Gk). Pseudo-reductivity of G implies that
ker(iG|Ua) = 1, so the a-weight space of Lie(ker(iG)) is trivial for all a ∈ Φ.

As ker(iG)k ⊂ Ru(Gk), we conclude using [CGP, Prop. 2.1.12(2)] that ker iG ⊂
C := ZG(T ). Since C is commutative, and T was an arbitrary maximal k-torus, it
follows that ker iG commutes with every Cartan k-subgroup. Any smooth connected
affine k-group is generated by its Cartan k-subgroups, so ker iG is central. �

Remark 6.2.16. The reducedness hypothesis in Proposition 6.2.15 is essential:
for every n > 1 and imperfect field k of characteristic 2, by [CGP, Thm. 9.8.1(2),(4)]
there exist pseudo-split absolutely pseudo-simple k-groups G with root system BCn
such that ker ξG is connected, commutative and directly spanned by nontrivial
closed k-subgroups of root groups for multipliable roots (relative to a fixed split
maximal k-torus). Since ZG is contained in every Cartan k-subgroup of G, consid-
eration of an open cell shows that ker ξG is necessarily non-central.

Proposition 6.2.17. If G is an absolutely pseudo-simple k-group such that
Gks has a reduced root system then G is standard if and only if ξG is surjective. In
such cases, iG is an isomorphism when the connected semisimple k-group Gred

k
is

simply connected.

Proof. Since the root system is reduced, ker ξG is central by Proposition
6.2.15. If G is standard, then surjectivity of ξG was shown in 6.2.8. For the con-

verse, assume ξG is surjective. Let G̃� G be the universal smooth k-tame central

extension of G, so ξG̃ is surjective by Proposition 6.2.7. If G̃ is standard then so
is its pseudo-reductive central quotient G by Example 2.2.8 (and 6.2.8) Thus, we
may assume Gss

k
is simply connected. In such cases, the isomorphism property for

iG was proved in 6.2.8 for standard G.
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It remains to show that standardness must hold under our current hypotheses
(with Gss

k
simply connected). The k-group G fits into a central extension

(6.2.17) 1→ Z → G→ RK/k(G′)→ 1

where K/k is a purely inseparable extension field and G′ is a connected semisimple
K-group that is absolutely simple and simply connected. Moreover, the finite type
affine commutative k-group scheme Z = ker ξG = ker iG contains no nontrivial
smooth connected k-subgroup, as any such k-subgroup would have to be central
and unipotent (since Zk ⊂ Ru(Gk) by definition of iG) yet G is pseudo-reductive.
To prove Z = 1 (so ξG is an isomorphism) it suffices to prove (6.2.17) splits, as then
Z is a direct factor of the smooth connected G (so Z is smooth and connected).

The splitting of (6.2.17) is shown in [CGP, Prop. 5.1.3, Ex. 5.1.4], based on a
general criterion for splitting a central extension of a nontrivial pseudo-semisimple
group H by such Z. The criterion is that a Cartan ks-subgroup C of Hks is
“rationally generated” by root groups relative to the maximal ks-torus in C (in a
sense made precise in the statement of [CGP, Prop. 5.1.3]). The applicability of
this criterion to H = RK/k(G′) rests on two properties of simply connected groups
(such as G′): a basis of coroots for a maximal ks-torus T ′ is a Z-basis of X∗(T

′),
and the root groups for a pair of opposite roots {a,−a} generate SL2 in which the
(diagonal) torus a∨(GL1) is “rationally generated” by the associated root groups
Ua and U−a due to the well-known identity(

t 0
0 1/t

)
= u+(t)u−(−1/t)u+(t− 1)u−(1)u+(−1)

for u+(x) := ( 1 x
0 1 ) and u−(x) := ( 1 0

x 1 ). �

Remark 6.2.18. The splitting criterion used in the preceding proof is not
applicable to generalizations of the standard construction in characteristics 2 and
3 that we will encounter later. For those purposes, the universal smooth k-tame
central extension will provide a substitute sufficient for our needs.

7. Non-standard constructions

7.1. Groups of minimal type. For a pseudo-reductive k-group G with min-
imal field of definition K/k for its geometric unipotent radical and the associated
maximal reductive quotient Gred

K := GK/Ru,K(GK) over K, consider the map

iG : G −→ RK/k(Gred
K )

introduced in Definition 6.2.4. In §6.2 we analyzed the kernel and image of iG in the
absolutely pseudo-simple case. Note that ker iG is not sensitive to the minimality
condition on K/k, and it is unipotent since (ker iG)K ⊂ Ru,K(GK) (see Remark
2.3.4 for the notion of unipotence without smoothness hypotheses). Example 6.2.6
provides standard absolutely pseudo-simple G satisfying dim ker iG > 0 over any
imperfect field k. One of the main difficulties in any attempt to classify pseudo-
reductive groups is the structure of the unipotent group scheme ker iG.

Example 7.1.1. Let k be an imperfect field with characteristic p. There ex-
ist commutative pseudo-reductive k-groups C such that ker iC = Z/pZ [CGP,
Ex. 1.6.3]; this is interesting because the center of a connected reductive k-group
never has nontrivial étale p-torsion (as it is a k-group scheme of multiplicative type).
It is natural to ask if there exists an absolutely pseudo-simple k-group G such that
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the unipotent normal k-subgroup scheme ker iG is nontrivial and étale (forcing it
to be central, by connectedness of G).

If p > 2 then no such G exists. The proof is quite nontrivial, and goes as
follows. For an absolutely pseudo-simple k-group G that is standard, the k-group
ker iG = ker ξG is connected by [CGP, Thm. 5.3.8] (this applies for all p). According
to the classification results in Theorem 7.4.8 and Proposition 7.5.10, an absolutely
pseudo-simple k-group is standard except possibly when p 6 3, and the only other
possibilities for G when p = 3 are certain “exotic” constructions for type G2 that
have trivial center.

In contrast, if p = 2 and [k : k2] > 16 then there exist pseudo-split absolutely
pseudo-simple k-groups G with root system A1 and Gred

k
' SL2 such that ker iG =

Z/2Z [CGP, Rem. 9.1.11]. (No such G exists if [k : k2] 6 8 [CP, Prop. B.3.1].)

If the root system of Gks is reduced then the closed normal k-subgroup ker iG
of G is central by Proposition 6.2.15, so root groups over ks contribute nontrivially
to ker iG only when Gks has a non-reduced root system. In general, for a Cartan
k-subgroup C ⊂ G,

CG := C ∩ ker iG

is the maximal central unipotent k-subgroup scheme of G [CP, Prop. 2.3.7]; thus,
CG is independent of C. Whether or not CG is trivial can be detected after an
arbitrary separable extension on k because (CG)k′ = CGk′ inside Gk′ for separable
extension fields k′/k [CP, Lemma 2.3.6].

Since CG/CG
= 1 and the k-groups G and G/CG share the same minimal field

of definition over k for their geometric unipotent radicals and share the same root
data over ks (see [CGP, Prop. 9.4.2, Cor. 9.4.3] for proofs), it is natural to focus
attention on the cases for which CG = 1. We give these a special name:

Definition 7.1.2. A pseudo-reductive k-group G is of minimal type if CG = 1.

If k′/k is a separable extension then G is of minimal type if and only if Gk′ is
of minimal type. The minimal type property is also inherited by smooth connected
normal k-subgroups (such as derived groups) and torus centralizers [CP, Lemma
2.3.10]. Likewise, if k′/k is a finite extension of fields and G′ is a pseudo-reductive
k′-group of minimal type then the Weil restriction G := Rk′/k(G′) is of minimal
type. (Indeed, we may assume k = ks upon passing to factor fields of k′ ⊗k ks,
so now k′/k is purely inseparable. Thus, π : Gk′ → G′ is surjective by [CGP,
Prop. A.5.11], so the unipotent k′-group scheme π((CG)k′) is central in G′. Hence,
CG ⊂ Rk′/k(CG′) = 1.)

Examples not of minimal type are given by the standard absolutely pseudo-
simple k-groups G in Example 6.2.6 (which satisfy CG = ker iG 6= 1). Here are two
interesting sources of pseudo-reductive groups H for which ker iH = 1 (so H is of
minimal type):

Proposition 7.1.3. Let K/k be a purely inseparable finite extension of fields.

(i) Let L be a connected reductive k-group. Every smooth connected interme-
diate k-group L ⊂ H ⊂ RK/k(LK) is pseudo-reductive with L as a Levi

k-subgroup (so the natural map HK → LK is a K-descent of Hk � Hred
k

,

the minimal field of definition k′/k for Ru(Hk) ⊂ Hk is a subextension of
K/k, H ⊂ Rk′/k(Lk′), and the latter inclusion is iH).
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(ii) For any pseudo-reductive k-group G with minimal field of definition K/k
for its geometric unipotent radical and G′ := GK/Ru,K(GK), the k-group
H := iG(G) is pseudo-reductive with minimal field of definition K/k for
its geometric unipotent radical and its inclusion into RK/k(G′) is identified
with iH . In particular, H is of minimal type.

In (i), the inclusion H ⊂ Rk′/k(Lk′) and its identification with iH rest on the
fact that via L ↪→ H the map Lk′ → Hk′/Ru,k′(Hk′) is a k′-descent of the analogue
over K that is a K-isomorphism whose inverse arises from HK � LK . Note also
that in (ii) we permit Gks to have a non-reduced root system, in which case (as
Hks has a reduced root system) ker iG is non-central in G (by Proposition 6.1.4).

Proof. By Example 6.2.5 the natural map RK/k(LK)K → LK (which restricts
to the identity on the K-subgroup LK ⊂ RK/k(LK)K) has smooth connected unipo-
tent kernel, so L is a Levi k-subgroup of RK/k(LK). Letting U = Ru(RK/k(LK)k),
the equality Lk n U = RK/k(LK)k implies

Lk n (U ∩Hk) = Hk.

But Hk is smooth and connected, so its unipotent normal subgroup scheme U ∩Hk

is forced to be smooth and connected. We conclude that U ∩Hk = Ru(Hk), so L
is a Levi k-subgroup of H.

Since the k-subgroup Ru,k(H) of the pseudo-reductive RK/k(LK) satisfies

Ru,k(H)k ⊂ Ru(Hk) ⊂ U := Ru(RK/k(LK)k),

it follows from [CGP, Lemma 1.2.1] that Ru,k(H) = 1. This establishes (i).
Now consider (ii), for which we may assume k = ks. Hence, by Theorem 5.4.4

we can choose a Levi k-subgroup L ⊂ G, so the natural map LK → G′ is an
isomorphism. Using this K-isomorphism, iG(G) is identified with an intermediate
group between RK/k(LK) and L. Hence, by (i) we get everything in (ii) except
that the minimal field of definition over k for Ru(Hk) ⊂ Hk is merely a subfield
k′ ⊂ K over k and correspondingly H ⊂ Rk′/k(Lk′) inside RK/k(G′) = RK/k(LK)
with this inclusion equal to iH . Hence, it just has to be shown that K = k′.

The composite map

G� iG(G) ↪→ Rk′/k(Lk′)

corresponds to a k′-homomorphism q : Gk′ → Lk′ . Clearly qK corresponds to the
map iG : G→ RK/k(LK) = RK/k(G′), so qK is surjective with a smooth connected
unipotent kernel. Hence, q is also surjective with a smooth connected unipotent
kernel, so q is a k′-descent of the maximal geometric reductive quotient of G. By
minimality of K/k, this forces the inclusion k′ ⊂ K over k to be an equality. �

Pseudo-split pseudo-reductive groups of minimal type with a reduced root sys-
tem always arise as in Proposition 7.1.3(i):

Example 7.1.4. Consider pseudo-reductive k-groups G such that the root sys-
tem of Gks is reduced (as is automatic except when k is imperfect with characteristic
2). The kernel ker iG is central (Proposition 6.2.15), so G is of minimal type if and
only if ker iG = 1. If G is of minimal type and pseudo-split and K/k is the minimal
field of definition for the geometric unipotent radical then Theorem 5.4.4 provides
a split Levi k-subgroup L of G, so the natural map LK → Gred

K is an isomorphism
and hence iG identifies G with a k-subgroup of RK/k(LK) containing L.
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As an illustration, consider a pseudo-split pseudo-semisimple k-group H of
minimal type with root system A1 and denote by K/k the minimal field of definition
for its geometric unipotent radical. Fix a split maximal k-torus T ⊂ H, so by
Theorem 5.4.4 there exists a Levi k-subgroup L ⊂ H containing T . We may
and do identify L with SL2 or PGL2 carrying T onto the diagonal k-torus. Since
ker iH = 1, this identifies H with a k-subgroup of RK/k(LK) containing L. For the

T -root groups U± ⊂ RK/k(Ga) of H containing the canonical Ga ⊂ RK/k(Ga),

the stability of U± under T -conjugation implies that the subsets V ± := U±(k) of
K containing k are k-subspaces, and that conjugation on H by the standard Weyl
element w = ( 0 1

−1 0 ) ∈ L(k) swaps the root groups via negation relative to the
standard parameterizations of the root groups. Hence, V + = V − inside K.

Denote the common k-subspace V + = V − of K containing 1 as V , and let
V be the corresponding k-subgroup of RK/k(Ga). By Proposition 3.1.4, pseudo-
semisimplicity of H implies that H is the k-subgroup of RK/k(SL2) or RK/k(PGL2)
generated by V inside both root groups relative to the diagonal k-torus. For each
L ∈ {SL2,PGL2}, this describes all possibilities for such H up to k-isomorphism in
terms of possibilities for V , but the relationship between V and K/k needs to be
described, as does the characterization of when two such permissible V ’s give rise
to isomorphic k-groups. These matters will be addressed in §7.2.

The notion of “minimal type” is useful when proving classification results and
general structure theorems for pseudo-reductive k-groups G because the central
pseudo-reductive quotient G/CG is of minimal type and has the same associated
extension K/k (so passage to G/CG is compatible with the formation of iG). It
is convenient in some proofs to first treat the minimal type case and then to infer
the general case. The proof of standardness of all pseudo-reductive groups away
from characteristics 2 and 3 (shown in Theorem 7.4.8 for absolutely pseudo-simple
groups, and deduced in general in Corollary 10.2.14) uses such a technique.

There is good behavior of the “minimal type” property with respect to the
useful operations of passage to normal k-subgroups and centralizers of subgroup
schemes of multiplicative type:

Proposition 7.1.5. For a pseudo-reductive k-group G of minimal type, every
smooth connected normal k-subgroup is of minimal type and ZG(M)0 is of minimal
type for every closed k-subgroup scheme M of a k-torus in G.

To make sense of the statement of Proposition 7.1.5 it is necessary to first
show that the k-subgroups of G being considered are pseudo-reductive; the pseudo-
reductivity of smooth connected normal k-subgroups of G is elementary, and for
k-subgroups of the form ZG(M)0 it is rather nontrivial when M is non-smooth; see
[CGP, Prop. A.8.14(2)]. The idea of the proof of Proposition 7.1.5 is to show for
any k-subgroup H of G that is of either of the two types under consideration, the
following two properties hold: H∩ker iG = ker iH , and H∩C is a Cartan k-subgroup
of H for any Cartan k-subgroup C of G when H is normal in G as well as for the
specific Cartan k-subgroup C = ZG(T ) when H = ZG(M)0 for a maximal k-torus T
of G and closed k-subgroup scheme M ⊂ T . It is then immediate that CH = H∩CG
by definition of CH (so CH = 1 when CG = 1). The equality H ∩ ker iG = ker iH
amounts to showing ker iH ⊂ ker iG and that Ru(Hk) = Hk ∩ Ru(Gk), which is
nontrivial when H = ZG(M)0 for non-smooth M as above; see [CGP, Prop. 9.4.5]
for the details.
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Example 7.1.6. As an illustration of the technical advantages of the “minimal
type” case, consider a smooth connected affine k-group G and smooth connected
normal k-subgroup N . For the maximal pseudo-reductive quotients

Gpred := G/Ru,k(G), Npred := N/Ru,k(N)

there is a natural map Npred → Gpred because the smooth connected image of N
in the pseudo-reductive k-group Gpred is normal and hence pseudo-reductive, and
over any imperfect field k we give examples in [CP, Rem. 2.3.14] of such G and N
for which ker(Npred → Gpred) has positive dimension.

The situation is better if we consider the maximal quotients

Gprmt := Gpred/CGpred , Nprmt := Npred/CNpred

that are pseudo-reductive of minimal type. Indeed, there is a natural map Nprmt →
Gprmt since the smooth connected image of N in Gprmt is normal and hence pseudo-
reductive of minimal type, and we claim that this map always has trivial kernel.

The key to the proof of such triviality, given in detail in [CP, Prop. 2.3.13], is
that after reducing to the case k = ks with N pseudo-reductive of minimal type, the
unipotent subgroup scheme N∩Ru,k(G) is central in N . To establish this centrality,
observe that the smooth connected normal commutator k-subgroup (N,Ru,k(G)) ⊂
N is unipotent since it is contained in Ru,k(G). Thus, this commutator subgroup
is contained in Ru,k(N), and Ru,k(N) = 1 since N is pseudo-reductive, so the
centrality follows. But we arranged that CN = 1, so N has no nontrivial unipotent
central k-subgroup. Hence, N ∩Ru,k(G) = 1, so we may replace G with G/Ru,k(G)
to make G pseudo-reductive. We need to show that N ∩ CG = 1. The proof of the
normal case in Proposition 7.1.5 yields that N ∩ CG = CN , yet we arranged that
N is of minimal type, so CN = 1.

Example 7.1.7. Let G be a pseudo-split pseudo-reductive k-group, and T a
split maximal k-torus in G. For a ∈ Φ(G,T ), let Ga := 〈Ua, U−a〉 be the smooth
connected k-subgroup generated by the ±a-root groups.

We saw in Remark 3.2.8 that Ga is pseudo-split and absolutely pseudo-simple
with 1-dimensional maximal k-torus a∨(GL1) = T ∩Ga, and that Ga is described in
terms of passage to successive k-subgroups considered in Proposition 7.1.5 (depend-
ing on whether or not a is divisible). Hence, Ga is of minimal type whenever G is of
minimal type (and its root system is {±a} when a is not a multipliable root of G,
and is {±a,±2a} otherwise). This often permits passage to the absolutely pseudo-
simple rank-1 case when proving general theorems for pseudo-reductive groups of
minimal type.

A very important feature of passage to such k-subgroups Ga is that it interacts
well with the maps iG and iGa . To explain this, the key point is that the explicit
description of Ga, depending on whether or not a is divisible, yields the equality of
group schemes

Ru((Ga)k) = (Ga)k ∩Ru(Gk)

(use [CGP, Prop. A.4.8] for non-divisible a, and [CGP, Prop. A.8.14(2)] for di-
visible a). It follows that (Ga)K ∩ Ru,K(GK) is a K-descent of Ru((Ga)k), so
the minimal field of definition Ka/k for the geometric unipotent radical of Ga is a
subextension of K/k and the restriction iG|Ga is the composition of iGa with the
inclusion of k-group schemes

RKa/k((Ga)′) ↪→ RK/k((Ga)′K) ↪→ RK/k(G′),
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where G′ := GK/Ru,K(GK) and (Ga)′ := (Ga)Ka
/Ru,Ka

((Ga)Ka
). In particular,

naturally iG(Ga) ' iGa(Ga), so Proposition 7.1.3(ii) applied to Ga implies that
iG(Ga) is pseudo-split and absolutely pseudo-simple of minimal type with minimal
field of definition Ka/k for its geometric unipotent radical and root system {±a′},
where a′ = a in the non-multipliable case and a′ = 2a in the multipliable case.

7.2. Rank-1 groups and applications. The structure theory of split con-
nected reductive groups rests on the fact that SL2 and PGL2 are the only split
connected semisimple groups of rank 1. (For example, this result is the reason that
root groups for split connected reductive groups are 1-dimensional.) Likewise, our
classification of pseudo-reductive groups will require a description of all pseudo-split
pseudo-semisimple groups of minimal type with root system A1 or BC1 (the latter
only relevant over imperfect fields of characteristic 2).

In this section we describe the A1-cases, and in §7.4 use that to define a useful
invariant called the root field. The proof of exhaustiveness of our list of groups will
use the (pseudo-split) Bruhat decomposition, in contrast with the reductive case.

Recall that in Example 7.1.4, for any purely inseparable finite extension K/k
we described all pseudo-split pseudo-simple k-subgroups of minimal type with root
system A1 and minimal field of definition K/k for the geometric unipotent radical.
This description was given in terms of certain k-subspaces V ⊂ K containing 1.
However, we did not characterize exactly which V can occur, and for any two such
V we did not determine when the associated k-groups are k-isomorphic. The most
interesting case is when k is imperfect of characteristic 2 and [k : k2] > 2, since
in all other cases it will turn out that necessarily V = K. Thus, we shall begin
by describing the rank-1 pseudo-split pseudo-simple construction in Example 7.1.4
from a broader point of view over imperfect fields of characteristic 2.

Let k be imperfect with char(k) = 2, K/k a nontrivial purely inseparable finite
extension, and V ⊂ K a nonzero kK2-subspace such that the k-subalgebra k〈V 〉
generated by the ratios v/v′ for v, v′ ∈ V − {0} coincides with K. (If [k : k2] = 2
then V = K.) Identify the root groups of RK/k(SL2) and RK/k(PGL2) relative to

their diagonal k-tori with RK/k(Ga) in the standard manner, and let V + and V −

be the k-subgroups of these root groups corresponding to V ⊂ K (with V + inside
the upper-triangular root group, and V − inside the lower-triangular root group).

Definition 7.2.1. Let HV,K/k ⊂ RK/k(SL2) be the k-subgroup generated by

V ±, and let PHV,K/k ⊂ RK/k(PGL2) be defined similarly (so there is a natural
surjection HV,K/k → PHV,K/k).

Remark 7.2.2. It is generally difficult to describe the kernel of HV,K/k �
PHV,K/k as a k-subgroup of the center RK/k(µ2) of RK/k(SL2). Examples of pairs
(K/k, V ) for which this kernel is a proper k-subgroup of RK/k(µ2) can be built over

any k satisfying [k : k2] > 16; see [CP, Rem. 3.1.5].

Proposition 7.2.3. Let L be SL2 or PGL2, and let D ⊂ L be the diago-
nal k-torus. Let H denote the corresponding k-subgroup HV,K/k or PHV,K/k of
RK/k(LK), with K = k〈V 〉.

(i) The k-group H is absolutely pseudo-simple of minimal type with root sys-
tem A1 and the minimal field of definition for its geometric unipotent radi-
cal is K/k. It contains D = GL1, and ZH(D) ⊂ RK/k(DK) = RK/k(GL1)

coincides with the k-subgroup V ∗K/k generated by the ratios v/v′ ∈ K× =
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RK/k(GL1)(k) for nonzero v, v′ ∈ V , and the D-root groups of H are equal

to V ±.
(ii) If V ′ is another nonzero kK2-subspace of K such that k〈V ′〉 = K and H ′

denotes the associated k-subgroup of RK/k(LK) then H ′ ' H if and only

if V ′ = cV for some c ∈ K×.

The notation V ∗K/k does not keep track of which of the two possibilities for L is

under consideration, but the context will always make the intended meaning clear.

Proof. The action of diag(c, 1) ∈ PGL2(K) on RK/k(LK) carries V + onto

cV + and carries V − onto c−1V
−

= cV − (equality since V is a kK2-subspace of
K). By choosing c = 1/v0 for a nonzero v0 ∈ V , we reduce the verification of the
properties of H to the cases for which 1 ∈ V . By construction H contains the k-
subgroups V ± ⊂ RK/k(Ga) that now contain Ga; these Ga’s are the D-root groups
of L. Since L is generated by such root groups, now L ⊂ H. Hence, by Proposition
7.1.3(i), H is pseudo-reductive of minimal type with L as a Levi k-subgroup and
K/k is a (not necessarily minimal) field of definition for Ru(Hk) ⊂ Hk.

It is not at all clear thatK/k is minimal as a field of definition for Ru(Hk) ⊂ Hk,

nor that H is perfect with D-root groups V ± and ZH(D) generated by the ratios
v/v′. The verification of these properties rests on explicit calculations in L(K) and
dynamic considerations with the open cell of H relative to a 1-parameter subgroup
GL1 ' D ⊂ H (Theorem 2.3.5(ii)); see [CP, Prop. 3.1.4] for the details.

Consider V ′ andH ′ as in (ii) such that there exists a k-isomorphism f : H ′ ' H.
We want to show that V ′ is aK×-multiple of V . By Theorem 4.2.9, we may compose
f with an H(k)-conjugation so that f(D) = D. The effect of f on D = GL1 is either
the identity or inversion. Proposition 4.1.3 provides an element in NH(D)(k) whose
effect on D = GL1 is inversion, so composing f with conjugation by such an element
if necessary allows us to arrange that f restricts to the identity on D. Hence, the

associated K-isomorphism f red
K : H ′

red
K ' Hred

K is identified with a K-automorphism
of LK restricting to the identity on DK . But AutK(LK) is identified with PGL2(K),
so f red

K is induced by the action of a unique diagonal matrix diag(c, 1) with c ∈ K×.
By canonicity of iH and iH′ , f is induced by RK/k(f red

K ) on RK/k(LK). Hence,
inspection of D-root groups implies that cV = V ′. �

Remark 7.2.4. The construction of H in Proposition 7.2.3 can be carried out
if the combined hypotheses that the nonzero k-subspace V ⊂ K is a kK2-subspace
and that k〈V 〉 = K are relaxed to the single weaker hypothesis that V is a nonzero
k〈V 2〉-subspace of K (where k〈V 2〉 denotes the k-subalgebra of K generated by

the ratios v2/v′
2

for nonzero v, v′ ∈ V ). The proof of Proposition 7.2.3 carries
over in this generality essentially without change, except that the minimal field of
definition over k for the geometric unipotent radical of H is k〈V 〉 (a subextension
of K/k that might not contain V in general, though certainly can be arranged to
contain V after replacing V with (1/v0)V for a nonzero v0 ∈ V ).

An advantage of this more general context for the construction of H is that it
then makes sense to consider how the formation of H interacts with Weil restriction.
This is a subtle problem because the structure (and even merely the dimension!)
of the Cartan k-subgroup ZH(D) is generally intractable. We refer the reader to
[CP, Ex. 3.1.6] for a discussion of these matters.
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Now we can complete the analysis of the possibilities for V in Example 7.1.4 by
combining the pseudo-split Bruhat decomposition over general fields and Proposi-
tion 7.2.3 over imperfect fields of characteristic 2:

Theorem 7.2.5. Let G be an absolutely pseudo-simple group over a field k, and
assume Gks has root system of rank 1. Let K/k be the minimal field of definition
for the geometric unipotent radical, and G′ = GK/Ru,K(GK).

(i) If char(k) 6= 2 or k is perfect then iG : G→ RK/k(G′) is an isomorphism.
(ii) Assume k is imperfect with characteristic 2 and G is pseudo-split. Let

L ⊂ G be a Levi k-subgroup containing a split maximal k-torus T ⊂ G, so
iG(G) is a k-subgroup of RK/k(LK) containing L. Fix a k-isomorphism
of L onto SL2 or PGL2 such that T is carried onto the diagonal k-torus
D. There exists a nonzero kK2-subspace V ⊂ K satisfying k〈V 〉 = K
such that iG(G) is equal to HV,K/k or PHV,K/k respectively.

Part (i) is [CGP, Thm. 6.1.1], and the proof we give (via arguments in [CP,
§3.1]) is a significant simplification in technique due to using Levi k-subgroups and
the Bruhat decomposition (in the pseudo-split case).

Proof. The case of perfect k in (i) is trivial, so when we consider (i) below we
will always assume char(k) 6= 2 (so the root system is A1 since it is reduced in such
cases). Since V in (ii) is clearly unique if it exists (by inspection of D-root groups
in iG(G)), for the entire proof we may assume k = ks. Hence, we are in the pseudo-
split situation as considered in Example 7.1.4; we let T be a split maximal k-torus
of G and L ⊂ G a Levi k-subgroup containing T (provided by Theorem 5.4.4). By
Proposition 7.1.3, the quotient iG(G) is pseudo-reductive of minimal type with the
same minimal field of definition K/k for its geometric unipotent radical, and as
a k-subgroup of RK/k(LK) containing L its inclusion into RK/k(LK) is identified
with iiG(G). Hence, to prove (ii) we may replace G with iG(G) so that G is of
minimal type with root system A1 (rather than BC1).

Let us show that for the proof of (i) it is also harmless to replace G with iG(G).
By Proposition 6.2.17, if (i) is settled for iG(G) then in general any such G is at
least standard. Being absolutely pseudo-simple, it would follow from 6.2.8 that
G ' RK/k(SL2)/Z for a closed k-subgroup Z ⊂ RK/k(µ2). But µ2 is finite étale
since char(k) 6= 2 in (i), so since K/k is purely inseparable it follows that RK/k(µ2)
is finite étale. Thus, the natural map µ2 → RK/k(µ2) is an isomorphism by com-
parison of k-points (recall k = ks). It follows that the only possibilities for Z would
be Z = 1 and Z = RK/k(µ2), in which case G ' RK/k(SL2) and G ' RK/k(PGL2)
respectively (as RK/k is compatible with the formation of quotients modulo smooth
closed subgroups [CGP, Cor. A.5.4(3)]). The isomorphism property for iG in such
cases is then part of Example 6.2.5.

For the rest of the argument, now we may assume G is also of minimal type,
so the analysis in Example 7.1.4 is applicable, giving that G is identified with the
k-subgroup of RK/k(LK) generated by V ± for a k-subspace V ⊂ K containing 1.
It has to be shown that if char(k) 6= 2 then V = K and that if char(k) = 2 then
k〈V 〉 = K and V is a kK2-subspace of K.

In fact, it suffices in all characteristics to prove that v2 · V ⊂ V for all v ∈ V .
Indeed, granting this we see that (1 + v)2 · v′, v2 · v′ ∈ V for all v, v′ ∈ V , so
vv′ ∈ V when char(k) 6= 2. Thus, now assuming char(k) 6= 2, V is a k-subalgebra
of K; equivalently, V is a field F between k and K. But then G coincides with
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the k-subgroup RF/k(LF ) inside RK/k(LK) because RF/k(LF ) is generated by its
root groups relative to the diagonal k-torus D (due to perfectness of RF/k(LF ) for
both possibilities for L when char(k) 6= 2). The equality G = RF/k(LF ) forces the
inclusion F ⊂ K over k to be an equality by Example 6.2.1.

Suppose instead that char(k) = 2, and continue to assume that v2 ·V ⊂ V for all
v ∈ V . Hence, V is a submodule of K over the k-algebra k[V 2] generated by squares
of elements in V . Since k[V 2] must be a field and 1 ∈ V , clearly k[V 2] = k〈V 2〉. We
are therefore in precisely the situation addressed in Remark 7.2.4, so the k-groups
HV,K/k and PHV,K/k make sense and respectively coincide with G depending on
whether L is equal to SL2 or PGL2, and k〈V 〉 is the minimal field of definition over
k for its geometric unipotent radical. This forces k〈V 〉 = K, so V is a kK2-subspace
of K.

Finally, it remains to show in every characteristic that v2 · v′ ∈ V for all
v, v′ ∈ V with v 6= 0. Since the D-root groups of G coincide with V ±, so G(k)
meets the strictly upper-triangular subgroup of L(K) in precisely the points of
V +(k) = V ⊂ K, it suffices to show that diag(v, 1/v) ∈ G(k) (understood to
mean that this element of SL2(K) maps to an element of G(k) ⊂ PGL2(K) when
L = PGL2) since (

v 0
0 1/v

)(
1 v′

0 1

)(
1/v 0
0 v

)
=

(
1 v2v′

0 1

)
.

It remains to find a mechanism to discover diag(v, 1/v) inside G(k).
Define the elements u+(x) = ( 1 x

0 1 ) and u−(x) = ( 1 0
x 1 ) inside L(K) for x ∈ K.

The key idea is to determine the Bruhat decomposition of u+(v) in

(7.2.5.1) G(k) = (V −(k)nP (k))
∐

P (k)

relative to the minimal pseudo-parabolic k-subgroup P := ZG(D) n V − for any
v ∈ V − {0}, where n = ( 0 1

−1 0 ) ∈ NL(D)(k) − D(k) ⊂ NG(D)(k) − ZG(D)(k).
Since v 6= 0, clearly u+(v) 6∈ P (k). Hence, u+(v) lies in the first constituent of
the decomposition (7.2.5.1). In other words, there exist unique v′, v′′ ∈ V and
z ∈ ZG(D)(k) ⊂ D(K) such that

(7.2.5.2) u+(v) = u−(v′)znu−(v′′).

All terms in (7.2.5.2) aside from z naturally arise from SL2(K). The diagonal
subgroup of SL2(K) is the full preimage of the diagonal subgroup of PGL2(K), so
if L = PGL2 then there is a unique t ∈ K× such that replacing z with diag(t, 1/t)
in (7.2.5.2) yields an identity in SL2(K). Likewise, if L = SL2 then z = diag(t, 1/t)
for a unique t ∈ K×. Elementary calculations in SL2(K) now imply that v = t, so
if L = SL2 then diag(v, 1/v) = z ∈ G(k) whereas if L = PGL2 then diag(v, 1/v)
represents z ∈ G(k) ⊂ L(K). �

The good properties of iG(G) in Proposition 7.1.3(ii) and of Ga’s in Example
7.1.7 now yield a consequence of Theorem 7.2.5 that will be crucial in the proofs of
later classification results:

Proposition 7.2.6. Let G be a pseudo-split pseudo-reductive k-group with a
split maximal k-torus T and minimal field of definition K/k for its geometric unipo-
tent radical. For each a ∈ Φ(G,T ), let Ka/k be the analogous subextension defined
similarly for the pseudo-split absolutely pseudo-simple k-group Ga := 〈Ua, U−a〉.
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(i) The k-group iG(Ga) is isomorphic to RKa/k(SL2) or RKa/k(PGL2) if k is
perfect or char(k) 6= 2, and if k is imperfect of characteristic 2 then iG(Ga)
is isomorphic to HVa,Ka/k or PHVa,Ka/k for a nonzero kK2

a-subspace Va ⊂
Ka satisfying k〈Va〉 = Ka; such Va is unique up to K×a -scaling.

(ii) If G is perfect then K is generated over k by its subfields Ka for non-
divisible a ∈ Φ(G,T ).

Proof. We just need to explain (ii), for which we first introduce some notation.
Let Φ = Φ(G,T ), and for each a ∈ Φ define a′ = a when a is non-multipliable and
a′ = 2a when a is multipliable. Let Φnd denote the set of non-divisible roots.

By Proposition 3.1.4, G is generated by its k-subgroups {Ga}a∈Φnd
since Ua ⊂

Ua/2 when a is divisible, so iG(G) is generated by its k-subgroups iG(Ga) for non-
divisible a. Letting L ⊂ G be a Levi k-subgroup containing T (Theorem 5.4.4), the
k-group iG(G) lies between RK/k(LK) and L. Since Φ(L, T ) is identified with the
set of non-multipliable roots in Φ, a 7→ a′ is a bijection from Φnd onto Φ(L, T ).

Consider the subfield K ′ ⊂ K generated by the Ka’s for non-divisible a, so
inside RK/k(LK) we have

iG(Ga) = iGa(Ga) ⊂ RKa/k((La′)Ka
) ⊂ RK′/k((La′)K′) ⊂ RK′/k(LK′)

for all such a. Hence, iG(G) lies between RK′/k(LK′) and L. By Proposition 7.1.3(i)
it follows that K ′/k is a field of definition for the geometric unipotent radical of
iG(G), yet by Proposition 7.1.3(ii) the minimal such extension is K/k! Hence, the
inclusion K ′ ⊂ K over k is an equality. �

Corollary 7.2.7. If the Cartan subgroups of a pseudo-reductive group G over
a field k are tori and k is not imperfect of characteristic 2 then G is reductive.

Theorem 7.3.3 lists all non-reductive pseudo-reductive groups over an imperfect
field of characteristic 2 whose Cartan subgroups are tori.

Proof. Without loss of generality we may and do assume k = ks. Let T
be a maximal k-torus in G, so T is split. By Proposition 2.1.1(ii) we have G =
ZG(T ) ·D(G), and by [CGP, Lemma 1.2.5(ii)] we have T = Z ·T ′ for the maximal
central k-torus Z ⊂ G and maximal k-torus T ′ := T ∩ D(G) in D(G). Hence, we
may replace G with D(G) so that G is perfect. Letting K/k and Ka/k respectively
denote the minimal fields of definition for the geometric unipotent radicals of G
and Ga for any a ∈ Φ(G,T ), our task is to show that K = k. By Proposition 7.2.6,
it suffices to show that Ka = k for each a.

Since Ga = D(ZG(Ta)) for the codimension-1 subtorus Ta ⊂ T contained in
the kernel of a, and Ta is an isogeny complement to a∨(GL1) ⊂ Ga, it is clear that
the Cartan k-subgroups of Ga are tori. Thus, we may assume G has rank 1. By
Theorem 7.2.5(i), G is isomorphic to RK/k(SL2) or RK/k(PGL2). These each admit
RK/k(GL1) as a Cartan k-subgroup, so RK/k(GL1) is a torus. But K/k is purely
inseparable, so K = k. �

The following consequence of Proposition 7.2.6 will permit some classification
proofs to be reduced to the rank-1 case.

Proposition 7.2.8. A pseudo-split pseudo-semisimple k-group G of minimal
type with a reduced root system and split maximal k-torus T is determined up
to k-isomorphism by the isomorphism classes of Gred

k
and of the k-groups Ga :=

〈Ua, U−a〉 for all a ∈ Φ := Φ(G,T ).
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Proof. By Theorem 5.4.4, we may choose a Levi k-subgroup L ⊂ G containing
T ; the k-group L is uniquely determined up to k-isomorphism as a split k-descent of
Gred
k

(due to the Existence and Isomorphism Theorems for split connected semisim-

ple k-groups). Let K/k be the minimal field of definition for Ru(Gk) ⊂ Gk. Since
G is of minimal type and has a reduced root system, so ker iG = 1 by Proposition
6.2.15, we may and do identify G with a k-subgroup of RK/k(LK) containing L.

For a ∈ Φ, let Ka/k be the minimal field of definition over k for the geometric
unipotent radical of Ga. If k is not imperfect of characteristic 2 then for each a ∈ Φ
we have Ga = RKa/k((La)Ka

) inside RK/k((La)K) by Proposition 7.2.6(i), so G is
uniquely determined inside RK/k(LK) in such cases because the Ga’s generate G
(by Proposition 3.1.4, since G is perfect).

Now suppose k is imperfect of characteristic 2. By Proposition 7.2.6(i), for
each a ∈ Φ(G,T ) there is a nonzero kK2

a-subspace Va ⊂ Ka, unique up to K×a -
scaling, such that k〈Va〉 = Ka and Ga is equal to HVa,Ka/k or PHVa,Ka/k inside
RKa/k((La)Ka

) (depending on whether La is equal to SL2 or PGL2 respectively).

Since Va is only unique up to K×a -scaling and not generally unique as a k-subspace
of Ka, we require further arguments to justify that G is uniquely determined up
to k-isomorphism by L and the k-isomorphism class of each Ga (equivalently, the
K×a -homothety class of Va for each a ∈ Φ). For a basis ∆ of Φ, the equality
NL(T )(k)/T (k) = W (Φ) implies that G is generated by L and {Ga}a∈∆. In fact,
G is generated by {Ga}a∈∆ since L is generated by its k-subgroups La ⊂ Ga for
a ∈ ∆.

Suppose G is another such k-group so that its root system is identified with Φ
in such a manner that Ga ' Ga for all a ∈ Φ and G red

k
' Gred

k
= Lk. Hence, G

admits L as a Levi k-subgroup and the minimal field of definition for its geometric
unipotent radical is also K/k due to Proposition 7.2.6(ii). Thus, G is a k-subgroup
of RK/k(LK) containing L, so G is generated by {Ga}a∈∆. For each a ∈ Φ we
have Ga ' Ga by design, and the k-subgroup Ga ⊂ RKa/k((La)Ka) arises from the

kK2
a-subspace λaVa ⊂ Ka for some λa ∈ K×a . It is therefore sufficient to find

t0 ∈ (T/ZL)(K) = RK/k((T/ZL)K)(k)

whose action on RK/k(LK) carries Ga onto Ga for each a ∈ ∆. But T/ZL ' GL∆
1

via t 7→ (a(t))a∈∆, so the unique t0 corresponding to (λa) ∈ (K×)∆ = (T/ZL)(K)
does the job. �

7.3. A non-standard construction. Among non-standard pseudo-reductive
groups, it is the absolutely pseudo-simple groups that are the most interesting.
Since ultimately it turns out that standardness can only fail in characteristics 2
and 3, any construction of a non-standard pseudo-reductive group must use features
specific to these small positive characteristics.

Recall from Proposition 6.1.4 that the formation of the root system and root
groups of a pseudo-split pseudo-reductive group is unaffected by passage to a central
pseudo-reductive quotient. Thus, by Example 3.1.3 and the reducedness of root
systems for connected reductive groups, for any standard pseudo-reductive k-group
the root system over ks is reduced and the root groups for roots in a common
irreducible component of the root system have the same dimension. In particular,
an absolutely pseudo-simple k-group whose root groups over ks do not all have the
same dimension cannot be standard.
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Reducedness of the root system can only fail over imperfect fields of character-
istic 2 (Theorem 3.1.7), so non-reducedness of the root system over ks can be an
obstruction to standardness only over such fields. In fact, over every imperfect field
k of characteristic 2 there do exist pseudo-split absolutely pseudo-simple k-groups
with root system BCn for any desired n > 1. The construction of such groups is
quite hard; we will discuss it in §8.

To give the reader a flavor of non-standardness at the present stage we now
give a different construction of non-standard absolutely pseudo-simple groups that
is specific to characteristic 2, realizing variation in dimension of the root groups as
an obstruction to standardness. This construction has the virtue that it also solves
a natural problem over any field, having nothing to do with standardness: find all
non-reductive pseudo-reductive groups whose Cartan subgroups are tori.

Let (V, q) be a quadratic space with dimension d > 0 over a field k of char-
acteristic 2. The symmetric bilinear form Bq(v, v

′) = q(v + v′) − q(v) − q(v′) is
alternating since char(k) = 2. Assume q 6= 0. The defect space V ⊥ is the set of
v ∈ V that satisfy Bq(v, ·) = 0, so Bq induces a (non-degenerate) symplectic form

Bq on V/V ⊥. In particular, dim(V/V ⊥) is even. Note that q : V ⊥ → k is additive.
Let Q be the projective quadric hypersurface (q = 0). As is explained at the

beginning of [CP, §7.1], the quadric Q is regular (equivalently smooth) at its k-
points if and only if q|V ⊥ is injective, and this property is preserved under separable
extension on k; we say q is regular in such cases. The smoothness of Q for even d
is exactly the condition that V ⊥ = 0 whereas smoothness of Q for odd d is exactly
the condition that V ⊥ is a line. If Q is smooth and d > 3 then when d = 2m is even
the group scheme O(q) is an extension of Z/2Z by a connected semisimple group
SO(q) of type Dm whereas when d = 2m + 1 is odd the group scheme O(q) is the
direct product of µ2 and a connected absolutely simple group of adjoint type Bm.

Now assume 0 < dimV ⊥ < dimV =: d, so dim(V/V ⊥) = 2n for some integer
n > 0 and hence d > 2n + 1 > 3. In these cases Q is smooth precisely when
dimV ⊥ = 1. We make the weaker hypothesis that q is regular. In concrete terms,
this says

q = c1x
2
1 + · · ·+ cd−2nx

2
d−2n + q0(xd−2n+1, . . . , xd)

where q0 is non-degenerate in 2n variables and {c1, . . . , cd−2n} is k2-linearly inde-
pendent. In particular, the case dimV ⊥ > 1 occurs over k if and only if [k : k2] > 2.

If dimV ⊥ = 1 then it is well-known that SO(q) concides with the maximal
smooth closed k-subgroup O(q)sm of O(q). Hence, when dimV ⊥ > 1 we are moti-
vated to make the definition

SO(q) := O(q)sm.

(See §1.3 for references on the existence and uniqueness of a maximal smooth closed
subgroup scheme Hsm of any group scheme H of finite type over a field and its
relationship with the underlying reduced scheme Hred.) Note that SO(q) = SO(cq)
for any c ∈ k×, so there is generally no harm in assuming that 1 ∈ q(V ⊥) (as is
sometimes convenient in calculations).

Arguments in [CP, 7.1.2–7.1.3] establish several results that we now review
(recovering well-known properties of SO2m+1 when dimV ⊥ = 1). Regularity of
qks ensures that the kernel of πq : SO(q) = O(q)sm → Sp(Bq) has no nontrivial
ks-points, and inspection of q in suitable coordinates shows that πq is surjective,
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so it follows that SO(q) has no nontrivial smooth connected unipotent normal k-
subgroup. This doesn’t immediately imply that SO(q) is pseudo-reductive since it
isn’t evident if SO(q) is connected! (Recall that we are now assuming dimV ⊥ > 0.)

Proposition 7.3.1. Consider regular (V, q) satisfying 0 < dimV ⊥ < dimV ,
and write 2n = dim(V/V ⊥). The k-group SO(q) is absolutely pseudo-simple with
trivial center and root system over ks of type Bn, and its Cartan k-subgroups are
tori. Over ks the long root groups have dimension 1 whereas the short root groups
have dimension dimV ⊥ (with both roots understood to be short when n = 1).

The minimal field of definition over k for the geometric unipotent radical of
SO(q) is the subfield K ⊂ k1/2 generated over k by {

√
q(v)/q(v′)}v,v′∈V ⊥−{0}.

The universal smooth k-tame central extension of SO(q) is denoted Spin(q);
it coincides with the usual spin group when dimV ⊥ = 1. This k-group inherits
absolute pseudo-simplicity from SO(q) (use Proposition 3.2.2).

Assume dimV ⊥ > 1, so k is imperfect and SO(q) is not reductive (as its
short root groups over ks have dimension dimV ⊥). If n > 1 then the presence of
root groups over ks with unequal dimensions (1 for long roots, dimV ⊥ for short
roots) implies that the non-reductive absolutely pseudo-simple k-group SO(q) is
not standard (so Spin(q) is not standard, by the characterization in 6.2.8).

Remark 7.3.2. Assume n = 1 (and dimV ⊥ > 1). By varying such (V, q),
when [k : k2] > 2 the non-reductive absolutely pseudo-simple k-group SO(q) can
be arranged to be either standard or not standard (depending on q) whereas if
[k : k2] = 2 then SO(q) is always standard. We now establish an interesting
characterization of standardness when n = 1: it is equivalent that the k-subspace
q(V ⊥)1/2 ⊂ K with dimension dimV ⊥ > 2 is a line over a subfield of K strictly
containing k (a property that we can arrange to either hold or fail via suitable
choice of (V, q) if [k : k2] > 2, whereas if [k : k2] = 2 then it cannot ever fail since
K = k1/2 is 2-dimensional over k in such cases).

To prove this characterization we may extend scalars to ks, and we may replace
q with a k×-multiple so that 1 ∈ q(V ⊥). Use q1/2|V ⊥ to identify V ⊥ with a k-
subspace of K strictly containing k, and identify Ga with each root group U± of
SO(q)red

K = PGL2 relative to the diagonal K-torus via the usual parameterization.

Since k ⊂ q(V ⊥)1/2, the k-subspace q(V ⊥)1/2 of K is a line over a subfield of K
containing k if and only if q(V ⊥)1/2 is itself a subfield of K (larger than k).

It is shown in the proof of [CP, Prop. 7.2.5] (using [CP, 3.1.3–3.1.4]) that
SO(q) is the k-subgroup of RK/k(PGL2) between PGL2 and RK/k(PGL2) generated

by the k-subgroups of RK/k(U±K) = RK/k(Ga) corresponding to the k-subspace

q(V ⊥)1/2 ⊂ K strictly containing k. By [CP, Prop. 3.1.8(ii)], this k-subgroup of
RK/k(PGL2) is standard if and only if q(V ⊥)1/2 is a field F ⊂ K (in which case
q|V ⊥ is identified with the squaring inclusion F → k), as desired.

The non-reductive centerless k-group SO(q) has k-automorphisms not arising
from SO(q)(k)-conjugation, in contrast with the well-known adjoint absolutely sim-
ple case for type B when dimV ⊥ = 1. Nonetheless, all elements of Autk(SO(q))
arise from a suitable notion of “conformal isometry”; see [CP, Prop. 7.2.2(i)].

Remarkably, the SO(q)-construction with regular degenerate quadratic spaces
(V, q) satisfying V ⊥ 6= V underlies all non-reductive pseudo-reductive groups whose
Cartan subgroups are tori. This is made precise in [CP, Prop. 7.3.7]:
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Theorem 7.3.3. Let k be a field. There exist non-reductive pseudo-reductive k-
groups whose Cartan subgroups are tori if and only if k is imperfect of characteristic
2. For such k, these k-groups are precisely H × Rk′/k(G′) where H is a connected
reductive k-group, k′ is a nonzero finite étale k-algebra, and G′ is a smooth affine
k′-group whose fiber G′i over each factor field k′i of k′ is a descent of SO(q′i) for a

regular degenerate quadratic space (V ′i , q
′
i) over k′i,s satisfying V ′

⊥
i 6= V ′i .

The proof of Theorem 7.3.3 requires a detailed understanding of the structure
of pseudo-split pseudo-reductive groups with a non-reduced root system; see §8.1
(such groups can only exist over imperfect fields with characteristic 2, by Theorem
3.1.7). This hard input ensures that the root system over ks of every non-reductive
pseudo-reductive k-group whose Cartan subgroups are tori is reduced.

7.4. Root fields and standardness. A further application of the pseudo-
split rank-1 classification in Theorem 7.2.5 concerns an auxiliary field that arises in
the description of automorphisms. For pseudo-semisimple k-groups G, these auxil-
iary fields underlie the possible failure of G/ZG to exhaust the identity component
of the maximal smooth closed k-subgroup of the automorphism scheme AutG/k.
This is best understood with some examples:

Example 7.4.1. Let K/k be a nontrivial purely inseparable finite extension
in characteristic p > 0, and let G′ be a nontrivial connected semisimple K-group
that is simply connected, with T ′ ⊂ G′ a maximal K-torus. Let G = RK/k(G′).
As a special case of our discussion of automorphism functors of pseudo-semisimple
groups to be given in §9.1, the automorphism functor AutG/k is represented by an

affine k-group scheme AutG/k of finite type [CP, Prop. 6.2.2].
In contrast with the semisimple case, AutG/k is never smooth [CP, Ex. 6.2.3].

For the study of Galois-twisted forms and local-global principles, it is the maximal
smooth closed k-subgroup Autsm

G/k that matters. Using the action of G′/ZG′ on G′,
we can form the standard pseudo-reductive k-group

G := (Go RK/k(T ′/ZG′))/RK/k(T ′),

and the evident k-subgroup inclusion G ↪→ AutG/k has image (Autsm
G/k)0 due to

[CP, Prop. 6.3.4(i), Prop. 6.2.4, Lemma 6.1.3].
Clearly D(G ) is the image G/ZG of G, and the commutative quotient

G /(G/ZG) = coker(RK/k(T ′) −→ RK/k(T ′/ZG′))

is a smooth connected unipotent k-group with dimension dim RK/k(ZG′). In par-

ticular, (Autsm
G/k)0 is larger than G/ZG precisely when ZG′ is not K-étale.

Example 7.4.2. Let K/k be a nontrivial finite extension in characteristic 2,
and let V be a nonzero kK2-subspace of K satisfying k〈V 〉 = K. Let

F = {λ ∈ K |λV ⊂ V };
this is a kK2-subalgebra of K, hence a field, and it is the largest subfield of K
over which V is a subspace. We will be most interested in the cases with F strictly
between kK2 and K, so since k〈V 〉 = K we see that in such cases [K : F ] > 4 and
[F : kK2] > 2.

Consider the absolutely pseudo-simple k-group H := HV,K/k ⊂ RK/k(SL2).

Using the natural action of PGL2 on SL2, for the diagonal k-torus GL1 = D ⊂
PGL2 (via t 7→ diag(t, 1)) we see the RK/k(DK)-action on RK/k(SL2) preserves the
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standard root groups U± = RK/k(Ga) ⊂ RK/k(SL2) via the scaling t.x = t±1x.

Hence, by definition of F , the action of RF/k(DF ) on RK/k(SL2) preserves the

k-groups V ± ⊂ U± (corresponding to V ⊂ K) that generate H by definition.
For the diagonal k-torus D ⊂ SL2, the natural map D → D corresponds to

squaring on GL1. Thus, the Cartan k-subgroup V ∗K/k = ZH(D) (generated by

ratios v/v′ for nonzero v, v′ ∈ V , due to Proposition 7.2.3(i)) is carried into the
k-subgroup RF/k(DF ) ⊂ RK/k(DK) since K2 ⊂ F by hypothesis. Consider the
resulting central quotient

H := (H o RF/k(DF ))/V ∗K/k

(using the anti-diagonal inclusion). This is pseudo-reductive by Proposition 2.2.1,
and it is naturally a subgroup of the automorphism functor AutH/k.

By the same results from [CP, Ch. 6] as used in Example 7.4.1, AutH/k is

represented by an affine k-group scheme AutH/k of finite type and H = Autsm
H/k.

Hence, Autsm
H/k is pseudo-reductive with derived group equal to the image H/ZH of

H, and its quotient by this derived group is the unipotent k-group RF/k(GL1)/GL1;
this is nontrivial precisely when F 6= k.

Consider an absolutely pseudo-simple k-group G such that Gks has a reduced
root system, and let K/k be the minimal field of definition for its geometric unipo-
tent radical, so for G′ := GK/Ru,K(GK) the natural map iG : G → RK/k(G′) has
kernel that is central (Proposition 6.2.15). Hence, for any maximal k-torus T ⊂ G
we have

ker(Lie(iG)) = Lie(ker iG) ⊂ Lie(ZG(T )) = gT

for g := Lie(G). The complete reducibility of finite-dimensional linear representa-
tions of T provides a unique T -equivariant linear complement g(T ) to gT in g, and
the map

Lie(iG) : g(T ) −→ Lie(RK/k(G′)) = Lie(G′)

is injective. Hence, the following definition makes sense:

Definition 7.4.3. The root field F ⊂ K is the subextension of K/k consisting
of those λ ∈ K such that multiplication by λ on Lie(G′) carries g(T ) into itself.

If we use the more precise notation FT for the root field, indicating the possible
dependence on T , then it is clear that the formation of FT is compatible with
separable extension on k. Hence, we can use the G(ks)-conjugacy of maximal ks-
tori in Gks to deduce that FT is independent of T .

Example 7.4.4. Assume G as above is pseudo-split of minimal type with root
system A1, and let L be a Levi k-subgroup of G. By Theorem 7.2.5(i), if k is not
imperfect of characteristic 2 then G = RK/k(LK), so clearly F = K in such cases. If
k is imperfect of characteristic 2 then (by Theorem 7.2.5(ii) and Proposition 6.2.15)
G is equal to HV,K/k or PHV,K/k for some nonzero kK2-subspace V ⊂ K satisfying
k〈V 〉 = K. In such cases F is as described in terms of V in Example 7.4.2.

If G as above with arbitrary rank has a split maximal k-torus T , so Φ :=
Φ(G,T ) is reduced, then the root field F ⊂ K of G is determined by the root fields
Fa ⊂ Ka ⊂ K of the k-groups Ga := 〈Ua, U−a〉 for all a ∈ Φ via the formula F =⋂
a∈Φ Fa that is immediate from the direct product structure of an open cell and the

compatibility of iG|Ga
and iGa

(as discussed in Example 7.1.7). The computation
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of root fields may always be reduced to the case of the central quotient iG(G) of
minimal type because the formation of root fields is unaffected by passage to pseudo-
reductive central quotients when the root system is reduced [CP, Rem. 3.3.3].

One reason for interest in root fields is that they detect the presence of a Weil
restriction in the description of G, at least when G is of minimal type. This is
made precise by the following result involving maximal pseudo-reductive quotients
of minimal type (as in Example 7.1.6):

Proposition 7.4.5. If G is an absolutely pseudo-simple k-group of minimal
type and Gks has a reduced root system then for the root field F/k the natural map

G→ D(RF/k(Gprmt
F )) is an isomorphism.

This is a special case of [CP, Prop. 3.3.6], and is proved by computations with
a Levi ks-subgroup and the type-A1 descriptions in Example 7.4.4. Proposition
7.4.5 allows one to reduce some general problems for G of minimal type over k to
the study of Gprmt

F over F , and the latter also has root field F (as may be deduced
from the rank-1 cases in Example 7.4.4). In other words, for some purposes we can
arrange that the root field is equal to the ground field.

For a maximal k-torus T ⊂ G and the irreducible and reduced root system
Φ = Φ(Gks , Tks), the root field Fa ⊂ Ks of (Gks)a for a root a ∈ Φ only depends
on a through its W (Φ)-orbit since W (Φ) = NG(T )(ks)/ZG(T )(ks). But W (Φ) acts
transitively on the set of roots with a given length (since Φ is irreducible), so in the
simply laced case the subfields Fa ⊂ Ks all coincide and hence they are all equal
to the root field

⋂
a∈Φ Fa = Fs of Gks .

Likewise, if Φ has two distinct root lengths then Fa depends on a only through
its length, so by Galois descent the subfields Fa ⊂ Ks = K⊗k ks over ks arise from
corresponding subfields F>, F< ⊂ K over k for long and short roots respectively.
We call F> the long root field and call F< the short root field, so F> ∩ F< = F . In
the simply laced case it is convenient to use the definitions F< := F and F> := F .

Example 7.4.6. Let k be an imperfect field of characteristic 2 and let (V, q) be
a finite-dimensional regular quadratic space over k such that 0 < dimV ⊥ < dimV
(so q is degenerate precisely when dimV ⊥ > 1). Let K ⊂ k1/2 be the finite

extension of k generated by the ratios
√
q(v)/q(v′) for nonzero v, v′ ∈ V ⊥. In §7.3

we introduced the class of absolutely pseudo-simple k-groups SO(q) with trivial
center and root system Bn over ks, where dim(V/V ⊥) = 2n for an integer n > 1.

By [CP, Ex. 7.1.8], the short root field F< of SO(q) consists of precisely those
λ ∈ K such that λ-scaling preserves the k-subspace

{
√
q(v)/q(v0) | v ∈ V ⊥} ⊂ K

for a fixed v0 ∈ V ⊥−{0} (the choice of which does not matter, as replacing v0 with

v′0 ∈ V ⊥ − {0} simply multiplies this k-subspace by
√
q(v0)/q(v′0) ∈ K×). If q is

non-degenerate then clearly F< = K = k.
Nontriviality of the extension F</k has concrete meaning in terms of (V, q), as

follows. Let CO(q) denote the maximal smooth k-subgroup of the group scheme
of conformal isometries of (V, q) (the functor of pairs (L, µ) consisting of a linear
automorphism L of V and a unit µ such that q ◦L = µ · q). Since ZSO(q) = 1, there
is an evident inclusion of k-groups j : GL1× SO(q) ↪→ CO(q) (well-known to be an
equality when q is non-degenerate). In general there is a canonical isomorphism

CO(q)/SO(q) ' RF</k(GL1)
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by [CP, (7.2.1.2)ff., Prop. 7.2.2(ii)], so CO(q) is connected and by dimension reasons
we see that F< is larger than k precisely when j is not an equality.

For absolutely pseudo-simple k-groups G with a reduced root system over ks,
it is always the case that F = F>. More generally, beyond the rank-1 case (Ex-
ample 7.4.4) applied to the central quotient iG(G) of minimal type described in
Theorem 7.2.5, the relationships among root fields and minimal fields of definition
of geometric unipotent radicals are as follows:

Theorem 7.4.7. Consider a pseudo-split absolutely pseudo-simple group G over
a field k that is imperfect with characteristic p > 0, and let T ⊂ G be a split
maximal k-torus. Assume n := dimT > 2 and that the rank-n irreducible root
system Φ := Φ(G,T ) is reduced. Let F,K respectively denote the root field for G
and the minimal field of definition over k for Ru(Gk) ⊂ Gk, and define Fa,Ka

similarly for Ga := 〈Ua, U−a〉 for each a ∈ Φ.

(i) If Φ has no edge of multiplicity p in its Dynkin diagram then Fa = F =
K = Ka for all a ∈ Φ.

(ii) Assume Φ has an edge of multiplicity p in its diagram, so p ∈ {2, 3} and
Φ has two root lengths; denote by K< (resp.K>) the subfield Ka ⊂ K for
a ∈ Φ that is short (resp. long). Then

kKp ⊂ K> ⊂ K< = K,

and if p = 3 then F> = K> and F< = K<.
(iii) Assume Φ has an edge of multiplicity p = 2. Then

kK2 ⊂ F = F> ⊂ K> ⊂ F< ⊂ K< = K,

and for types F4 or Bn with n > 3 we have F> = K> whereas for types
F4 or Cn with n > 3 we have F< = K.

In (iii) no assertion is made for type B2 = C2. It can happen in such cases that
Fa 6= Ka for all roots a; i.e., the nonzero kK2

a-subspace Va ⊂ Ka classifying Ga can
be a proper subspace for all roots a (this is discussed in Remark 10.1.8).

We now sketch a few points in the proof of Theorem 7.4.7, referring to [CP,
Thm. 3.3.8] for the details. The formation of K/k is unaffected by passage to a
central pseudo-reductive quotient (Proposition 6.2.2), and likewise for root fields
[CP, Rem. 3.3.3], so by replacing G with its universal smooth k-tame central ex-
tension we may assume the connected semisimple group Gred

k
is simply connected.

Since iG(G) is a central quotient of G (as Φ is reduced) and is of minimal type
with the same maximal geometric reductive quotient as G, and moreover iG|Ga is
compatible with iGa

in the sense of Example 7.1.7, we may replace G with iG(G)
to reduce to the case that G is also of minimal type.

A Levi k-subgroup L ⊂ G containing T exists by Theorem 5.4.4, and it is
simply connected since Lk ' Gred

k
. (In [CP, §3.3] the passage to simply connected

L is done via a more explicit procedure involving root groups because the universal
smooth k-tame central extension built and studied in §6.2 is not provided until later
in [CP]. However, its development can be carried out earlier, as we have done in
this survey.)

The k-group G lies between L and RK/k(LK) because G is of minimal type.
For a ∈ Φ, the k-group Ga = 〈U−a, Ua〉 lies between La and RKa/k((La)Ka

). Upon
choosing a basis ∆ for Φ, the effect of conjugation by ZGa

(T ∩Ga) = Ga ∩ ZG(T )
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on the b-root group Ub ⊂ G for adjacent a, b ∈ ∆ can be described by computing
inside RK/k(LK). Combining this description with the list of possibilities for Ga
given in Theorem 7.2.5 yields all of the asserted relations among fields (since the
group NL(T )(k)/T (k) = W (Φ) acts transitively on the set of roots with a fixed
length due to the irreducibility of Φ). This completes our sketch of the proof of
Theorem 7.4.7.

The control of root fields in Theorem 7.4.7 underlies the proof of our first major
classification result:

Theorem 7.4.8. An absolutely pseudo-simple k-group G is standard except
possibly when k is imperfect with p := char(k) ∈ {2, 3} and the root system Φ of
Gks satisfies one of the following conditions: (i) its Dynkin diagram has an edge of
multiplicity p, (ii) it is non-reduced (as can only happen when p = 2), or (iii) it is
of type A1 with p = 2.

Before we prove Theorem 7.4.8, we note that this result is the absolutely pseudo-
simple case of [CGP, Cor. 6.3.5, Prop. 6.3.6], as well as of [CP, Thm. 3.4.2], and
the proof we give below is simpler. In Corollary 10.2.14 we remove the absolute
pseudo-simplicity hypothesis.

Proof. By Proposition 6.2.14 we may assume k = ks, so G is pseudo-split. We
may also certainly assume Φ is reduced. The rank-1 case away from imperfect fields
of characteristic 2 is settled by Theorem 7.2.5, so we may also assume that Φ has
rank n > 2. Finally, we can assume k is imperfect (as otherwise our task is trivial)
and that the diagram of Φ does not have an edge of multiplicity p := char(k) > 0.

Since Φ is reduced, by Proposition 6.2.17 it suffices to prove that ξG is surjective.
We may choose a Levi k-subgroup L ⊂ G since k = ks, so the target of ξG is
naturally identified with D(RK/k(LK)). This derived group is generated by its
root groups relative to a split maximal k-torus of L (Proposition 3.1.4), and these
root groups coincide with the root groups of RK/k(LK).

Since Ka = K for all a ∈ Φ by Theorem 7.4.7(i), by the compatibility of iG|Ga

and iGa
for a ∈ Φ it suffices to check that the inclusion iGa

(Ga) ⊂ D(RK/k((La)K))
is an equality for each a ∈ Φ. By Proposition 7.2.6 we are done if p 6= 2 by
comparing dimensions of root groups relative to a∨(GL1). The case p = 2 is settled
since Va = K due to the equality Fa = K (again see Theorem 7.4.7(i)). �

7.5. Basic exotic constructions. We have encountered two classes of non-
standard pseudo-reductive groups, both over imperfect fields k of characteristic 2:
the SO(q)-construction for regular degenerate quadratic spaces (V, q) over k in §7.3
(to be discussed more fully in §10.1), and the groups HV,K/k and PHV,K/k intro-
duced in Definition 7.2.1 for a purely inseparable finite extension K/k and a nonzero
proper kK2-subspace V ⊂ K such that k〈V 〉 = K. Motivated by Theorem 7.4.8, to
construct non-standard absolutely pseudo-simple groups G over an imperfect field
k of characteristic p we focus on p ∈ {2, 3} and three cases depending on the root
system Φ over ks:

(i) Φ of type F4, Bn (n > 1), or Cn (n > 1) with p = 2 (B1, C1 mean A1),
(ii) Φ of type G2 with p = 3,
(iii) Φ of type BCn (n > 1) with p = 2; i.e., the non-reduced case.
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In this section we shall describe constructions in the first two cases, though not the
SO(q)-construction for regular degenerate (V, q) (which is an instance of (i) and
will be placed into a broader framework in §10.1).

Let k be an imperfect field of characteristic p ∈ {2, 3}. As motivation for
the non-standard groups to be built over k, first consider a pseudo-split absolutely
pseudo-simple k-groupG of minimal type with root system of type G2 if p = 3 and of
type F4 if p = 2. (In Corollary 7.5.11 we will see that the “minimal type” property is
automatic for these root systems.) Let K/k be the minimal field of definition for the
geometric unipotent radical of G. By Proposition 7.2.8 and Theorem 7.4.7(ii),(iii),
the possibilities for G are determined up to isomorphism by K/k and a subfield
K> ⊂ K that contains kKp.

More specifically, let L be a split connected absolutely simple k-group with the
chosen root system Φ (G2 in characteristic 3, F4 in characteristic 2). The only
possibility for G is the smooth connected k-subgroup G of RK/k(LK) generated
by the k-subgroups RK/k((La)K) for short a ∈ Φ and RK>/k((La)K>

) for long
a ∈ Φ, where K>/k is a purely inseparable finite extension contained in K and
containing kKp. Note that G contains L and hence is pseudo-reductive of minimal
type with L as a Levi k-subgroup and Φ as its root system (by Proposition 7.1.3
(i)). Moreover, G is perfect because each group RK/k((La)K) = RK/k(SL2) and
RK>/k((La)K>

) = RK>/k(SL2) is perfect. Further arguments are needed to show
that the long root groups of G have dimension [K> : k] (rather than larger than
[K> : k]). These considerations motivate analyzing a construction permitting types
Bn and Cn for n > 2 when p = 2 as well:

Proposition 7.5.1. Let k be an imperfect field of characteristic p ∈ {2, 3}, and
let L be a split connected absolutely simple k-group that is simply connected with a
split maximal k-torus T and root system Φ = Φ(L, T ) that is irreducible with an
edge of multiplicity p. Let K/k be a nontrivial purely inseparable finite extension
and K> ⊂ K a proper subfield containing kKp.

The k-subgroup G ⊂ RK/k(LK) generated by the k-subgroups RK/k((La)K) for
short a ∈ Φ and RK>/k((La)K>

) for long a ∈ Φ is absolutely pseudo-simple of
minimal type with root system Φ, Levi k-subgroup L, and long root groups with
dimension [K> : k]. For a basis ∆ of Φ (so GL∆

1 ' T via (ta)a∈∆ 7→
∏
a a
∨(ta)

since L is simply connected), we have

(7.5.1) ZG (T ) =
∏
a∈∆<

RK/k(GL1)×
∏
a∈∆>

RK>/k(GL1)

inside RK/k(TK) = RK/k(GL1)∆ for the subsets ∆< of short roots in ∆ and ∆> of
long roots in ∆. Moreover, G = RK>/k(G ′) where G ′ is the analogous K>-subgroup
of RK/K>

(LK).

Informally, inside RK/K>
(LK) the K>-subgroup G ′ is built by shrinking the

long T -root groups to be the ones arising from the K>-subgroup LK>
.

Proof. The arguments in the preceding discussion show that G is pseudo-
semisimple with L as a Levi k-subgroup and root system Φ, so in particular G is
absolutely pseudo-simple. We also clearly have G ⊂ RK>/k(G ′), so by open cell
considerations this inclusion is an equality once (7.5.1) is established. To prove that
the long root groups coincide with those of RK>/k(LK>

) and that (7.5.1) holds, we
shall use Theorem 5.4.3.
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Define the commutative pseudo-reductive k-subgroup

C ⊂ RK/k(TK) =
∏
a∈∆

RK/k(GL1)

using the right side of (7.5.1), so obviously C normalizes RK/k((La)K) for all a ∈
∆. For a ∈ ∆< we define Fa := C · RK/k((La)K), so clearly ZFa

(T ) = C. For
a ∈ ∆> the k-group C normalizes RK>/k((La)K>) because for b ∈ ∆< the action
of t ∈ RK/k(GL1) = RK/k(b∨K(GL1)) on RK/k((U±a)K) = RK/k(Ga) is via scaling

through t〈a,b
∨〉 ∈ tpZ ⊂ RK>/k(GL1) (recall that kKp ⊂ K>). Hence, for a ∈ ∆>

the k-group Fa = C · RK>/k((La)K>) satisfies ZFa(T ) = C.
Since C ∩ RK/k((La)K) coincides with RK/k(a∨K(GL1)) for all a ∈ ∆< and

with RK>/k(a∨K>
(GL1)) for a ∈ ∆>, clearly the k-groups Fa for a ∈ ∆ are given

by the construction in Proposition 2.2.1 and hence are pseudo-reductive. Now we
may apply Theorem 5.4.3 to conclude that the k-group F generated by {Fa}a∈∆ is
pseudo-reductive with C as a Cartan k-subgroup and its ±a-root groups coincide
with those of Fa for each a ∈ ∆. In particular, F contains the k-group L generated
by the root groups {U±a}a∈∆. But it is clear that F = G , so the long T -root groups
of G have dimension [K> : k] and C is a Cartan k-subgroup of G . This completes
the proof. �

Observe that the pseudo-split absolutely pseudo-simple k-groups G in Propo-
sition 7.5.1 are necessarily non-standard since the root groups with distinct lengths
have different dimensions. To extend this construction beyond the pseudo-split
case, we focus on the essential case where K> = k and shall use a fiber product
construction resting on an exceptional class of isogenies that only exist in charac-
teristics 2 and 3. These isogenies arise from the following result (for which we refer
the reader to [CGP, Lemma 7.1.2] for a proof based on an analysis of root groups):

Lemma 7.5.2. Let k be a field of characteristic p ∈ {2, 3}, and let G be a
connected semisimple k-group that is absolutely simple and simply connected with
root system over ks having an edge of multiplicity p.

Among all nonzero G-submodules of Lie(G) distinct from Lie(ZG), there is a
unique such n contained in all others, and it is a p-Lie subalgebra of Lie(G). If G
contains a split maximal k-torus T then n is spanned by the T -weight spaces for the
short roots and the coroot lines Lie(a∨(GL1)) for short a ∈ Φ(G,T ).

By [CGP, Prop. A.7.14, Ex. A.7.16], if H is an affine k-group scheme of finite
type and n is a p-Lie subalgebra of Lie(H) then there is a unique k-subgroup scheme
N ⊂ H with vanishing Frobenius morphism and Lie algebra n ⊂ Lie(H), and N is
normal in H if and only if n is stable under the adjoint action of H.

Thus, in the setting of Lemma 7.5.2 we obtain a unique normal k-subgroup
scheme N ⊂ G with vanishing Frobenius such that Lie(N) = n inside Lie(G).
Consequently, we obtain a factorization of the Frobenius isogeny FG/k as

FG/k : G
π−→ G/N

π−→ G(p).

The isogeny π : G → G/N is called a very special isogeny (and G/N is called the
very special quotient of G). Note that if G contains a split maximal k-torus T and
a ∈ Φ(G,T ) is long then π carries Ga isomorphically onto its image in G/N because
the infinitesimal k-group scheme Ga ∩N is trivial (as we can check on Lie algebras
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using the description of Lie(N) in Lemma 7.5.2 via long coroots and short root
spaces relative to T ).

The relationship between G and its very special quotient G := G/N is sym-
metric in the following sense:

Proposition 7.5.3. The very special quotient G of G is simply connected with
root system over ks dual to that of Gks , and the isogeny π : G → G(p) arising in
the factorization of FG/k through G is the very special isogeny for G.

If T ⊂ G is a split maximal k-torus then for T := π(T ) the map π : G → G
carries long T -root groups isomorphically onto short T -root groups and carries short
T -root groups Ua onto long T -root groups Upa via the Frobenius morphism FGa/k.

The proof of this result rests on a direct study of the restriction of π between
root groups by analyzing the weight spaces for T that occur in n; see [CGP,
Prop. 7.1.5] for the details.

Example 7.5.4. The best-known very special isogenies are from type B to type
C in characteristic 2. This has a linear algebra intepretation as follows. By the clas-
sification of connected absolutely simple groups, for n > 1 the connected absolutely
simple groups of type Bn with trivial center over a field are the special orthogonal
groups SO(q) of non-degenerate quadratic spaces (V, q) of dimension 2n+ 1. (Note
however that SO(q) only determines (V, q) up to a conformal isometry.) By non-
degeneracy, the subspace V ⊥ consisting of the vectors orthogonal to everything in V
relative to the associated symmetric bilinear form Bq(v, v

′) = q(v+v′)−q(v)−q(v′)
on V is a line. The bilinear form Bq is alternating since char(k) = 2, so it in-

duces a symplectic form Bq on V := V/V ⊥. There is an evident k-homomorphism

SO(q)→ Sp(Bq), and the composite map

π : Spin(q) −→ SO(q) −→ Sp(Bq)

is the very special isogeny for G := Spin(q) when n > 2. Note that in this case G
is always split even though G may not be split.

Example 7.5.5. In the opposite direction, consider a connected semisimple k-
group G that is absolutely simple and simply connected of type Cn (n > 2). Under
the adjoint representation of G on its Lie algebra g, there is a unique minimal
non-central G-submodule n ⊂ g [CGP, Lemma 7.1.2]. Hence, G naturally acts on
V = g/n. The dimension of V is n(2n + 1) − (2n2 − n − 1) = 2n + 1, and since n
is a Lie ideal we see that the resulting representation ρ : G→ GL(V ) kills n on Lie
algebras, so ρ factors through the simply connected very special quotient G of G.

We will show below that there is a canonical non-degenerate G-invariant qua-
dratic map q : V → L valued in a line L. The map q becomes a quadratic form
upon choosing a basis of L, but the resulting k-subgroup SO(q) ⊂ GL(V ) does
not depend on such a choice. In this manner we get a canonical homomorphism
f : G → SO(q). Since G is simply connected, f uniquely factors through a ho-

momorphism f̃ : G → Spin(q) that we will show is an isomorphism, so the unique
homomorphism G → Spin(q) through which ρ : G → SO(q) factors is the very
special isogeny for G.

A very special isogeny H → H intertwines long roots and the associated coroots
for H with short roots and the associated coroots for H [CGP, Prop. 7.1.5(1)],
so the construction of n implies that V is identified with the corresponding G-
submodule n of g := Lie(G) that is also a p-Lie subalgebra of g. The p-operation



STRUCTURE AND CLASSIFICATION OF PSEUDO-REDUCTIVE GROUPS 93

on a Lie algebra is functorial in the group scheme (see [CGP, Lemma A.7.13]), so
the p-operation

q : V −→ V

on V = n that is induced by the ones on g and g is equivariant for the natural G-
action on V . The p-operation on a Lie algebra is D 7→ Dp on global left-invariant
derivations of the structure sheaf, and (D+D′)p = Dp + [D,D′] +D′

p
since p = 2.

Hence, on Lie(G) we have (X + X ′)[2] = X [2] + [X,X ′] + X ′
[2]

where [X,X ′] is
bilinear in the pair (X,X ′), so X 7→ X [2] is a G-equivariant quadratic map from
Lie(G) into itself. Thus, q is a G-equivariant quadratic map whose associated
bilinear map Bq is the restriction to V of the Lie bracket.

We claim that L := [V, V ] is a line containing q(V ) and that the resulting
quadratic map q : V → L is non-degenerate. Once we know that L is a line, the
G-action on L must be trivial (as G has no nontrivial characters), so q would be

G-invariant, giving a canonical homomorphism f̃ : G→ Spin(q) as explained above
(which we will show is an isomorphism). To establish these properties we may and
do assume k = ks, so G admits a split maximal k-torus T .

Let ∆ be a basis of the root system Φ := Φ(G,T ) of type Bn (n > 2); in
particular, ∆ contains a unique short root b0. By design, the subspace V = n is
spanned by the coroot line L := k ·Lie(b∨0 )(∂t) = Lie(µp) and the lines gb = Lie(αp)
for b in the set Φ< of short roots. For each such b, the coroot line k · Lie(b∨)(∂t)
coincides with L since the difference of coroots associated to any two short roots
for type Bn is twice an element of the coroot lattice (so it induces 0 on Lie algebras
in characteristic 2); this is the familiar assertion that for n > 2 any two long roots
for type Cn differ by twice an element of the root lattice.

For b ∈ Φ<, the lines gb and g−b generate an sl2 since 〈Ub, U−b〉 = SL2 ⊂ G (as

G is simply connected). Thus, by functoriality of the p-operation and calculating
in sl2 we see that for each b ∈ Φ< and nonzero X±b ∈ g±b the vector Bq(Xb, X−b)
is a nonzero element of L and Bq(gb, L) = 0. The set Φ< of short roots for type Bn
is the root system An

1 , so for linearly independent short b, b′ ∈ Φ the root groups Ub
and Ub′ commute with each other. Hence, Bq(gb, gb′) = [gb, gb′ ] = 0. Since q kills
each line gb and has nonzero restriction to L (as the p-operation for αp vanishes
and for µp is nonzero), we conclude that q(V ) ⊂ L = [V, V ] and that the pairs of
root lines for opposite short roots span pairwise Bq-orthogonal hyperbolic planes.
In particular, q : V → L is non-degenerate.

It remains to show that the resulting map f̃ : G→ Spin(q) is an isomorphism.
Although the entire preceding construction makes sense as written only when the
rank n is at least 2 (as then there are both short roots and long roots), we shall
formulate a rank-1 analogue and reduce our higher-rank problem to the rank-1
analogue that is more amenable to direct calculation. Consider a pair {±b} of
opposite short roots in Φ and the associated k-subgroup Gb = 〈Ub, U−b〉 ⊂ G that
meets T in b∨(GL1). Since Gb ' SL2, the preceding calculations show that the
p-operation Lie(Gb) → Lie(Gb) is a quadratic map whose image spans L as above
and thereby defines a non-degenerate quadratic form qb : Lie(Gb) → L that is the

restriction of q. We thereby get an analogous homomorphism f̃b : Gb → Spin(qb).
Naturally SO(qb) ⊂ SO(q) since V is the direct sum of Lie(Gb) and the space

of vectors in V orthogonal to Lie(Gb), and the natural map Spin(q)b → SO(qb) is
the quotient by the central µ2 because the center of Spin(q) is the µ2 whose Lie
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algebra is the common coroot line for every short root. This identifies Spin(q)b with

Spin(qb), and via this inclusion of Spin(qb) into Spin(q) it is clear that f̃ |Gb
= f̃b.

We will prove that each f̃b is an isomorphism. Granting this, the G-submodule

ker Lie(f̃) ⊂ Lie(G) is contained in the span of the root lines for the long roots and
their associated coroots. In particular, this kernel does not contain the Lie algebra
of the center, nor does it contain n. But every nonzero G-submodule of Lie(G)
must contain one of those two Lie subalgebras by [CGP, Lemma 7.1.2], so this

forces the kernel to vanish. Thus, f̃ has étale kernel, so it is an étale isogeny for

dimension reasons. Hence, f̃ is an isomorphism since Spin(q) is simply connected.

It remains to prove that f̃b is an isomorphism for each b ∈ Φ<. This amounts
to a concrete assertion in characteristic 2: if L = Lie(ZSL2

) ⊂ sl2 is the diagonal
subspace and q : sl2 → L is the non-degenerate quadratic map induced by X 7→ X [2]

then the representation ρ : SL2 → SO(q) is the quotient by the center (as then the
unique factorization through Spin(q) is an isomorphism). But composing ρ with the
inclusion SO(q) ↪→ GL(sl2) gives AdSL2 , and the (scheme-theoretic) kernel of the
adjoint representation of any connected reductive group is the center, so comparison
of dimensions of SL2 and SO(q) implies that ρ is the quotient by the center.

Here is an interesting construction using very special isogenies:

Example 7.5.6. Let K/k is a nontrivial finite extension satisfying Kp ⊂ k,
and let π : L → L be a very special isogeny over k for L as in Proposition 7.5.1
with K> = k (and T ⊂ L a split maximal k-torus). Then for f := RK/k(πK) and

the Levi k-subgroup L ⊂ RK/k(LK) we claim that the k-group f−1(L) coincides

with G as in Proposition 7.5.1 with K> = k; in particular, f−1(L) is smooth (and
even absolutely pseudo-simple with L as a Levi k-subgroup).

To verify that G = f−1(L) inside RK/k(LK), we first note that the long T -root

groups of L and G coincide due to 1-dimensionality of each. Thus, G ⊂ f−1(L) since
f carries each T -root group of G into L (by applying Proposition 7.5.3 to πK). This
containment is an equality on open cells since π carries La isomorphically onto La
for long a ∈ Φ(L, T ), so to prove it is an equality it is enough to show that f−1(L) is
connected, or more specifically that ker f is connected. But ker f = RK/k(kerπK)
and as a K-scheme (not K-group scheme) kerπK is isomorphic to a direct product
of copies of Spec(K[x]/(xp)). Since Kp ⊂ k, it is clear that RK/k(Spec(K[x]/(xp)))
is geometrically connected and hence ker f is connected.

The preimage construction in Example 7.5.6 underlies the following remarkable
equivalence whose proof rests on arguments with non-smooth group schemes and
Theorem 5.4.4:

Theorem 7.5.7. Let K/k be a nontrivial purely inseparable finite extension

satisfying Kp ⊂ k, and let π′ : G′ → G
′

be a very special isogeny over K and define

f = RK/k(π′). For a Levi k-subgroup G ⊂ RK/k(G
′
) (if one exists), the following

conditions are equivalent:

(i) The k-group scheme G := f−1(G) is smooth.
(ii) The k-group G is contained in the image of f .
(iii) The group Gks is smooth and contains a Levi ks-subgroup of RK/k(G′)ks .

When these conditions hold, G is absolutely pseudo-simple of minimal type with
minimal field of definition K/k for its geometric unipotent radical, iG is identified
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with the inclusion of G into RK/k(G′), and f(G ) = G. In particular, the quotient

map f : G � G is determined by iG and the very special isogeny π′ : G′ � G
′
.

The proof of Theorem 7.5.7 apart from the assertions at the end when (i), (ii),
and (iii) hold is given in [CGP, Thm. 7.3.1]. Under these conditions it is obvious
that G = f(G ), and to prove the rest we may assume k = ks. Hence, G contains
a Levi k-subgroup G of RK/k(G′), so G is a k-descent of G′ (see [CGP, Lemma

7.2.1]); this identifies π : G→ G with a k-descent of π′. By identifying G′ with GK
in this manner, G is an instance of the preimage construction in Example 7.5.6.
Thus, the asserted properties for G are now clear.

Remark 7.5.8. The existence of the Levi k-subgroup G in Theorem 7.5.7 is a

nontrivial condition when G
′

is not split (see [CGP, Ex. 7.2.2]).

We have finally arrived at a general class of non-standard absolutely pseudo-
simple groups:

Definition 7.5.9. A basic exotic pseudo-reductive k-group is a k-group that
arises as G in Theorem 7.5.7.

Since split Levi k-subgroups always exist in the pseudo-split case (Theorem
5.4.4), it follows that the pseudo-split basic exotic pseudo-reductive k-groups are
precisely the k-groups G that arise in Proposition 7.5.1 with K> = k. In particular,
it is immediate from Proposition 7.5.1 that if K>/k is a purely inseparable finite
extension of fields and G ′ is a basic exotic pseudo-reductive K>-group with root
system Φ over (K>)s then RK>/k(G ′) is absolutely pseudo-simple of minimal type
over k with root system Φ over ks. (In particular, RK>/k(G ′) is perfect.) The
extension K>/k is intrinsically determined by such a k-group: it is the long root
field (as we may check over ks, via the description provided by Proposition 7.5.1
in the pseudo-split case). The center of a basic exotic k-group admits an explicit
description in the presence of a Levi k-subgroup; see [CGP, Cor. 7.2.5].

Proposition 7.5.10. Let k be imperfect with p := char(k) ∈ {2, 3}, and let Φ
be the root system F4 when p = 2 and G2 when p = 3. Let G be a non-standard
absolutely pseudo-simple k-group of minimal type with long root field K> and root
system Φ over ks. Then G ' RK>/k(G ′) for a basic exotic K>-group G ′.

Proof. If k′/k and k′′/k are purely inseparable finite extensions and G ′ and G ′′

are basic exotic groups over k′ and k′′ respectively such that Rk′/k(G ′) ' Rk′′/k(G ′′)
then comparison of long root fields implies k′ = k′′ as purely inseparable extensions
of k. In such a situation, any k-isomorphism f : Rk′/k(G ′) ' Rk′/k(G ′′) has the
form Rk′/k(f ′) for a unique k′-isomorphism f ′ : G ′ ' G ′′. Indeed, the natural map

Rk′/k(G ′)k′ → G ′

is the quotient by the k′-unipotent radical (as it is a smooth surjection with con-
nected unipotent kernel [CGP, Prop. A.5.11(1),(2)]), and likewise for G ′′, so fk′

dominates a unique isomorphism ϕ between maximal pseudo-reductive quotients
over k′ and hence f = Rk′/k(ϕ) (see [CGP, Prop. 1.2.2]).

By Galois descent and the preceding canonical description of all possible k-
isomorphisms f it follows that we may assume k = ks. In particular, G contains
a Levi k-subgroup L (with maximal k-torus T ). Moreover, ker iG is central in G
since Φ is reduced. Thus, since G is minimal type it follows that ker iG = 1.
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By Proposition 7.2.6(i) and Theorem 7.4.7, K> contains kKp (over k) and
Ga ' RK>/k((La)K>) for long a ∈ Φ(L, T ) whereas Ga ' RK/k((La)K) for short
a ∈ Φ(L, T ). This implies (by considerations with dimension and minimal fields of
definition for geometric unipotent radicals) that the image G ' iG(G) ⊂ RK/k(LK)
coincides with the k-group G = RK>/k(G ′) as in Proposition 7.5.1 applied to
(L,K/K>/k). �

The following refinement of Proposition 7.5.10 removes the “minimal type”
hypothesis.

Corollary 7.5.11. For k and Φ as in Proposition 7.5.10, every non-standard
absolutely pseudo-simple k-group G with root system Φ is of minimal type.

In particular, a pseudo-split absolutely pseudo-simple k-group with root system
Φ is uniquely determined up to isomorphism by the minimal field of definition K/k
for its geometric unipotent radical and the long root field K> ⊃ kKp.

Proof. The final part follows from the rest by Theorem 7.2.5, Proposition
7.2.8, and Theorem 7.4.7.

In general, the maximal quotient G := iG(G) that is pseudo-reductive of min-
imal type is a central quotient of G since Φ is reduced; i.e., G = G/CG. By
Proposition 7.5.10, we have G ' RK>/k(G ′) for the long root field K> of G and a
basic exotic K>-group G ′. Hence, G is a central extension of G by the unipotent
k-group scheme CG. It is equivalent to show that this is a split extension, as that
would force CG = 1, so we may and do assume k = ks. In particular, G contains a
split maximal k-torus T .

Let ∆ be a basis for the common root system Φ(G,T ) = Φ(G , T ) = Φ(G ′, TK>
),

so ZG (T ) =
∏
a∈∆ RKa/k(GL1) where Ka = K for short a and Ka = K> for long

a. Since Ga = RKa/k((La)Ka) = RKa/k(SL2), the classical formula universally
expressing diagonal points in SL2 as a product of points in the standard root groups
allows us to express all points in ZG (T ) universally as a product of points in T -root
groups for roots in ±∆. It follows from a general splitting criterion for central
extensions of pseudo-split pseudo-semisimple groups in [CGP, Prop. 5.1.3] that
every central extension of G by a commutative affine k-group scheme Z of finite
type containing no nontrivial smooth connected k-subgroup is split. We may use
CG as such a Z to conclude. �

Remark 7.5.12. In view of Theorem 7.4.8, it follows from Corollary 7.5.11 that
away from types Bn and Cn (with n > 1) the basic exotic construction accounts
for all deviations from standardness with a reduced and irreducible root system.

Remark 7.5.13. If k is imperfect of characteristic p = 2 and [k : k2] = 2, it
follows from Theorem 7.2.5(ii) that for any pseudo-split absolutely pseudo-simple
k-group G with root system A1 such that Gss

k
' SL2, we have iG(G) = RK/k(SL2)

for a purely inseparable finite extension K/k. But ker iG is central since the root
system is reduced, so G is a central extension of RK/k(SL2) by the unipotent k-
group scheme ker iG. The same splitting criterion used in the proof of Corollary
7.5.11 then implies that ker iG = 1. It follows similarly that Corollary 7.5.11 is
valid over such k using the root system Φ equal to either of Bn or Cn with any
n > 2 when Gss

k
is simply connected.

The only remaining difficulties in classifying the absolutely pseudo-simple case
over k with a reduced root system over ks are for types B and C over imperfect
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fields k of characteristic 2 (including type A1, which we have completely described
in the pseudo-split minimal type case in Theorem 7.2.5(ii)).

Consider a pseudo-split absolutely pseudo-simple group G with rank n > 2 over
a field k of arbitrary characteristic. Assume Gss

k
is simply connected and let K/k be

the minimal field of definition for Ru(Gk) ⊂ Gk. Observe that by Proposition 7.2.8
and Theorem 7.4.7, if L denotes the split K-descent of Gss

k
then G ' D(RK/k(LK))

except possibly when the root system Φ has an edge of multiplicity p = char(k) > 0.
In the latter cases, Corollary 7.5.11 gives a classification via K/K>/k for type F4

with p = 2 and type G2 with p = 3. We now record a variant for types Bn and Cn
(n > 2) in characteristic 2.

Theorem 7.5.14. Let K/k be a purely inseparable finite extension in charac-
teristic 2, K> ⊂ K a subfield containing kK2, and Φ the root system Bn or Cn
with n > 2. Choose a nonzero K>-subspace V ⊂ K satisfying k〈V 〉 = K and a
nonzero kK2-subspace V> ⊂ K> satisfying k〈V>〉 = K>. If Φ = Cn with n > 3
then assume V = K, and if Φ = Bn with n > 3 then assume V> = K>.

There exists a unique pseudo-split absolutely pseudo-simple k-group G of mini-
mal type with root system Φ such that: Gss

k
is simply connected, K/k is the minimal

field of definition for the geometric unipotent radical of G, Ga ' HV>,K>/k for long
a ∈ Φ, and Ga ' HV,K/k for short a ∈ Φ.

The appearance of the minimal type hypothesis and of vector spaces rather
than merely fields in Theorem 7.5.14 are a significant constrast with Corollary
7.5.11 (which concerns the root systems F4 and G2 in characteristics 2 and 3 re-
spectively). The necessity of the conditions on K/K>/k and the vector spaces V
and V> in Theorem 7.5.14 is immediate from Theorem 7.4.7. The sufficiency is
deeper, and requires constructing a k-subgroup of RK/k(LK) containing L and sat-
isfying prescribed properties. Theorem 5.4.3 provides the main technique in this
construction; see the proof of [CP, Thm. 3.4.1(iii)] for further details.

To conclude our general discussion of basic exotic groups, we record some no-
table features in the special case [k : kp] = p (such as for global and local func-
tion fields over finite fields of characteristic p), referring to [CGP, Prop. 7.3.3,
Prop. 7.3.5] for proofs.

Proposition 7.5.15. Let G be a basic exotic pseudo-reductive k-group, where
char(k) = p ∈ {2, 3} and [k : kp] = p. Let f : G � G be the associated surjection
as at the end of Theorem 7.5.7, with G a connected semisimple group that is simply
connected with root system over ks dual to that of Gks .

(i) The map f is bijective on k-points, as well as a homeomorphism on adelic
points when k is global and on k-points when k is local. Moreover, the
natural map H1(k,G )→ H1(k,G) induced by f is bijective.

(ii) If G1 and G2 are basic exotic k-groups and Gj is the associated quotient

of Gj then the natural map Isomk(G1,G2)→ Isomk(G1, G2) is bijective.
(iii) The set of isomorphism classes of ks/k-forms of G is in natural bijection

with the set of isomorphism classes of ks/k-forms of G via the analogous
construction H  H for such k-forms.

The significance of this result is that for many arithmetic calculations the in-
tervention of a basic exotic k-group G can be replaced with that of the associated
connected semisimple k-group G. This is crucial in many proofs in [C2] to reduce
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arithmetic problems in the pseudo-reductive case to the standard pseudo-reductive
case. (One likewise needs analogous results for pseudo-reductive groups with a
non-reduced root system in characteristic 2, see Proposition 8.3.10.)

The key point in the proof of Proposition 7.5.15, after passing to the pseudo-
split case and inspecting open cells, is that if k′/k is a finite extension then the only

nontrivial purely inseparable finite extension K/k′ satisfying kKp ⊂ k′ is K = k′
1/p

and the maps
RK/k′(GL1)→ GL1, RK/k′(Ga)→ Ga

induced by the relative Frobenius endomorphisms of GL1 and Ga over K are bi-
jections between sets of k′-points (but of course are not isomorphisms between
k′-groups).
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8. Groups with a non-reduced root system

8.1. Preparations for birational constructions. Let k be a field. The con-
struction of pseudo-split absolutely pseudo-simple k-groups G with a non-reduced
root system (i.e., BCn for some n > 1) requires an entirely different approach than
the methods based on fiber products and very special isogenies used to build non-
standard absolutely pseudo-simple groups of types Bn (n > 1), Cn (n > 1), F4,
and G2. Letting K/k be the minimal field of definition for the geometric unipo-
tent radical of G, necessarily k is imperfect of characteristic 2 and the quotient
G′ = GK/Ru,K(GK) must be simply connected of type Cn (Theorem 3.1.7).

Let T ⊂ G be a split maximal k-torus, so for a multipliable root c ∈ Φ(G,T )
the natural map

iG : G −→ RK/k(G′) ' RK/k(Sp2n)

carries the root group Uc into RK/k(U ′2c). By Proposition 3.1.6, Uc is a vector group
admitting a T -equivariant linear structure. Upon choosing such a linear structure,
the T -action admits as its weights exactly c and 2c, with U2c precisely the 2c-
weight space. In particular, the T -equivariant linear structure on U2c is unique
since 2c : T → GL1 is surjective; uniqueness implies (by working with ks-points)
that this linear structure on U2c is equivariant for the action of ZG(T ).

The T -equivariant linear structure on Uc is generally not unique, so it is not
evident if it can be chosen to be ZG(T )-equivariant. It is an important fact (see
Corollary 8.1.4) that the T -equivariant linear structure on Uc can indeed be chosen
to be ZG(T )-equivariant. This enhanced equivariance is a nontrivial condition,
insofar as there can exist T -equivariant linear structures on Uc that are not ZG(T )-
equivariant.

We wish to illustrate this phenomenon with a “toy example” that will later be
seen to account for all possibilities for Uc equipped with its ZG(T )-action. This
requires the following useful terminology. For any commutative k-algebra A with
dimk A < ∞, an A-module scheme is a smooth connected commutative affine k-
group equipped with a module scheme structure over the ring scheme A representing
the functor B  A⊗k B on k-algebras. The functor M  M (k) defines an equiv-
alence of categories between A-module schemes and finitely generated A-modules
[CGP, Lemma 9.3.5].

Example 8.1.1. Let K/k be a nontrivial purely inseparable finite extension
in characteristic 2 (so [K : kK2] > 2). Let V ′ ⊂ K be a nonzero kK2-subspace,
and V ⊂ K1/2 a nonzero finite-dimensional K-subspace such that for the injective
squaring map q : V → K the nonzeroK2-subspace q(V ) ⊂ K has trivial intersection
with V ′ (so V ′ 6= K, and such pairs (V ′, V ) exist for any K/k). These hypotheses
are preserved under scalar extension along k → ks (with ks ⊗k K = Ks).

The associated vector groups V ′ and V over k are module schemes over the ring
schemes kK2 := RkK2/k(Ga) and K := RK/k(Ga) respectively. Let q : V → K be
the 2-linear map of K-modules arising from q.

On the k-group U := V ′×V we define an action of C := RK/k(GL1) via scalar
multiplication on V (using the K-linear structure on V ) and via scalar multiplica-
tion on V ′ through squaring on C (using the kK2-linear structure on V ′). Observe
that the k-homomorphism U → RK/k(Ga) defined by (v′, v) 7→ v′ + q(v) is injec-
tive on ks-points and is C-equivariant with c ∈ C acting on RK/k(Ga) through

multiplication against c2 ∈ RkK2/k(GL1) ⊂ C.



100 BRIAN CONRAD AND GOPAL PRASAD

Let T = GL1 be the maximal k-torus in C, so the evident linear structure on
U (arising from the k-linear structures on V and V ′) is T -equivariant. This linear
structure is also C-equivariant, but there exist other C-equivariant linear structures
on U and (when K2 6⊂ k) there exist T -equivariant linear structures on U that are
not C-equivariant. To build examples of the former, let k ·q(V ) denote the k-span of
q(V ) inside K and let L : k·q(V )→ V ′ be a nonzero kK2-linear map. Then the map
(v′, v) 7→ (v′ + L(q(v)), v) is a C-equivariant k-automorphism of U not respecting
the given linear structure. Transporting the given linear structure on the target
through this automorphism back onto the source gives a new C-equivariant linear
structure

λ.(v′, v) = (λv′ + (λ− λ2)L(q(v)), λv)

on U . On the other hand, if we choose such an L to be k-linear but not kK2-linear
(as we can always do when K2 6⊂ k) then the same construction using this L is
T -equivariant but not C-equivariant (as q(V ) = k · q(V ) due to the Zariski-density

of k2 inside k = Ga).

To motivate how to classify (and construct!) pseudo-split absolutely pseudo-
simpleG with root system BCn, we need to describe the possibilities for Uc equipped
with its ZG(T )-action and its k-subgroup U2c. We first relate the k-group U2c and
the K-group U ′2c. For a split k-torus S and nontrivial character χ ∈ X(S), a vector
group U over k equipped with an S-action for which Lie(U) is χ-isotypic admits a
unique S-equivariant linear structure [CGP, Lemma 2.3.8]. Hence, U  U(k) is an
equivalence from the category of such U (using S-equivariant k-homomorphisms)
onto the category of χ-isotypic finite-dimensional linear representations of S. In
particular, the kernels of such k-homomorphisms arise from kernel of k-linear maps
and so are smooth and connected. The T -equivariant map U2c → RK/k(U ′2c) in-
duced by iG therefore has smooth connected kernel.

But ker iG contains no nontrivial smooth connected k-subgroup, so iG carries
U2c isomorphically onto a k-subgroup V ′c ⊂ RK/k(U ′2c). This k-subgroup inclusion
is also equivariant with respect to the respective actions of ZG(T ) and RK/k(GL1)
via the squaring of the composite map

χc : ZG(T )
iG // RK/k(TK)

RK/k(cK)
// RK/k(GL1)

Hence, the ks-subspace V ′c (ks) ⊂ RK/k(U ′2c)(ks) = U ′2c(Ks) is a subspace over the
subfield of Ks generated over ks by the squares of elements of χc(ZG(T )(ks)) ⊂
K×s . By Galois descent, the subfield ks[χc(ZG(T )(ks))] ⊂ Ks arises from a unique

subfield K ′c ⊂ K over k, so V ′c arises from a kK ′c
2
-subspace of the K-line U ′2c(K).

Remark 8.1.2. In concrete terms, K ′c is the unique minimal field among those
subfields F ⊂ K over k such that χc factors through RF/k(GL1). Note that the
subfield K ′c ⊂ K containing k involves the entirety of ZG(T ). For the rank-1
subgroup Gc = 〈Uc, U−c〉 with split maximal k-torus Tc = c∨(GL1) = T ∩ Gc,
the Cartan k-subgroup ZGc(Tc) is contained in ZG(T ). Hence, the subextension
of Kc/k analogous to K ′c/k but defined using Gc instead of G is a subextension of
K ′c/k that might not equal K ′c.

Consider the natural map

qc : Uc/U2c −→ RK/k(U ′2c)/V
′
c
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induced by iG. The T -equivariant linear structure on Uc/U2c is unique since the
action on the Lie algebra is through the nontrivial character c (so this linear struc-
ture must be ZG(T )-equivariant), and this makes qc a 2-linear map relative to
the unique T -equivariant linear structures on its source and target. The 2-linear
map over ks induced by qc on ks-points is injective since iG carries U2c isomorphi-
cally onto V ′c and (Uc ∩ ker iG)(ks) = 1 (as (ker iG)(ks) is finite yet only nontrivial
weights – namely c and 2c – occur for a choice of T -equivariant linear structure on
the vector group Uc). Thus, we may and do view Uc(ks)/U2c(ks) as a subgroup of
U ′2c(Ks)/V

′
c (ks), with 2-linear inclusion between these ks-vector spaces.

By ZG(T )(ks)-equivariance, the k2
s -subspace Uc(ks)/U2c(ks) ⊂ U ′2c(Ks)/V

′
c (ks)

is stable under the action of χc(ZG(T )(ks))
2, so Uc(ks)/U2c(ks) is a (K ′c)

2-subspace
of U ′2c(Ks)/V

′
c (ks). In view of the 2-linearity over ks for qc on ks-points, it is now

reasonable to ask if the unique ZG(T )-equivariant linear structure on Uc/U2c can
be enhanced to a K ′c-linear structure making qc a linear map over the squaring map

of ring schemes K ′c → kK ′c
2

over k. The answer is affirmative, and this is a crucial
first step towards understanding the possibilities for G:

Proposition 8.1.3. There is a unique K ′c-module structure on Uc/U2c that

is ZG(T )-equivariant and identifies the ZG(T )-action with the composition of χc
and the RK′c/k

(GL1)-action arising from the K ′c-module structure. Moreover, the
natural map

qc : Uc/U2c −→ RK/k(U ′2c)/V
′
c

induced by iG is linear over the squaring map K ′c → kK ′c
2
.

The proof of this result amounts to a delicate analysis of linear structures on
vector groups; see [CGP, Prop. 9.3.6]. An important consequence of the ZG(T )-
equivariant module scheme structure provided by Proposition 8.1.3 is:

Corollary 8.1.4. There exists a ZG(T )-equivariant splitting of Uc as an ex-
tension of Uc/U2c by U2c, and the section s to Uc � Uc/U2c can be chosen to make

the composite map Uc/U2c
s
↪→ Uc → RK/k(U ′2c) linear over the squaring map of ring

schemes K ′c → K over k.

Proof. Consider the commutative diagram of short exact sequences

0 // U2c
//

'
��

Uc

iG

��

// Uc/U2c

qc

��

// 0

0 // V ′c // RK/k(U ′2c) // RK/k(U ′2c)/V
′
c

// 0

This is equivariant for the action of ZG(T ) on the top row and for the action of
RkK′c

2/k(GL1) on the bottom row by using the square χ2
c : ZG(T )→ RkK′c

2/k(GL1)

of the map χc : ZG(T ) → RK′c/k
(GL1), and qc is linear over the squaring map

K ′c → kK ′c
2

by Proposition 8.1.3.
The key observation is that since the left vertical map is an isomorphism, this

diagram expresses the top as the pullback of the bottom along qc. But the bot-

tom is a kK ′c
2
-linear exact sequence of kK ′c

2
-modules, so it is split as such due to

the equivalence between the categories of smooth connected affine kK ′c
2
-module

schemes and finite-dimensional kK ′c
2
-vector spaces. Hence, since the ZG(T )-action
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on Uc/U2c is given by composing χc with the natural RK′c/k
(GL1)-action through

the K ′c-module structure (Proposition 8.1.3), the qc-pullback of a kK ′c
2
-linear split-

ting of the bottom is a ZG(T )-equivariant splitting of the top. �

The group (ker iG)(ks) is always finite, hence central in Gks due to normality
of ker iG in G, so if G is of minimal type then this finite group is trivial. In other
words, when G is of minimal type we can establish formulas and identities inside
G(ks) by applying iG to reduce to computations inside RK/k(G′)(ks) = G′(Ks) =
Sp2n(Ks). This is rather powerful. For example, suppose G is of minimal type
with root system BCn. It follows from Corollary 8.1.4 that for any multipliable
root c ∈ Φ(G,T ) the k-group Uc equipped with its ZG(T )-action and k-subgroup
U2c is given exactly by composing the construction in Example 8.1.1 relative to
K ′c/k with χc : ZG(T ) → RK′c/k

(GL1). (The condition in Example 8.1.1 that
V ′ ∩ q(V ) = {0} arises here from the fact that (ker iG)(ks) is trivial.)

This use of Example 8.1.1 to describe Uc equipped with its additional structures
in the minimal type case, coupled with verifying formulas in G(ks) by working inside
G′(Ks) = Sp2n(Ks), has some striking consequences. Here is one:

Proposition 8.1.5. If G is an absolutely pseudo-simple k-group of minimal
type and Gks has a non-reduced root system then ZG = 1.

We refer the reader to [CGP, Prop. 9.4.9] for the proof of this result; the
conclusion is obviously false whenever G is not of minimal type (as CG is then a
nontrivial central k-subgroup scheme). If [k : k2] = 2 then an absolutely pseudo-
simple k-group G for which Gks has root system BCn must be of minimal type (as
we will prove in Proposition 8.3.9), but if [k : k2] > 2 then for every n > 1 there
exist pseudo-split absolutely pseudo-simple k-groups G with root system BCn such
that G is not of minimal type; see [CP, B.4] for the construction of such G.

Deeper applications of Example 8.1.1 and the triviality of (ker iG)(ks) for G of
minimal type require a determination of the possibilities for K ′c as a subfield of K
over k, as we shall do without a “minimal type” hypothesis. In the rank-1 case it
will be given now, and we shall address the higher-rank case in Proposition 8.1.9.

Proposition 8.1.6. Assume Φ(G,T ) = BC1. For each multipliable root c we
have K ′c = K.

Proof. We sketch the main idea of the proof, referring to [CGP, Prop. 9.4.6]
for complete details. Without loss of generality we may assume k = ks, and we
reduce to the case where G is of minimal type by replacing G with its maximal
quotient G/CG of minimal type (this has no effect on K/k [CGP, Cor. 9.4.3], and
it has no effect on K ′c due to the characterization of K ′c/k at the start of Remark
8.1.2). Choose a Levi k-subgroup L ⊂ G containing T , so we may identify L with
SL2 carrying T over to the diagonal k-torus D and the c-root group of L over to
the upper-triangular unipotent subgroup of SL2.

The image H := iG(G) ⊂ RK/k(G′) = RK/k(SL2) clearly contains SL2, and by
Proposition 7.1.3(ii) it is absolutely pseudo-simple of minimal type and K/k is the
minimal field of definition for its geometric unipotent radical. Thus, by Theorem
7.2.5(ii), H = HV,K/k for some nonzero kK2-subspace V ⊂ K such that the ratios
among elements of V − {0} generate K as a k-algebra.

Since K ′c is generated over k by χc(ZG(T )(k)), it suffices to prove that v′/v ∈
χc(ZG(T )(k)) for all nonzero v, v′ ∈ V . Now we finally use that G is of minimal
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type: this ensures that the surjective homomorphism iG : ZG(T ) � ZH(D) is
an isomorphism. Hence, since c : D → GL1 is inverse to the isomorphism t 7→
diag(t, 1/t), the definition of χc in terms of iG|ZG(T ) implies that χc(ZG(T )(k)) =

ZH(D)(k) inside RK/k(DK)(k) = D(K) = K×. But ZH(D) coincides with the
Zariski closure inside RK/k(GL1) of the subgroup generated by the ratios among
nonzero elements of V (Proposition 7.2.3(i)), so we are done. �

A further interesting consequence of the ubiquity of Example 8.1.1 in the min-
imal type case is that it allows us to explicitly describe the commutator of points
in Uc and U−c for multipliable c when G is of minimal type. The resulting explicit
formula, given in [CGP, Lemma 9.4.8], is a crucial ingredient in the proof of the
following important result (whose proof also rests on Corollary 8.1.4 and dynamic
methods); we refer the reader to [CGP, Thm. 9.4.7] for the details.

Theorem 8.1.7. Let G be a pseudo-split absolutely pseudo-simple k-group of
minimal type with a split maximal k-torus T , and assume Φ(G,T ) is non-reduced.

The k-group scheme ker iG is commutative, connected, and non-central, and is
directly spanned by its intersections with the root groups for the multipliable roots.
Moreover, the T -weights that occur in Lie(ker iG) are precisely the multipliable roots.

Remark 8.1.8. The Weyl group W (G,T ) acts transitively on the set of mul-
tipliable roots, so Theorem 8.1.7 implies that ker iG is a direct product of copies of
the kernel of iG : Uc → RK/k(U ′2c) for a single multipliable root c. This map on Uc is
identified with V ′×V → RK/k(Ga) defined by (v′, v) 7→ v′+q(v) for (K/k, V ′, V, q)

as in Example 8.1.1, so ker iG is a direct product of copies of q−1(V ′ ∩ q(V )). Since
q(V ) arises from the k-span k · q(V ), it follows that ker iG is a direct product of

copies of q−1(W ) for the kK2-subspace W := V ′∩(k ·q(V )) ⊂ K. This is nontrivial
even if W = 0 since describing the 2-linear nonzero q in coordinates shows that ker q
is a nontrivial k-group scheme.

In Proposition 8.1.6 we saw that K ′c = K for any pseudo-split absolutely
pseudo-simple k-group G with root system BC1. For higher-rank G the same equal-
ity of fields holds, but the proof is much more difficult because we cannot pass to
the rank-1 group Gc in place of G (as this can cause the field K ′c to shrink, and Kc

can be a proper subfield of K; examples satisfying Kc 6= K arise with root system
BCn for any n > 2 when k is a rational function field in at least 2 variables over
any field of characteristic 2 [CGP, Ex. 9.8.18]). Here is the precise result:

Proposition 8.1.9. Let T ⊂ G be a split maximal k-torus. Assume Φ(G,T ) =
BCn with n > 2. Choose a basis ∆ of Φ(G,T ), with c ∈ ∆ the unique multipliable
root, and let b be the unique root in ∆ adjacent to 2c in the Dynkin diagram for the
basis ∆′ = (∆− {c}) ∪ {2c} of Φ(Gss

K , TK).
Then K ′c = Kb = K, kK2 ⊂ Kc ⊂ K, and the map iG : Ub → RK/k(U ′b) =

RK/k(Ga) is an isomorphism onto a Kc-submodule.

For the proof of Proposition 8.1.9, after reducing to the case where G is of
minimal type, one establishes the asserted relationships among fields by studying
the action of ZGa

(T ∩Ga) on Ua′ for roots a, a′ ∈ ∆∪{2c}. This action is analyzed
by combining our explicit knowledge of the possibilities for iG(Ga) = iGa(Ga) and
iG(Ga′) (especially when one of a or a′ is multipliable) with calculations similar in
spirit to those that arise in the proof of Theorem 7.4.7(iii). See [CGP, Prop. 9.5.2]
for the details.



104 BRIAN CONRAD AND GOPAL PRASAD

The preceding considerations provide precise information on the possibilities for
root groups and the ZG(T )-action on them for any pseudo-split absolutely pseudo-
simple k-group of minimal type with a non-reduced root system. This provides a
basic picture for what an open cell in any such G can possibly look like at the level
of ks-points via the injection iG : G(ks) ↪→ RK/k(G′)(ks) = G′(Ks) = Sp2n(Ks).
(Recall that the injectivity of iG on ks-points rests on G being of minimal type,
but the group scheme ker iG is nontrivial; see Remark 8.1.8.)

8.2. Construction via birational group laws. We have not yet constructed
a pseudo-split absolutely pseudo-simple group with a non-reduced root system. In
[Ti3, Cours 1991-92, 6.4], Tits constructed some examples of such groups via bira-
tional group laws. To give a general construction, we need the pseudo-split rank-1
classification provided by Proposition 7.2.3 and Theorem 7.2.5, as well as the re-
sults obtained in §8.1 concerning the structure of the root group Uc for multipliable
c. An elegant general discussion of birational group laws and theorems of Weil and
Artin on promoting such structures into actual group schemes is given in [BLR,
Ch. 5]; a summary of some relevant highlights from this theory (tailored to our
needs) is provided near the beginning of [CGP, §9.6].

The construction of birational group laws and analysis of properties of the
associated algebraic groups is always a substantial undertaking. The overview that
follows is aimed at conveying the main ideas and difficulties that arise and the
motivation for certain parts of the construction of groups with a non-reduced root
system. The reader is referred to [CGP, §9.6–§9.8] for complete details.

Since the constraints in §8.1 are most definitive in the minimal type case (as it is
difficult to work with a Cartan k-subgroup otherwise), below we will give a general
construction in the pseudo-split minimal type case over imperfect fields k with
characteristic 2. When [k : k2] = 2, this turns out to yield all absolutely pseudo-
simple k-groups with a non-reduced root system over ks. For any k satisfying
[k : k2] > 2, an alternative method in [CP, B.4] builds some rank-n pseudo-split
absolutely pseudo-simple k-groups G not of minimal type (with any n > 1), but we
do not know a general technique for such constructions.

Inspired by our description (via Example 8.1.1 and Corollary 8.1.4) of the
possibilities for the root group attached to a multipliable root c, and the fact that
K ′c = K (Propositions 8.1.6 and 8.1.9), we begin by choosing the following field-
theoretic and linear-algebraic data:

• a nontrivial purely inseparable finite extension K/k,
• a nonzero kK2-subspace V ′ ⊂ K,
• a nonzero finite-dimensional K-vector space V equipped with an injective

additive map q : V → K that is 2-linear over K (i.e., q(λv) = λ2q(v) for
λ ∈ K and v ∈ V ) such that V ′ ∩ q(V ) = {0}.

Since the composition of q with the square root isomorphism K ' K1/2 is an
injective K-linear map, the map q can be viewed in a rather concrete manner: V
is a K-subspace of K1/2 and q is the squaring map into K.

Remark 8.2.1. We could replace the pair (V, q) with the K2-subspace q(V ) ⊂
K that is identified with the Frobenius twist V (2), and reconstruct V as the K-
vector space V (2) ⊗K2,ι K where ι : K2 ' K is the square root isomorphism. It

is entirely a matter of taste whether one works with (V, q) or V (2) ⊂ K. The
development in [CGP, §9.6–§9.8] focuses on the perspective of V (2), but we have
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chosen to emphasize (V, q) here since this is what emerges more directly from the
groups that we aim to construct.

For the pseudo-split k-groups G of minimal type that we seek to construct (with
root system BCn and minimal field of definition K/k for the geometric unipotent
radical), we know that necessarily G′ ' Sp2n as K-groups and in §8.1 we saw that
the k-homomorphism iG : G → RK/k(G′) must be injective on ks-points (because
G is to be of minimal type). Hence, we want to describe the possibilities for G(ks)
as a subgroup of G′(Ks), and then use an open cell of RK/k(Sp2n) as a guide for
how to build an open cell for G with a birational group law from which we hope to
reconstruct the group. (Strictly speaking, we will work with a left-translate of an
open cell by a representative for a long Weyl element, for reasons to be explained
later.)

To organize the calculations, it is convenient to begin by specifying a pinning
on the K-group Sp2n as follows. Let Dn ⊂ GLn be the diagonal K-torus, Un ⊂
GLn the upper-triangular unipotent K-subgroup, and Bn = Dn n Un the upper-
triangular Borel K-subgroup; denote transpose on n× n matrices as m 7→ tm. We
define the maximal K-torus D := {( d−1 0

0 d
) | d ∈ Dn} ⊂ Sp2n that normalizes the

smooth connected unipotent K-subgroup

U =

{(
tu−1 mu

0 u

)
|u ∈ Un, m ∈ Symn

}
in Sp2n, where Symn denotes the affine space of symmetric n× n matrices over K,
and define the Borel K-subgroup

B = D n U =

{(
tb−1 mb

0 b

)
| b ∈ Bn, m ∈ Symn

}
in Sp2n. The maximal k-torus inside RK/k(D) will be denoted D0.

The positive system of roots Φ+ := Φ(B,D) ⊂ Φ(Sp2n, D) =: Φ consists of the
following characters: for 1 6 i < j 6 n the character

t = diag(t−1
1 , . . . , t−1

n , t1, . . . , tn) 7→ ti/tj

corresponds to the root group inside U given by the ij-entry in u ∈ Un, and for
1 6 i 6 j 6 n the character t 7→ 1/(titj) corresponds to the root group given by
ii-entry of m ∈ Symn when i = j and the common ij-entry and ji-entry of m when

i < j. Letting ∆ be the basis of Φ+, we have GL∆
1 ' D via (λa)a∈∆ 7→

∏
a∈∆ a∨(λa)

since Sp2n is simply connected.
For n > 1, the subset Φ+

> ⊂ Φ+ of long positive roots consists of the characters
1/t2i whose root groups are the diagonal entries of m (so they are 2-divisible in
X(D)); the set of short positive roots is denoted Φ+

<; in the special case n = 1 we
define Φ+

> = Φ+ and Φ+
< = ∅ since the roots for SL2 are 2-divisible in the character

lattice of the diagonal torus. Each positive root group is identified with Ga via the
matrix-entry coordinatization, and the root groups for long positive roots pairwise
commute since a sum of distinct long positive roots in type Cn is not a root.

The longest element inW (Sp2n, D) is represented by the matrix w = ( 0 1n
−1n 0 ) ∈

Sp2n(K) that has order 2 (as char(K) = 2), with w-conjugation on D equal to in-
version and w-conjugation carrying B to the opposite Borel subgroup relative to D
via

w

(
tu−1 mu

0 u

)
w−1 =

(
u 0
−mu tu−1

)
.
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Letting B− denote the Borel K-subgroup of Sp2n opposite B relative to D, and
U− its unipotent radical, we get an open cell U−B = w−1UwB ⊂ Sp2n . Its left w-
translate UwB is easier to work with for computations since it involves just points
of U and B up to the presence of the 2-torsion point w. Thus, the strategy to build
G is not to build a birational group law on a candidate for an open cell, but rather
on the left w-translate, where w is a 2-torsion element lying over w ∈ Sp2n(K).
We will be guided by the desired homomorphism iG : G → RK/k(Sp2n) that must
restrict to an inclusion C ↪→ RK/k(D) for a Cartan k-subgroup of G that has to be
determined a priori as a k-subgroup of RK/k(D) =

∏
a∈∆ RK/k(GL1).

Since U is directly spanned in any order by its positive root groups, upon
choosing an enumeration of Φ+

> and an enumeration of Φ+
< we get an isomorphism

via multiplication ∏
a∈Φ+

>

Ua ×
∏
b∈Φ+

<

Ub ' U.

Using standard matrix-entry coordinatizations, each Uc is identified with Ga as a
K-group. We have the same upon applying RK/k throughout. The idea now is to

replace each long root group RK/k(Ua) = RK/k(Ga) ⊂ RK/k(U) with V ′ × V . To
make this precise, we define the pointed k-scheme

U :=
∏

c∈(1/2)Φ+
>

Uc ×
∏
b∈Φ+

<

Ub

where Uc = V ′ × V for c ∈ (1/2)Φ+
> and Ub = RK/k(Ub) = RK/k(Ga) for b ∈ Φ+

<.
The pointed k-scheme U will turn out to be the k-unipotent radical of a min-

imal pseudo-parabolic k-subgroup of the k-group that we shall build, and so our
first step is to construct a k-group law on U . For this purpose, we will use the
map fc : Uc → RK/k(Uc) defined by (v′, v) 7→ v′ + q(v) for c ∈ (1/2)Φ+

> and the

identity map fb : Ub → RK/k(Ub) for b ∈ Φ+
<. Define f : U → RK/k(U) via mul-

tiplication in RK/k(U) of these componentwise maps. Note that f is injective on
ks-points since U is directly spanned by the positive root groups and fc is injective
on ks-points for each c ∈ (1/2)Φ+

> (due to the hypotheses on (K/k, V ′, V, q)).

Theorem 8.2.2. There is a unique k-group structure µ on U relative to which
f : U → RK/k(U) is a k-homomorphism. The identity e ∈ U (k) is the evident

base point, and relative to (µ, e) each inclusion Uc ↪→ U for c ∈ (1/2)Φ+
> and

Ub ↪→ U for b ∈ Φ+
< is a k-homomorphism. Moreover, the natural RK/k(D)-action

on RK/k(U) uniquely lifts through f to an action on U .

We refer the reader to [CGP, Thm. 9.6.14] for the details of the long nested
induction proof based on the height of positive roots. The success of the induc-
tion rests on putting the pairwise-commuting long root groups to the left of the
short root groups in the definition of f , together with a fact that is specific to
characteristic 2: the short positive root groups of U directly span (in any order) a
smooth connected k-subgroup [CGP, Thm. 9.6.7]. Ultimately the initial choice of
enumerations of the roots does not matter (and for later parts of the construction
this is important): using the k-group structure on U built above, U is directly
spanned in any order by the k-groups Ua for a ∈ (1/2)Φ+

> ∪ Φ+
<, due to Theorem

3.3.3 (using the action just built on U by RK/k(D) ⊃ D0).
Define the k-group B = RK/k(D) n U . The evident k-homomorphism B →

RK/k(B) is also denoted as f . Some deeper algebraic geometry (e.g., Zariski’s Main
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Theorem) and further results specific to characteristic 2 (e.g., the ii-entry of the
inverse of an invertible symmetric matrix (rij) ∈ GLn(R) for an F2-algebra R has
the form

∑
j f

2
ijrjj for some fij ∈ R) are used to establish the following result,

whose proof occupies most of [CGP, §9.7]:

Theorem 8.2.3. Let Ω ⊂ RK/k(UwB) × RK/k(UwB) be the open domain of
definition of the birational group law on RK/k(UwB). For the k-scheme U w×B,
where w is a k-point symbol, define the map U w×B → RK/k(UwB) by (uw, b) 7→
f(u)wf(b); denote this map as f too.

There is a unique birational group law m on U w×B such that its open domain
of definition

dom(m) ⊂ (U w ×B)× (U w ×B)

meets (f × f)−1(Ω) and makes f compatible with the birational group laws. More-
over, m is strict (i.e., dom(m) meets each fiber of the projections (U w ×B)2 ⇒
U w ×B).

Since f is generally not dominant, the requirement dom(m)∩ (f ×f)−1(Ω) 6= ∅
is not automatic and is required to make sense of m◦(f×f) as a rational map. The
significance of strictness of m is that for a smooth separated k-scheme X of finite
type equipped with a general birational group law µ, only an unknown dense open
subset X ′ of X appears inside the uniquely associated smooth connected k-group
provided by Weil’s theorem on birational group laws. To perform computations it
is very helpful when one can take X ′ to be X, and for that to happen it is necessary
and sufficient to assume µ is strict. See [CGP, Thm. 9.6.4] (and references within
its proof) for further information on promoting birational group laws to groups,
including a functoriality property for the k-group H associated to a strict birational
group law (X,µ) relative to rational homomorphisms fromX into a smooth k-group.
Due to this latter functoriality, it follows that if

GK/k,V ′,V,q,n

denotes the unique k-group containing U w ×B as a dense open subscheme com-
patibly with birational group laws, then there is a unique k-homomorphism

φ : GK/k,V ′,V,q,n −→ RK/k(Sp2n)

extending f . We will generally denote GK/k,V ′,V,q,n as G when the context makes
the meaning clear.

Remark 8.2.4. Beware that U w×B does not contain the identity of G, since
it is carried by φ into the open subset RK/k(UwB) ⊂ RK/k(Sp2n) that does not
contain the identity (as w 6∈ B). Hence, very little can be easily seen about the
structure of G from inspection of U w ×B; e.g., it is not obvious yet if (w, 1) is
2-torsion (all we can detect at the moment is that (w, 1)2 ∈ (kerφ)(k)). The failure
of the identity point to lie in the most tangible open subset U w × B of G is a
source of many headaches when initially trying to analyze G.

Now there are many non-trivial problems to be overcome. To start with the
most basic of all: is G affine? As usual with birational group laws, the associated
group of interest is built via a gluing process that a priori might leave the affine
setting. The problem of how to establish affineness a posteriori is a serious one
when using birational group laws. For example, this difficulty arises in the uniform
construction of simply connected Chevalley groups over Z for all root systems in
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[SGA3, XXV]. There, the mechanism to prove affineness is Chevalley’s structure
theorem applied on geometric fibers:

Theorem 8.2.5 (Chevalley). Every smooth connected affine group over a per-
fect field is uniquely an extension of an abelian variety by a smooth connected affine
group. In particular, if H is a smooth connected group over an arbitrary field F
and H(F ) coincides with its own commutator subgroup then H is affine.

A proof of the first part of Theorem 8.2.5 is given in [Chev] (and in [C1]
using modern terminology); the second part is immediate since abelian varieties are
commutative and affineness of an F -scheme can be checked after scalar extension to
the perfect field F . The perfectness hypothesis on the ground field in the first part
of Theorem 8.2.5 is unavoidable, since over every imperfect field there are smooth
connected affine groups that are not proper yet do not contain a nontrivial smooth
connected affine subgroup (see [CGP, Ex. A.3.8]).

For our needs, the affineness criterion in Theorem 8.2.5 is not convenient. We
will use a different affineness criterion that rests on a little-known but powerful
substitute in positive characteristic for Chevalley’s structure theorem:

Theorem 8.2.6. If H is a smooth connected group over a field F of positive
characteristic then H is uniquely a central extension of a smooth connected affine
group by a semi-abelian variety with no non-constant global functions.

In particular, if H contains no nontrivial central F -torus and no nontrivial
abelian subvariety then H is affine.

See [CGP, Thm. A.3.9] for arguments and references relevant to a proof of
Theorem 8.2.6; the proof uses the first part of Theorem 8.2.5 (applied over F ).
Note that the extension structure in Theorem 8.2.6 is “better” than the one in
Theorem 8.2.5 because (i) it is valid without perfectness hypotheses on the ground
field (and hence is very useful over local and global function fields), and (ii) it
provides a central extension.

Remark 8.2.7. The universal vector extension of any elliptic curve provides
counterexamples to the conclusions in Theorem 8.2.6 in characteristic 0, ultimately
because (in contrast with positive characteristic) a nonzero endomorphism of Ga

in characteristic 0 is an isomorphism.

Before we use the affineness criterion in Theorem 8.2.6 to prove the affineness
of G := GK/k,V ′,V,q,n we establish a simple but very useful preliminary result:

Lemma 8.2.8. The group (kerφ)(ks) is trivial.

This lemma allows us to deduce properties of G by working inside RK/k(Sp2n),
“as if” φ were an inclusion. The group scheme kerφ turns out to always have
positive dimension.

Proof. By design, on the dense open Ω := U w ×B ⊂ G the restriction f
of φ is injective on ks-points. If g ∈ (kerφ)(ks) then for a choice of ks-point g′ in
the dense open Ω ∩ g−1Ω we have f(gg′) = φ(gg′) = φ(g)φ(g′) = f(g′). Hence,
gg′ = g′, so g = 1 as desired. �

The triviality of (kerφ)(ks) yields many useful further consequences (despite
the nontriviality of the group scheme kerφ). For example, in addition to implying
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that (w, 1) is 2-torsion, we note that φ carries the smooth closed subscheme

C := ({w} × RK/k(D)) · (w, 1)

isomorphically onto the Cartan k-subgroup wRK/k(D)w = RK/k(D) of RK/k(Sp2n).
Consequently, C must be a k-subgroup of G, and the maximal k-torus D0 ⊂
RK/k(D) is thereby identified with a k-torus of G that is contained in C and is
not contained in any strictly larger k-torus of G (as otherwise kerφ would kill a
nontrivial k-torus for dimension reasons, contradicting Lemma 8.2.8).

By the same reasoning, for any long positive root a ∈ Φ+ ⊂ Φ(Sp2n, D), if we
let V ′a denote the copy of V ′ inside Ua/2 then the smooth closed subscheme

(8.2.8) Ua := (V ′aw × {1})(w, 1)

is carried isomorphically onto the k-subgroup V ′ of the a-root group RK/k(Ua) =
RK/k(Ga) of RK/k(Sp2n), so it is a k-subgroup of G. Likewise, for any g ∈ C(ks)
the effect of g-conjugation on Gks must carry (Ua)ks onto itself, so C normalizes Ua

and the k-torus D0 ⊂ C thereby acts on Lie(Ua) through a. By the same method,
the natural maps of smooth k-schemes

U ' (U w × {1})(w, 1) ⊂ G, B −→ C · (U w × {1})(w, 1) ⊂ G
are isomorphisms onto k-subgroups since composing each with the k-homomorphism
φ (that is injective on ks-points) respectively gives the k-homomorphism f from
Theorem 8.2.2 and its analogue using B = RK/k(D) n U ⊂ RK/k(Sp2n) (with
φ : C → RK/k(D) a k-isomorphism). The C-action on the k-groups Ua for long

roots a ∈ Φ+ enables us to prove:

Proposition 8.2.9. The k-group G is affine.

Proof. By Theorem 8.2.6 it suffices to prove that G contains no nontrivial
central k-torus or abelian variety as a k-subgroup. Any abelian variety A that
is a k-subgroup of G is killed by φ since RK/k(Sp2n) is affine, so A = 1 since

(kerφ)(ks) = 1. But φ will turn out to generally not be surjective when [k : k2] > 2
(due to later considerations with root groups), so it is unclear that the image under
φ of a central torus in G should be central in RK/k(Sp2n). Thus, to prove the
triviality of a central k-torus Z ⊂ G we proceed in another way.

We have built a copy of D0 as a k-subgroup of G (contained in C) and showed
that D0 is not contained in any strictly larger k-torus. The multiplication map
D0 × Z → G is a k-homomorphism whose image must be a k-torus, so this image
is equal to D0. Hence, Z ⊂ D0. The centrality of Z in G implies that for each Ua

as in (8.2.8), the Z-action on Ua via D0-conjugation is trivial. But the associated
action of D0 on Lie(Ua) is through the character a, so Z ⊂ ker a for every long root
a ∈ Φ+. The long roots in a type-Cn root system constitute a rank-n root system
(of type An

1 ), so such a’s span X(D0)Q. This forces Z = 1. �

It has been shown that D0 is a maximal k-torus in the smooth connected affine
k-group G and that φ(C) equals the Cartan k-subgroup RK/k(D) in RK/k(Sp2n).
Hence, the smooth connected k-group ZG(D0) ⊃ C must equal C for dimension
reasons since (kerφ)(ks) = 1. In other words, C is a Cartan k-subgroup of G.

To prove the pseudo-reductivity of the smooth connected affine k-group G, it
suffices to prove that φ(Ru,k(G)) = 1. Here we encounter a more serious manifes-
tation of the problem that arose in the proof of Proposition 8.2.9: the map φ is
generally not surjective, so there is no evident reason why the smooth connected
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unipotent k-group φ(Ru,k(G)) should be normal in RK/k(Sp2n). Hence, there is no
obvious way to harness the pseudo-reductivity of RK/k(Sp2n) to deduce the same
for G, so we do not proceed along such lines.

8.3. Properties of birational construction. The smooth connected affine
k-group G = GK/k,V ′,V,q,n built in §8.2 is equipped with a homomorphism φ :
G→ RK/k(Sp2n) that is injective on ks-points, and φ carries a Cartan k-subgroup
C isomorphically onto RK/k(D). To prove that G is pseudo-reductive, we shall
construct a pseudo-reductive k-subgroup H ⊂ RK/k(Sp2n) via Theorem 5.4.3 and
then (after some hard work) prove φ(G) = H via a comparison of open cells. This
implies that φ(G) is pseudo-reductive (so G is certainly pseudo-reductive). Building
on this approach, much of [CGP, §9.8] is devoted to proving the following main
properties of G (via calculations with root groups and conjugation by points of
Cartan subgroups):

Theorem 8.3.1. Let V0 = V ′+k ·q(V ) and K0 = k〈V0〉. If n = 1 then assume
K0 = K. Define the k-subgroup C0 = (V0)∗K0/k

×
∏
b RK/k(b∨(GL1)) ⊂ RK/k(D)

where b varies through the short simple roots in Φ+ ⊂ Φ := Φ(Sp2n, D).

(i) The k-group G is pseudo-reductive, K/k is the minimal field of definition
for the geometric unipotent radicals of G and D(G), and the maps φ and
φ|D(G) are respectively identified with iG and iD(G).

(ii) The k-torus D0 ⊂ G is contained in D(G), the root system Φ(D(G), D0) =
Φ(G,D0) coincides with Φ ∪ (1/2)Φ> of type BCn, and (w, 1) represents
the long Weyl element in W (G,D0). If moreover 1 ∈ V ′ then (w, 1) ∈
D(G) and the k-subgroup Sp2n ⊂ RK/k(Sp2n) lifts to a Levi k-subgroup of
D(G) containing D0.

(iii) For multipliable c ∈ Φ(G,D0), (Ucw×{1})(w, 1) is the c-root group; this
is identified with V ′×V equipped with the evident action by ZG(D0) = C =
RK/k(D) over the C-action on RK/k(U ′2c). Moreover, ZD(G)(D0) = C0.
Likewise, (U w×{1})(w, 1) is the smooth connected unipotent k-subgroup
of G generated by the D0-root groups for roots in Φ+ ∪ (1/2)Φ+

>.
(iv) The pseudo-reductive k-groups G and D(G) are of minimal type, and G =

D(G) if V0 = K.
(v) Consider a second triple (V ′,V , q) relative to K/k, and if n = 1 then

assume k〈V0〉 = K where V0 := k · q(V ) + V ′. Let G be the associated
k-group. The following are equivalent: G ' G , D(G) ' D(G ), and there
exists λ ∈ K× such that V ′ = λV ′ and V ′ + q(V ) = λ(V ′ + q(V )).

Remark 8.3.2. Let us explain the necessity of the hypothesis K0 = K when
n = 1. Two desired properties guided the construction: K/k should be the minimal
field of definition for the geometric unipotent radical of D(G) (as is confirmed in
(i)) and the linear algebra data (V ′, V, q) used in the construction of G should
appear in a description of the root group for any multipliable root c in the spirit of
Example 8.1.1 (as is confirmed by (iii) due to the construction of φ via the map f
considered in Theorem 8.2.2). Since φ(w, 1) = w by design, it follows from (i) that
(as intended) the image of the c-root group under iD(G) = iG|D(G) is the k-subgroup
V0 inside the root groups of RK/k((Sp2n)2c) = RK/k(SL2) relative to its diagonal
k-torus. In particular, if n = 1 then iD(G)(D(G)) = HV0,K/k, so the minimal field of
definition over k for the geometric unipotent radical of iD(G)(D(G)) is k〈V0〉 =: K0.
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But this field of definition over k must coincide with that for D(G), by Proposition
7.1.3(ii). Thus, we must assume K0 = K when n = 1.

Remark 8.3.3. For arithmetic applications, the most basic case is [k : k2] = 2
(such as when k is a local or global function field). In such cases the only purely
inseparable finite extensions of k are k1/2m

for m > 0, so kK2 = K2 and V ′ is forced
to be a K2-line inside K. Hence, via K×-scaling we can assume V ′ = K2. But q(V )
is a nonzero K2-subspace of K meeting V ′ trivially, so it must be a complementary
K2-line; i.e., V ′ + q(V ) = K. Thus, G = D(G) by (iv) above, so by (v) there is
only one k-isomorphism class among the k-groups G produced by this construction
for a given pair (K/k, n) when [k : k2] = 2.

Explicitly, by taking V ′ = K2 in such cases, if we write q(V ) = K2α for
some α ∈ K −K2 then we can say that the construction of G rests on the triple
(K/k, α, n) (see Remark 8.2.1), but the isomorphism class does not depend on α.

In general, without any hypotheses on [k : k2], the identification of ZD(G)(D0)
with C0 in part (iii) shows that G = D(G) if and only if (V0)∗K0/k

= RK/k(GL1), so

a necessary condition for the perfectness of G is that K0 = K (as is required when
n = 1, but generally fails otherwise when [k : k2] > 2).

We have constructed pseudo-split absolutely pseudo-simple k-groups D(G) with
root system BCn in terms of linear-algebraic data (K/k, V ′, V, q) (provided that
K0 = K when n = 1), and in part (v) of Theorem 8.3.1 we characterized when
such k-groups are isomorphic in terms of simple operations on this data. But is
this construction exhaustive? There is a small complication: when n = 2 it is not
exhaustive (if [k : k2] > 8).

To understand what is special about the case n = 2, recall from Proposition
8.1.9 (with b as defined there) that if n > 2 then Kb = K, so Gb = HVb,K/k for

some nonzero kK2-subspace Vb ⊂ K satisfying k〈Vb〉 = K. However, we have
provided no reason that necessarily Vb = K, or equivalently that Gb should be
standard (whereas Gb is standard for every G as in Theorem 8.3.1)! Here is such
a reason when n > 3: in such cases every short root in the Cn-diagram is adjacent
to another short root, and together they generate a root system of type A2, so
we can use centralizers of codimension-2 tori and standardness for type-A2 in all
characteristics to conclude that Gb must be standard for all such b when n > 3.

But this reasoning does not work if n = 2, and in fact there are more k-
groups to be built (when [k : k2] > 8). In effect, we need to introduce additional
linear-algebraic data, to play the role of the root space for non-multipliable non-
divisible roots: a nonzero kK2-subspace V ′′ ⊂ K that satisfies k〈V ′′〉 = K. This
subspace must satisfy some conditions in relation to q(V ) and V ′ to ensure the
necessary condition that the c∨(GL1)-centralizer in Gc normalizes the b-root group,
where {2c, b} is a basis of the root system of type C2. Since 〈b, (2c)∨〉 = −1,
this normalizing property holds whenever V ′′ is a subspace of K over the subfield
K0 := k〈V0〉 ⊂ K that contains kK2 (where V0 := k · q(V ) + V ′); see [CGP, 9.8.3]
for the calculations. The case V ′′ = K recovers the construction of G in Theorem
8.3.1 for n = 2, so this is primarily of interest when V ′′ 6= K.

Consider the pseudo-split pseudo-reductive k-group G of minimal type with
root system of type BC2 provided by Theorem 8.3.1 using n = 2 and a 4-tuple
(K/k, V ′, V, q). Let V ′′ be a nonzero proper K0-subspace of K. (In [CGP, 9.8.3] it
is shown by elementary field-theoretic considerations that such V ′′ exists for some
choice (V ′, V, q) if and only if [K : kK2] > 4; this happens for some K/k if and



112 BRIAN CONRAD AND GOPAL PRASAD

only if [k : k2] > 8, ruling out local and global function fields.) Fix a basis {c, b}
of Φ(G,D0) = BC2 with multipliable c, and let G′′ be the k-subgroup of D(G)
generated by Gc and HV ′′,K/k ⊂ RK/k(SL2) = Gb. The following is established in
[CGP, 9.8.3, Prop. 9.8.4, Prop. 9.8.9]:

Proposition 8.3.4. The k-group G′′ is absolutely pseudo-simple of minimal
type with D0 as a split maximal k-torus, and K/k is the minimal field of definition
for its geometric unipotent radical. Moreover,

ZG′′(D0) = (V0)∗K0/k
× (V ′′)∗K/k

inside ZG(D0) = RK/k(D), φ|G′′ = iG′′ (so (ker iG′′)(ks) = 1), and (w, 1) ∈ G′′(k)
if 1 ∈ V ′ ∩ V ′′.

If (V ′,V , q,V ′′) is another such 4-tuple with V ′′ 6= K then the associated k-
group G ′′ is isomorphic to G′′ if and only if there exist λ, µ ∈ K× such that

V ′′ = µV ′′, V ′ = λV ′, V ′ + q(V ) = λ(V ′ + q(V )).

It is clear by consideration of the b-root group (' V ′′) that the k-groups pro-
duced by this result never arise among the pseudo-simple groups produced by The-
orem 8.3.1. Fortunately, essentially by reversing the long path of theoretical rea-
soning that motivated the conditions imposed in our constructions (including the
additional reasoning that explained why the case n = 2 might admit additional
possibilities beyond Theorem 8.3.1 but cases with n 6= 2 cannot), one can show
that we have constructed everything:

Theorem 8.3.5. Every pseudo-split absolutely pseudo-simple k-group of min-
imal type with minimal field of definition K/k for its geometric unipotent radical
and root system BCn is produced by the preceding constructions.

If [k : k2] = 2 then there is only one k-isomorphism class of such k-groups for
a given pair (K/k, n), and iG : G→ RK/k(G′) is bijective on k-points for such G.

Proof. See [CGP, Thm. 9.8.6] for a proof of exhaustiveness of the construc-
tions. (The K×-scaling flexibility allows us to arrange further that 1 ∈ V ′, and also
1 ∈ V ′′ for the additional rank-2 construction.) Uniqueness of the k-isomorphism
class given (K/k, n) when [k : k2] = 2 is then immediate via Remark 8.3.3.

It remains to show that if [k : k2] = 2 then iG is bijective on k-points. Since
(ker iG)(ks) = 1 for all of our constructions (due to the minimal type property),
we just need to check that iG(G(k)) generates G′(K). But G′ is a split connected
semisimple K-group that is simply connected, so it is generated by the K-points of
its root groups relative to a split maximal K-torus. Thus, it suffices to show that
iG is bijective between D0-root groups. Such bijectivity is clear for roots that are
neither multipliable nor divisible. For multipliable roots c the map Uc → RK/k(U ′2c)
is identified on k-points with the natural map V ′⊕V ' V ′⊕ q(V )→ K. But as we
noted in Remark 8.3.3, V ′ is a K2-line in K and q(V ) is a complementary K2-line
since [k : k2] = 2. �

In §7.4 the notion of root field and its associated properties (especially Propo-
sition 7.4.5) have been discussed only for absolutely pseudo-simple k-groups G such
that the irreducible root system Φ of Gks is reduced. We now extend this to cases
for which Φ is non-reduced, associating a “root field” to the longest (i.e., divisible)
roots over ks, exactly as in cases with a reduced root system.
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Let G be an absolutely pseudo-simple k-group of minimal type such that Gks
has a non-reduced root system. For a maximal k-torus T ⊂ G, Φ := Φ(Gks , Tks)
is of type BCn for n = dimT . If a ∈ Φ is divisible with root group denoted Ua
then (Gks)a := 〈Ua, U−a〉 is of minimal type and its maximal ks-torus S = a∨(GL1)
satisfies Φ((Gks)a, S) = {±a} (Example 7.1.7). The reducedness of this root system
implies that the notion of root field F ′a for (Gks)a is already defined.

Since the Weyl group W (Gks , Tks) acts transitively on the set of roots in Φ
with a given length, so it is transitive on the set of divisible roots, the purely
inseparable finite extension F ′a/ks is independent of a. Likewise, this extension is
independent of the choice of T and is ks-isomorphic to its Gal(ks/k)-twists. Such
ks-isomorphisms are unique and hence constitute a Galois descent datum, so there
is a unique purely inseparable finite extension F/k such that F ⊗k ks = F ′a over ks
for all such a (for all T ).

Definition 8.3.6. The root field of G is the extension F/k constructed above.

The possibilities for Gks are determined in Theorem 8.3.5, and the field F ⊗k ks
can be described in terms of the linear-algebraic and field-theoretic data entering
into those constructions. This yields the following result (proved in [CP, 9.1.1–
9.1.3]) that extends to such G what has been established (e.g., Proposition 7.4.5)
for absolutely pseudo-simple k-groups with a reduced root system over ks:

Proposition 8.3.7. Let G be an absolutely pseudo-simple k-group of minimal
type such that Gks has a non-reduced root system. Let K/k be the minimal field of
definition of Ru(Gk) ⊂ Gk, and let F/k be the root field.

Then kK2 ⊂ F ⊂ K, Gprmt
F has a non-reduced root system over Fs and root

field F , and the natural map G→ D(RF/k(Gprmt
F )) is an isomorphism

Remark 8.3.8. By definition, Gprmt
F is the maximal quotient of GF that is

pseudo-reductive of minimal type (i.e., Gpred
F /CGpred

F
, withGpred

F := GF /Ru,F (GF )).

The non-reducedness of the root system over Fs for Gprmt
F in Proposition 8.3.7 is a

special property of the subfield F ⊂ K over k since in general when [K : kK2] > 2
(as often occurs when [k : k2] > 2) there are proper subfields E ⊂ K over k such

that Gprmt
E has a reduced root system over Es; see [CGP, 9.8.17–9.8.18].

When [k : k2] = 2 something remarkable happens: the “minimal type” and
“pseudo-split” hypotheses in Theorem 8.3.5 are unnecessary. That is:

Proposition 8.3.9. Assume [k : k2] = 2. Every absolutely pseudo-simple k-
group G with a non-reduced root system over ks is pseudo-split and of minimal type,
and H1(k,G) = 1.

Proof. To verify that G is of minimal type, we may assume k = ks. Now the
pseudo-split property holds, so G is a central extension

(8.3.9) 1 −→ Z −→ G −→ G −→ 1

where Z = CG is a central unipotent k-subgroup scheme and G is of minimal
type and hence is produced by the pseudo-simple construction in Theorem 8.3.1.
Note that Z contains no nontrivial smooth connected k-subgroup (as G is pseudo-
reductive). It suffices to show that the central extenson (8.3.9) is split.

The splitting criterion from [CGP, Prop. 5.1.3] used in the proofs of Proposition
6.2.17 and Corollary 7.5.11 reduces this splitting problem to a calculation with a
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Cartan k-subgroup of G. One such Cartan k-subgroup is described in Theorem
8.3.1(iii), and the linear algebra data there simplifies a lot since [k : k2] = 2 (e.g.,
we can assume V ′ = K2 and q(V ) is a complementary K2-line in K). Hence,
although in general it appears to be very difficult to do calculations with (V0)∗K0/k

,

in the present case it becomes very tractable; see [CGP, Prop. 9.9.1] for the details.
This completes the proof that the “minimal type” property automatically holds!

Now we return to general k (not necessarily separably closed), and consider an
absolutely pseudo-simple k-groupH with root system BCn over ks and minimal field
of definition K/k for its geometric unipotent radical. The ks-group Hks is pseudo-
split and of minimal type, so it is in the unique ks-isomorphism class attached to the
pair (Ks/ks, n) as in Theorem 8.3.5. But over k itself there is likewise a unique (up
to k-isomorphism) pseudo-split absolutely pseudo-simple group G with root system
BCn and minimal field of definition K/k for its geometric unipotent radical. Thus,
H is a ks/k-form of G, so to prove H is pseudo-split it suffices to show that G has
no nontrivial ks/k-forms.

It remains to prove that H1(ks/k,Aut(Gks)) and H1(ks/k,G(ks)) vanish for
pseudo-split G. By Theorem 8.3.5, the natural map G(ks) → G′(Ks) is bijective.
Since ZG = 1 (Proposition 8.1.5), so G(ks) ⊂ Aut(Gks), if all automorphisms
of Gks are inner then we would have Aut(Gks) = G(ks) = G′(Ks), so the Galois
cohomology sets of interest would coincide with H1(Ks/K,G

′(Ks)). But G′ = Sp2n

as K-groups, and Sp2n has vanishing degree-1 Galois cohomology over every field
(i.e., a symplectic space is determined up to isomorphism by its dimension).

Our task is reduced to showing when k = ks that every k-automorphism ϕ
of G arises from a G(k)-conjugation. We can assume ϕ(D0) = D0, and since
NG(D0)(k)/ZG(D0)(k) = W (Φ(G,D0)) we can assume ϕ preserves a positive sys-
tem of roots Φ+. But Φ(G0, D0) has no nontrivial automorphism preserving Φ+,
so ϕ acts trivially on D0 and hence trivially on the commutative pseudo-reductive
ZG(D0). The effect of ϕK on G′ coincides with the action of a K-point t of the
adjoint torus D/ZG′ . But for the long simple root 2c in a basis for Φ(G′, D), the
action of t on iG(Uc(k)) = V ′ ⊕ q(V ) must preserve the K2-line iG(U2c(k)) = V ′

inside the K-line U ′2c(K). Since t acts on U ′2c(K) through scaling by (2c)(t), such
preservation means that (2c)(t) ∈ (K×)2. This latter property characterizes the
image of D(K) inside (D/ZG′)(K) for type-Cn, so t arises from a k-point of the
Cartan k-subgroup RK/k(D) of RK/k(G′). Since iG : G(k) → G′(K) is bijective
(Theorem 8.3.5), ϕ arises from G(k). �

Proposition 8.3.10. Let k be a field of characteristic 2 such that [k : k2] = 2,
and let G, K/k, and G′ be as in Theorem 8.3.5.

(i) If k is complete for a fixed nontrivial non-archimedean absolute value and
K is equipped with the unique extension of that absolute value then the
bijection G(k)→ G′(K) is a homeomorphism.

(ii) If k is a global function field then the natural map G(Ak) → G′(AK) on
adelic points is a homeomorphism.

The proofs of these assertions reduce to a direct verification at the level of
root groups and Cartan subgroups (using that the pseudo-reductive construction
in Theorem 8.3.1 is perfect when [k : k2] = 2; see Remark 8.3.3). For example, on
root groups for multipliable roots the map on points over a local field is K2⊕K → K
defined by (x, y) 7→ x+αy2 (for α ∈ K−K2), and this is visibly a homeomorphism.
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See [CGP, Prop. 9.9.4(2),(3)] for further details. It follows that for arithmetic
computations with pseudo-reductive groups over such fields k we can often replace
the intervention of such a k-group G with the associated symplectic K-group G′.

To conclude our discussion of absolutely pseudo-simple k-groups G of minimal
type with a non-reduced root system over ks, we consider their automorphisms.
Recall from Proposition 6.1.2 that for any pseudo-reductive group H over a field k
and any Cartan k-subgroup C, the functor AutH,C classifying automorphisms of H
restricting to the identity on C is represented by an affine k-group scheme AutH,C
of finite type whose maximal smooth closed k-subgroup ZH,C is commutative and
identity component Z0

H,C is pseudo-reductive.

Example 8.3.11. If H is a connected reductive group and T ⊂ H is a maximal
k-torus then ZH,T = T/ZG.

In §9.1–§9.2 we will discuss the classification of Galois-twisted forms of pseudo-
reductive groups H. This classification may appear to be a hopeless task, since
for absolutely pseudo-simple H there is no concrete description of the structure
of C in non-standard cases for types B, C, and BC in characteristic 2 when the
universal smooth k-tame central extension of H is not of minimal type (as occurs
in abundance for those root systems over every imperfect field k of characteristic 2
satisfying [k : k2] > 16; see [CP, App. B] for the construction of such k-groups).

Since ZH,C is unaffected by passage to the central quotient H/ZH that is al-
ways pseudo-reductive and of minimal type (see Lemma Lemma 9.1.9(ii)), and the
universal smooth k-tame central extension of H/ZH is of minimal type, analyz-
ing minimal-type cases over ks (where everything is pseudo-split) will yield that
ZH,C is connected for every pseudo-reductive group H (see Proposition 9.1.13)!
The structure of ZH,C will be crucial in §9.1–§9.2, especially the connectedness of
ZH,C (relevant to the notion of “pseudo-inner form”; see Definition 9.1.3, Lemma
9.1.9(ii), and Proposition 9.1.15). In the pseudo-split minimal-type case with C
containing a split maximal k-torus S of H, ZH,C will admit a concrete description
as a direct product indexed by a basis of Φ(H,S) (generalizing the familiar direct
product structure of the split maximal tori in the adjoint central quotient of a
split connected reductive group). This requires case-analysis depending on the root
system, after reducing to absolutely pseudo-simple H.

The case of root system BCn requires separate treatement, and is settled as
an application of our explicit description of all pseudo-split minimal type groups
with root system BCn in Theorem 8.3.1 and Proposition 8.3.4. To formulate this
application, we need to set up some notation. Let G be an absolutely pseudo-
simple k-group of minimal type with root system BCn over ks and minimal field
of definition K/k for its geometric unipotent radical. Let T ⊂ G be a maximal
k-torus, C = ZG(T ), and G′ = GK/Ru,K(GK) (a K-form of Sp2n). Define the
“adjoint torus” T ad over k to be the quotient of T corresponding to the quotient
T ′/ZG′ ⊂ G′/ZG′ of the K-torus T ′ := TK .

The action of the k-group ZG,C on G induces an action of (ZG,C)K on GK and
hence on G′ (since ZG,C is smooth). This latter action is trivial on T ′, so it defines
a k-homomorphism

f : ZG,C −→ RK/k(ZG′,T ′) = RK/k(T ′/ZG′) = RK/k(T ad
K ).

It therefore makes sense to define the subfield F ⊂ K to be the unique minimal
subfield over k such that f factors through RF/k(T ad

F ).
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Proposition 8.3.12. If n 6= 2 then F = K and if n = 2 then kK2 ⊂ F ⊂ K.
There exists a K-finite subfield F ′ ⊂ K1/2 for which ZG,C fits into a fiber square

ZG,C

f

��

θ // RF ′/k(TF ′)

��

RF/k(T ad
F ) // RF ′/k(T ad

F ′ )

using the natural maps along the bottom and right sides, and θ is uniquely deter-
mined. Moreover, among all F ′/K there is a unique such minimal extension F\/K.
The formation of F\/K commutes with separable extension on k.

If T is split and ∆ is a basis of Φ(G,T ) with unique multipliable root c then

via the identification of T with GL∆
1 using coroots we have

(8.3.12) ZG,C = RF\/k(GL1)×
∏

b∈∆−{c}

RF/k(GL1)

inside RF\/k(TF\
) ⊃ RK/k(TK).

The product expression (8.3.12) is always applicable over ks (as Tks is split),
so Proposition 8.3.12 implies that ZG,C is connected. The proof of Proposition
8.3.12 amounts to solving the following problem: given an automorphism ϕ′ ∈
ZG′,T ′(Ks) = (T ′/ZG′)(Ks), when does its action on G′(Ks) preserve the subgroup
G(ks)? This is largely a matter of systematic (though sometimes delicate) cal-
culations with root groups and Cartan subgroups. One first proves (8.3.12) via
computation with ks-points, and then recasts it in the fiber-square form that is
better-suited to Galois descent. See [CGP, Prop. 9.8.15] for further details.

9. Classification of forms

9.1. Automorphisms and Galois-twisting. The Existence and Isomor-
phism Theorems for split connected semisimple groups G over a field k characterize
isomorphism classes via root data. There are two approaches to classifying con-
nected semisimple groups G beyond the split case, over a general field k: Galois
cohomology associated to the split form, and the Tits classification that rests on
relative root systems (and treats the k-anisotropic case as a black box). The latter
is better-suited for generalization to the pseudo-semisimple case, but we first review
the context for each of these approaches.

The Galois cohomological approach rests on viewing a connected semisimple k-
group G as a ks/k-form of the unique split connected semisimple k-group G0 whose
root datum coincides with that of Gks . The set of such G (up to k-isomorphism)
for a fixed G0 is in bijection with H1(k,AutG0/k), where AutG0/k is the smooth
automorphism scheme of G0. The structure of AutG0/k informs this classification:
AutG0/k is a smooth affine k-group with identity component G0/ZG0 (defining a
notion of “inner form”) and constant component group equal to the automorphism
group of the based root datum (coinciding with the automorphism group of the
Dynkin diagram when G0 is simply connected or of adjoint type); e.g., AutG0/k =
G0/ZG0

when the Dynkin diagram does not admit a nontrivial automorphism. An
outcome of this approach is that G admits a unique quasi-split inner form.
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For example, if n > 2 then the An−1-diagram has automorphism group Z/2Z
and the non-split quasi-split k-forms of SLn are the special unitary groups SU(hn)
for the split hermitian form hn on k′

n
relative to a quadratic Galois extension

k′/k, where h2m(x, y) =
∑m
j=1(xjσ(y−j) + x−jσ(yj)) for m > 1 and h2m+1(x, y) =

h2m + x0σ(y0) for m > 1, with σ denoting the nontrivial k-automorphism of k′.
The Tits classification (announced by Tits [Ti1, 2.7.1] and completed by Sel-

bach [Sel]) rests on a choice of maximal split k-torus S ⊂ G and the relationship
between the relative root system Φ(G,S) of nontrivial S-weights on Lie(G) and
the absolute root system Φ(Gks , Tks) for a maximal k-torus T ⊃ S. The pre-
cise formulation involves the k-anisotropic group D(ZG(S)) (called the semisimple
anisotropic kernel) and actions of Gal(ks/k) on Dynkin diagrams associated to G
and D(ZG(S)); we will review this when we generalize it to the pseudo-semisimple
case. There does not exist a corresponding “existence theorem” for general k since
usually there is no way to describe the semisimple anisotropic kernel; see [Ti1,
Table II] for an existence theorem in the semisimple case over interesting fields k.

It is natural to ask if these approaches generalize to pseudo-semisimple k-groups
H. There are some reasons for optimism:

(i) The functor AutH/k : A AutA(HA) on k-algebras is represented by an

affine k-group scheme AutH/k of finite type [CP, Prop. 6.2.2]. Although
this k-group is generally not smooth (see [CP, Ex. 6.2.3] for examples over
any imperfect field), its maximal smooth closed k-subgroup Autsm

H/k can

be used to study ks/k-forms of H. We call such a form pseudo-inner if it
is obtained by twisting H against a class in H1(k, (Autsm

H/k)0). (In general

(Autsm
H/k)0 is larger than H/ZH ; see Remark 9.1.16.)

(ii) There is a robust theory of relative root systems and associated relative
root groups for arbitrary pseudo-reductive groups [CGP, C.2.13–C.2.28].

Remark 9.1.1. The existence of AutH/k for pseudo-semisimple H is not a
formality since existence fails for many commutative pseudo-reductive H, such as
Rk′/k(GL1) for any purely inseparable extension k′/k of degree p = char(k) > 0
(ultimately because for n > 1 the automorphism functor of Gn

a in characteristic p
is not representable; see [CP, Ex. 6.2.1]). The key to the existence proof is that
since (fiberwise) maximal tori in a smooth affine group scheme are conjugate fppf-
locally on the base [SGA3, XI, Cor. 5.4], if T ⊂ H is a maximal k-torus then
the representability of AutH/k is reduced to that of the T -stabilizer subfunctor of
AutH/k.

Over a finite extension of k this stabilizer subfunctor is covered by translates
of finitely many copies of the subfunctor AutH,T classifying automorphisms of H
restricting to the identity on T because the Z-span of the finite set Φ(Hks , Tks) has
finite index inside X(Tks) (as Hred

k
is semisimple). This subfunctor is represented

by an affine k-group scheme of finite type since H is perfect [CGP, Cor. 2.4.4,
Prop. A.2.11], so we are done. See [CP, Prop. 6.2.2] for further details.

Although in general there does not exist an automorphism scheme in the
pseudo-reductive case, there is a reasonable notion of “pseudo-inner form” beyond
the pseudo-semisimple case. This is inspired by the observation that for connected
reductive G, the natural map Aut0

G/k → Aut0
D(G)/k is an isomorphism because it
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is inverse to the natural isomorphism D(G)/ZD(G) ' G/ZG. If G is a pseudo-
reductive k-group then suitable use of the equality C · D(G) = G for a Cartan
k-subgroup C ⊂ G yields [CP, Lemma C.2.3]:

Lemma 9.1.2. The natural (Autsm
D(G)/k)0-action on D(G) uniquely extends to

an action on G.

This lemma motivates:

Definition 9.1.3. Let G be a pseudo-reductive k-group. We say G is quasi-
split if it admits a pseudo-parabolic k-subgroup B such that Bks is a minimal
pseudo-parabolic ks-subgroup of Gks . A ks/k-form of G is pseudo-inner if it is
classified by an element of the image of

H1(ks/k, (Autsm
D(G)/k)0(ks)) −→ H1(ks/k,Aut(Gks)).

There are difficulties with the Galois cohomological approach when studying
ks/k-forms of a pseudo-semisimple k-group H:

(i′) The geometric component group of Autsm
H/k is always naturally a sub-

group of the automorphism group of the based root datum of Hks [CP,
Rem. 6.3.6], but examples exist over every imperfect field for which it is
a proper subgroup [CP, Ex. 6.3.8, Ex. C.1.6]. Hence, there can be sub-
tleties when trying to characterize in Galois-cohomological terms those
ks/k-forms obtained via pseudo-inner twisting.

(ii′) The existence of a pseudo-split ks/k-form fails in every positive charac-
teristic [CP, Ex. C.1.2, C.1.6].

(ii′′) If char(k) = 2, [k : k2] > 8, and k has sufficiently rich Galois theory then
there exists a (non-standard) absolutely pseudo-simple k-group with root
system over ks of any type Bn, Cn, or BCn (n > 1) which does not admit a
quasi-split pseudo-inner ks/k-form; see Example 9.1.5. (These counterex-
amples are optimal because a pseudo-reductive group H over a general
field k admits a quasi-split pseudo-inner ks/k-form except possibly when
H is non-standard with char(k) = 2 and [k : k2] > 8 [CP, Thm. C.2.10];
the proof involves a degree-2 cohomological obstruction whose vanishing
characterizes the existence of a quasi-split pseudo-inner ks/k-form; this
obstruction is never seen in the semisimple case.)

Both (i′) and (ii′) are caused by field-theoretic obstructions that do not arise in
the absolutely pseudo-simple case away from characteristic 2 [CP, Prop. C.1.3(i),
Prop. 6.3.10].

Remark 9.1.4. In connection with (ii′) and (ii′′), it is natural to ask if a
pseudo-split ks/k-form or quasi-split pseudo-inner ks/k-form of a pseudo-reductive
k-group is unique when it exists. There are well-known affirmative results in the
connected reductive case, but the traditional proofs there rest on the Isomorphism
Theorem and Galois cohomological considerations respectively and neither of those
approaches works in the general pseudo-reductive case. (There is an Isomorphism
Theorem in the pseudo-split pseudo-reductive case [CP, Thm. 6.1.1], but it goes
beyond combinatorial invariants.) The Tits-style classification in §9.2 provides a
way around these problems to give affirmative answers to the uniqueness questions
in general; see Corollary 9.2.10.
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In characteristic 2, the phenomena in (i′) and (ii′) persist in the absolutely
pseudo-simple case. More precisely, (i′) occurs exactly for type D2n with n > 2 (a
priori, any absolutely pseudo-simple instance of (i′) must have an irreducible root
system over ks admitting a nontrivial diagram automorphism, so it is either Am

(m > 2) or Dm (m > 4) or E6, and hence must be standard by Theorem 7.4.8);
see Example 9.1.6 below. Likewise, the non-standard examples in (ii′′) with type
Bn, Cn, or BCn for n > 1 certainly fulfill (ii′); these are discussed in the following
example.

Example 9.1.5. In [CP, §C.3–§C.4] there are examples in characteristic 2 of
absolutely pseudo-split groups with any type B, C, or BC (with any rank n > 1)
which do not admit a pseudo-split ks/k-form; these also do not admit a quasi-split
pseudo-inner form, due to the absence of nontrivial diagram automorphisms (see
[CP, Lemma C.2.2]). All of these constructions ultimately rest on a single class of
examples for type A1 = B1 = C1, so we now sketch that core example; see [CP,
Ex. C.3.1] for further details.

Let k be a field of characteristic 2 admitting a quadratic Galois extension k′/k
with nontrivial automorphism σ, and let K/k be a nontrivial finite subextension
of k1/2. For K ′ := k′ ⊗k K we seek a k′-subspace V ′ ⊂ K ′ that generates K ′ as
a k′-algebra and whose K ′

×
-homothety class is stable under the action of σ but

for which no K ′
×

-multiple of V ′ is σ-stable. The idea is that HV ′,K′/k′ is then k′-
isomorphic to its σ-twist Hσ(V ′),K′/k′ , and if this k′-isomorphism can be chosen to
satisfy the cocycle condition then HV ′,K′/k′ admits a k-descent G. Such a k-group
G cannot admit any pseudo-split ks/k-form! Indeed, suppose G were such a form,
so Gk′ and Gk′ = HV ′,K′/k′ are pseudo-split k′s/k

′-forms of each other, and hence
are k′-isomorphic (by the uniqueness of pseudo-split forms). The description of G

in Theorem 7.2.5(ii) would then provide a σ-stable member of the K ′
×

-homothety
class of V ′ due to Proposition 7.2.3(ii), contradicting how V ′ was chosen.

To build (K/k, V ′) satisfying the above properties, we assume [k : k2] > 8 and
that Br(k) → Br(k′) has nontrivial kernel; e.g., k = κ(x, y, z) and k′ = L(y, z)
for a finite field κ of characteristic 2 and any quadratic Galois extension L/κ(x).
Via Tate cohomology, the nontrivial kernel of Br(k) → Br(k′) is identified with

k×/Nk′/k(k′
×

). Choose e ∈ k× − Nk′/k(k′
×

) and define t1 =
√
e ∈ k1/2 − k; since

[k : k2] > 8, we can extend {t1} to a triple {t1, t2, t3} that is part of a 2-basis of k.
Let K = k(t1, t2, t3). For a primitive element a of k′/k, the k′-subspace

V ′ = k′ + k′t1 + k′(t2 + at3) + k′t1(t2 + σ(a)t3) ⊂ K ′

is 4-dimensional and generates K ′ as a k′-algebra, and σ(V ′) = t1V
′. Moreover,

the “root field” {c′ ∈ K ′ | c′V ′ ⊂ V ′} is equal to k′. Since the σ-invariant element(
0 t1
1 0

)
∈ PGL2(K) = RK/k(PGL2)(k) ⊂ RK′/k′(PGL2)(k′)

has order 2 and its action on RK′/k′(SL2) carries Hσ(V ′),K′/k′ to HV ′,K′/k′ , it

defines the desired k′/k-descent datum. The property that no member of the K ′
×

-
homothety class of V ′ is σ-stable uses that V ′ has root field k′ and that the square
t21 = e ∈ k× is not a norm from k′.

Example 9.1.6. The phenomenon of absolutely pseudo-simple groups over im-
perfect fields k of characteristic 2 without a pseudo-split ks/k-form occurs in cases
of type D2n for any n > 2 whenever k admits a quadratic Galois extension k′/k.
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These arise as pseudo-reductive central quotients G = RK/k(GK)/Z for suitable
purely inseparable finite extensions K/k and the quasi-split non-split k-group G of
outer type D2n that is split by k′. The idea is that by choosing K/k suitably, there
are many k′-subgroups Z ′ between RK/k(µ2 × µ2)k′ and µ2 × µ2 such that σ∗(Z ′)
is distinct from Z ′ yet is carried to Z ′ by an involution swapping the µ2-factors (in-
duced by a diagram involution). The k-subgroup Z ⊂ RK/k((ZG )K) is a k′-descent
of Z ′, and pseudo-reductivity holds if RK/k(µ2 × µ2)k′/Z

′ contains no nontrivial
smooth connected k′-subgroup.

See [CP, C.1.3–C.1.5] for details of this construction and why it accounts for
essentially all standard absolutely pseudo-simple examples of (ii′). The hypotheses
on Z ′ obstruct the standard diagram involution from arising in π0(Autsm

G/k)(ks). If
n = 2 and k admits a cubic Galois extension then the preceding has a variant resting
on triality. This yields essentially all absolutely pseudo-simple groups (standard or
not) for which (i′) occurs; see [CP, Ex. 6.3.9, Prop. 6.3.10].

Overall, we see that the cohomological approach encounters problematic phe-
nomena over specific classes of fields, especially in characteristic 2. Yet remarkably,
a Tits-style classification theorem for pseudo-semisimple k-groups holds in complete
generality, with a characteristic-free proof. An essential ingredient in the success
of the Tits-style approach for general pseudo-semisimple k-groups is that if G is
an arbitrary pseudo-reductive k-group then we can understand the structure of the
k-group

ZG,C ⊂ AutG,C

introduced in Proposition 6.1.2 for Cartan k-subgroups C ⊂ G; e.g., using our
work in the minimal-type case, we shall see that ZG,C is always connected. (The
connectedness of ZG,C for absolutely pseudo-simple G of minimal type with a non-
reduced root system over ks was addressed in Proposition 8.3.12.)

Before we study ZG,C , and then deduce consequences for the classification in
the pseudo-semisimple case, we need to record a version of the Isomorphism Theo-
rem for pseudo-split pseudo-reductive groups. Consider a pseudo-reductive k-group
G admitting a split maximal k-torus T . The pseudo-split commutative pseudo-
reductive k-group ZG(T ) generally does not have a combinatorial description in
terms of Galois lattices. Moreover, the rank-1 pseudo-split absolutely pseudo-simple
k-subgroup Ga generated by root groups for opposite roots ±a generally does not
admit a notion of pinning when char(k) = 2. Indeed, HV,K/k in Proposition 7.2.3

only determines V up to K×-scaling, and when Ga is not of minimal type (as can
happen for suitable pseudo-split absolutely pseudo-simple k-groups G with root
system of any type B, C, or BC whenever [k : k2] > 16 [CP, App. B]) then we do
not even have a concrete description of Ga!

To circumvent the absence of an entirely combinatorial framework for describing
pseudo-split groups, we shall work directly with k-isomorphisms between certain
basic building blocks of the groups. Let G and G′ be pseudo-split pseudo-reductive
k-groups with respective split maximal k-tori T and T ′. Fix a k-isomorphism
f : ZG(T ) ' ZG′(T

′), as well as k-isomorphisms fa : Ga ' G′a′ for corresponding
roots in chosen bases ∆ ⊂ Φ(G,T ) and ∆′ ⊂ Φ(G′, T ′) that are assumed to be
carried to each other under the restriction fT : T ' T ′ of f .

Theorem 9.1.7 (Isomorphism Theorem). A k-isomorphism ϕ : G ' G′ re-
covering f and {fa}a∈∆ exists when this data satisfies the necessary compatibilities
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that fT ◦ a∨ = a′
∨

and fa is equivariant with respect to fT for all a ∈ ∆; ϕ is then
unique.

Remark 9.1.8. Since there is no uniform characteristic-free description of
Aut(Ga) akin to PGL2(k) in the reductive case, the characteristic-free proof of
Theorem 9.1.7 in [CP, Thm. 6.1.1] uses a method entirely different from the clas-
sical proof via rational homomorphisms and structure constants. Adapting an idea
of Steinberg in the reductive case, one builds the graph of the desired isomorphism
as a pseudo-reductive k-subgroup of G×G′ via Theorem 5.4.3. A variation on the
same graph idea yields a pseudo-reductive version of the Isogeny Theorem in [CP,
App. A].

Returning to our considerations with a general pseudo-reductive k-group G and
Cartan k-subgroup C ⊂ G, the key to the structure of ZG,C is that its formation
is extremely robust:

Lemma 9.1.9. Let G be a pseudo-reductive k-group.

(i) For a pseudo-reductive central quotient G of G, a Cartan k-subgroup
C ⊂ G, and its image C ⊂ G, the natural map ZG,C → ZG,C is an
isomorphism.

(ii) For the Cartan k-subgroup C ′ := C ∩ D(G) of D(G), the natural map
ZG,C → ZD(G),C′ induced by AutG,C → AutD(G),C′ is an isomorphism.

The proof of (i) is based on dynamic techniques with open cells and rational
homomorphisms. For the proof of (ii), the idea is that if k = ks then at the level
of an open cell, the root groups of G and D(G) relative to the unique maximal tori
of C and C ′ coincide. An automorphism that restricts to the identity on a Cartan
k-subgroup must carry each root group into itself and is determined by its effect on
root groups. Hence, it is plausible that the map ZG,C → ZD(G),C′ between smooth
k-groups is bijective on points valued in every separable extension of k, and so is a
k-isomorphism. See [CP, Lemma 6.1.2] for a complete proof of Lemma 9.1.9.

To understand the structure of ZG,C , by Lemma 9.1.9 we may assume G is
pseudo-semisimple. In such cases C is generated by analogues for rank-1 groups
when G is pseudo-split (such as when working over ks):

Lemma 9.1.10. Let G be a pseudo-split pseudo-semisimple k-group with a split
maximal k-torus T , and let ∆ be a basis of Φ(G,T ). Let C = ZG(T ). For the
Cartan k-subgroup Ca := C ∩ Ga = ZGa

(a∨(GL1)) inside Ga = 〈Ua, U−a〉, the
multiplication map

m :
∏
a∈∆

Ca −→ C

is surjective. If Gss
k

is simply connected and G is of minimal type then m is an
isomorphism.

Proof. To show that {Ca}a∈∆ generates C, we first note that {Ga}a∈∆ gen-
erates G by perfectness since W (Φ(G,T )) is generated by reflections ra coming
from NGa

(a∨(GL1))(k) for a ∈ ∆. Thus, if C ′ is the k-subgroup of C generated
by {Ca}a∈∆ then the pseudo-reductive k-groups C ′ · Ga = (C ′ n Ga)/Ca (a ∈ ∆)
generate G yet share the same Cartan k-subgroup ZC′·Ga(T ) = C ′. Hence, the
k-group G that they generate satisfies ZG(T ) = C ′ too, due to Theorem 5.4.3(i).

Now assume that G is of minimal type. This is inherited by each Ga (Exam-
ple 7.1.7), so iG|Ca

= iGa
|Ca

has trivial kernel for each a. This realizes Ca as a
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k-subgroup of RKa/k(a∨(GL1)Ka
) ⊂ RK/k(a∨(GL1)K) for each a. Assume further-

more that Gss
k

is simply connected, so the multiplication map
∏
a∈∆ a∨(GL1)→ T

is an isomorphism. Hence, applying RK/k((·)K) implies that the composite map∏
a∈∆

Ca
m−→ C

iG−→ RK/k(TK)

has trivial kernel, so kerm = 1. �

9.1.11. For G, C, and ∆ as in Lemma 9.1.10, the natural k-homomorphism

ϕ : AutG,C −→
∏
a∈∆

AutGa,Ca

carries ZG,C into
∏
a∈∆ ZGa,Ca

. Since C is generated by the Ca’s, it follows from
Theorem 9.1.7 in the special case of the trivial automorphism of C that ϕ is bijective
on k-points. But then by the same reasoning ϕ is bijective on k′-points for every
separable extension field k′/k (as we may use everything above after first applying
scalar extension up to such k′). Equivalently, the homomorphism

(9.1.11) ZG,C −→
∏
a∈∆

ZGa,Ca

between smooth k-groups is bijective on k′-points for all separable extensions k′/k.
But it is a general fact (reviewed in the proof of [CGP, Prop. 8.2.6]) that a ho-
momorphism between smooth groups of finite type over a field is an isomorphism
whenever it is bijective on points valued in all separable extension fields. Thus, we
have proved:

Lemma 9.1.12. The map (9.1.11) is an isomorphism.

Note that the map in (9.1.11) makes sense without assuming G to be perfect,
and in this generality it continues to be an isomorphism due to the identification
of ZG,C and ZD(G),C′ in Lemma 9.1.9(ii). In the connected reductive case, Lemma
9.1.12 recovers a well-known fact: if G is a split connected reductive group and
T ⊂ G is a split maximal k-torus then ZG,T = T/ZG '

∏
a∈∆ GL1 via t mod ZG 7→

(a(t)). In general, Lemma 9.1.12 opens the door to using concrete calculations in
rank-1 cases to prove:

Proposition 9.1.13. For a pseudo-reductive k-group G and Cartan k-subgroup
C ⊂ G, the smooth commutative affine k-group ZG,C is connected and even pseudo-
reductive.

To prove Proposition 9.1.13 we may assume k = ks (so G is pseudo-split), and
then Lemma 9.1.12 allows us to assume that G is absolutely pseudo-simple of rank
1. By Lemma 9.1.9(i) we may replace G with G/CG so that G is of minimal type,
and then pass to the universal smooth k-tame central extension (clearly also of
minimal type) so that Gss

k
' SL2.

The case of root system BC1 is a special case of Proposition 8.3.12, so we may
assume instead that the root system is A1. Hence, ker iG = 1 (Example 7.1.4), so
naturally G ⊂ RK/k(G′) for G′ := GK/Ru,K(GK). But for a choice of maximal
k-torus T ⊂ G we may pick a Levi k-subgroup L ⊂ G containing T (Theorem
5.4.4). Upon identifying L with SL2 carrying T to the diagonal k-torus D, we get

SL2 ⊂ G ⊂ RK/k(SL2)
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with D = T .
The possibilities for G = iG(G) are explicitly described in Theorem 7.2.5, so

essentially by definition of the root field F of the pair (G,T ) in Definition 7.4.3 we
compute that the resulting natural map Autk(G)→ PGL2(K) carries ZG,C(k) into

T ad(F ) = RF/k(T ad
F )(k) ⊂ RK/k(T ad

K )(k)

for T ad := T/(T ∩ZG). A more refined version of the calculation (working system-
atically over all separable extensions of k), given in [CP, Lemma 6.1.3], upgrades
this inclusion to an isomorphism of k-groups

(9.1.13) ZG,C ' RF/k(T ad
F ),

affirming the connectedness of ZG,C . (The same technique even provides such a
k-isomorphism for general k without assuming T is k-split.) This completes our
sketch of the proof of Proposition 9.1.13.

Remark 9.1.14. We can also prove a compatibility of ZG,C with Weil restric-
tion. To make this precise, let k′ be a nonzero finite reduced k-algebra, G′ a smooth
affine k′-group whose fiber over each factor field of k′ is pseudo-reductive, and C ′

a Cartan k′-subgroup of G′. Define the pseudo-reductive k-group G := Rk′/k(G′)
and its Cartan k-subgroup C := Rk′/k(C ′). By passage to the rank-1 minimal type
absolutely pseudo-simple case with Gss

k
' SL2, Theorem 9.1.7 and calculations us-

ing the explicit description of ZG,C (depending on whether the root system is BC1

or A1) yield a canonical isomorphism

Rk′/k(ZG′,C′) ' ZG,C ;

see [CP, Prop. 6.1.7] for further details.

We noted in Remark 9.1.1 that if G is pseudo-semisimple then its automorphism
functor (on k-algebras) is represented by an affine k-group scheme AutG/k of finite
type. Thus, it makes sense to consider its maximal smooth closed k-subgroup
Autsm

G/k. More specifically, H1(k,Autsm
G/k) classifies isomorphism classes of ks/k-

forms of G. (The study of k/k-forms of G is not of interest for imperfect k because
such forms, though smooth and connected, are usually not pseudo-reductive.)

The structure of (Autsm
G/k)0 is of interest for Galois cohomological purposes

(e.g., to define the notion of “pseudo-inner form”) and will also play an essential
role in the proof of a pseudo-semisimple Tits classification. In the semisimple case
this identity component is G/ZG, and for a maximal k-torus T ⊂ G we can describe
it as a quotient of a smooth group by a smooth central subgroup:

G/ZG ' (Go (T/ZG))/T,

where T is anti-diagonally embedded as a central k-subgroup of Go (T/ZG). The
connectedness of ZG,C yields an analogous description in the pseudo-semisimple
case:

Proposition 9.1.15. If C is a Cartan k-subgroup of a pseudo-semisimple k-
group G then the natural k-subgroup inclusion

(Go ZG,C)/C ↪→ (Autsm
G/k)0

is an equality. In particular, D((Autsm
G/k)0) = G/ZG.
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It suffices to prove equality on ks-points for general k, and by connectedness it
is enough to prove equality up to finite index. Since G(ks)-conjugation is transitive
on the set of maximal ks-tori, and any automorphism of Gks preserving Tks must
permute the finite set Φ(Gks , Tks) whose Z-span is of finite index in X(Tks) (as
Gred
k

is semisimple), it suffices to analyze automorphisms of Gks that restrict to the

identity on Tks . But such automorphisms act as the identity on ZGks
(Tks) = Cks

[CGP, Prop. 1.2.2], and AutG,C(ks) = ZG,C(ks). This completes the proof.

Remark 9.1.16. In contrast with the connected reductive case, for which the
smooth k-group Aut0

G/k = G/ZG is perfect, generally for pseudo-semisimple G the

k-group (Autsm
G/k)0 is not perfect. For example, if G = Rk′/k(SLp) for a nontrivial

purely inseparable finite extension k′/k in characteristic p > 0 then (Autsm
G/k)0 =

Rk′/k(PGLp) due to the description of ZG,C provided by [CGP, Thm. 1.3.9]. The

phenomenon of (Autsm
G/k)0 being strictly larger than G/ZG is the reason that we

speak of “pseudo-inner forms” rather than “inner forms” for pseudo-semisimple G.

Remark 9.1.17. An immediate consequence of Proposition 9.1.15 and the in-
variance of ZG,C with respect to passage to a pseudo-reductive central quotient of
G in Lemma 9.1.9(i) is that if G is pseudo-semisimple then (Autsm

G/k)0 is naturally
invariant under replacing G with a pseudo-reductive central quotient. The same
does not hold without restricting attention to the identity component, as we already
see in the connected absolutely simple case, such as for type-D2n.

9.2. Tits-style classification. The Tits classification of connected semisim-
ple groups G over a field k reinterprets parts of the Galois cohomological formu-
lation in terms of Dynkin diagrams with Galois action. We shall first review the
relationship between the two viewpoints, and then see how the use of Galois actions
on Dynkin diagrams sidesteps many difficulties seen in §9.1 when generalizing to
pseudo-semisimple groups (e.g., the absence of a pseudo-split ks/k-form, or of a
quasi-split pseudo-inner ks/k-form).

9.2.1. Let R = (X,Φ, X∨,Φ∨) be a reduced semisimple root datum, and ∆ a
basis of Φ. Let (G0, B0, T0, {Xa}a∈∆) be a pinned split connected semisimple k-
group with this based root datum (so for each a ∈ ∆, Xa is a nonzero element in the
a-root space of Lie(G0)); this pinned split connected semisimple k-group is unique
up to isomorphism. The subgroup Γ ⊂ AutG0/k(k) consisting of automorphisms
of (G0, B0, T0, {Xa}a∈∆) maps isomorphically onto the geometric component group
π0(AutG0/k)(ks), and the evident inclusion Γ ↪→ Aut(R,∆) is an equality due to
the Isomorphism Theorem for split connected semisimple groups. The subset

(9.2.1.1) H1(k,Aut(R,∆)) = H1(k,Γ) ⊂ H1(k,AutG0/k)

classifies the quasi-split k-forms of G0.
Every connected semisimple k-group with root datum R over ks has a unique

quasi-split inner k-form, so we fix a quasi-split form G of G0 and study its inner
forms; this consists of the image of the map

(9.2.1.2) f : H1(k,G/ZG) = H1(k,Aut0
G/k) −→ H1(k,AutG/k).

To describe H1(k,G/ZG) we may try to partition it according to the ks-rational
conjugacy class of minimal parabolic k-subgroups in an inner form of G, but this
runs into a complication: as a map of sets, f is generally not injective even when
it has trivial kernel as a map of pointed sets. For example, if G = G0 = SLn with
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n > 2 then we get the map H1(k,PGLn) → H1(k,PGLn o (Z/2Z)) whose fiber
through the Brauer class [A] of a central simple k-algebra A of dimension n2 is a
singleton if and only if [A] is 2-torsion [C3, Ex. 7.1.12].

A key idea in Tits’ approach is to use relative root systems and Gal(ks/k)-
actions on Dynkin diagrams to keep track of minimal parabolic k-subgroups while
interpreting H1(k,Aut0

G/k) in a useful manner, bypasing the failure of injectivity

of (9.2.1.2). This requires Tits’ “∗-action” of Gal(ks/k) on the Dynkin diagram
Dyn(Gks) for an arbitrary connected semisimple k-groupG (possibly k-anisotropic).

We now extend these methods to the pseudo-reductive setting, initially working
over ks to define a notion of “canonical diagram” before we bring in k-structures
and Galois actions. Let G be a pseudo-reductive ks-group. For each maximal ks-
torus T ⊂ G and minimal pseudo-parabolic ks-subgroup B ⊃ T in G , we get
a diagram Dyn(G ,T ,B) arising from the basis of the positive system of roots
Φ(B,T ) ⊂ Φ(G ,T ); we denote it as Dyn(T ,B) when G is understood from the
context. If (T ′,B′) is another such pair in G then there exists an element g ∈ G (ks)
that carries (T ,B) over to (T ′,B′) due to Proposition 4.1.3 and Theorem 4.2.9
(over ks). Any such g induces an isomorphism of diagrams (i.e., respecting the
pairings of roots and coroots)

Dyn(g) : Dyn(T ,B) ' Dyn(T ′,B′).

Likewise, if G is pseudo-semisimple then we can choose ϕ ∈ (Autsm
G/ks)0(ks) carrying

(T ,B) to (T ′,B′), and consider the induced isomorphism Dyn(ϕ) between Dynkin
diagrams.

Lemma 9.2.2. The isomorphism Dyn(g) is independent of the choice of g, and
likewise for Dyn(ϕ) in the pseudo-semisimple case.

Proof. We treat the case of Dyn(ϕ) with pseudo-semisimple G ; the other case
goes similarly (and is easier). Let C = ZG (T ), so C ⊂ B. Any two choices of ϕ
are related through composition against an element of the (T ,B)-stabilizer in

(Autsm
G/k)0(ks) = (G (ks) o ZG ,C (ks))/C (ks),

so we just need to prove that every automorphism in the (T ,B)-stabilizer acts
trivially on Dyn(T ,B). The action of ZG ,C (ks) on G restricts to the identity on C
and hence likewise on both T and Φ := Φ(G ,T ), so the ZG ,C (ks)-action preserves
B and acts as the identity on Dyn(T ,B). It therefore suffices to analyze the effect
of the (T ,B)-stabilizer in G (ks), which is to say elements n ∈ NG (T )(ks) that
preserve B. The class of such an n in W (G ,T ) = W (Φ) preserves the positive
system of roots Φ(B,T ), so n has trivial image on W (Φ). In other words, n ∈
ZG (T )(ks) = C (ks). �

We have built canonical isomorphisms among all diagrams Dyn(T ,B), transi-
tively with respect to choices of pairs (T ,B). Define the canonical diagram

Dyn(G )

as follows: a vertex consists of a compatible choice of vertex on Dyn(T ,B) for every
pair (T ,B) as above, where “compatibility” is meant in the sense of the preceding
canonical isomorphisms, and its edges, etc. are defined in a similar manner.

Now consider a pseudo-reductive k-group G. By definition, the ∗-action of
Gal(ks/k) on Dyn(Gks) makes each γ ∈ Gal(ks/k) carry a vertex a to its image
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(denoted γ ∗ a) under the composite isomorphism

Dyn(Gks) = Dyn(T ,B) ' Dyn(γT , γB) = Dyn(Gks)

(using γ-twisting in the middle via the canonical isomorphism Gks ' γ(Gks)) for
any T and B inside G := Gks as above. It is easily checked that γ∗a is independent
of the choice of (T ,B), so this definition is intrinsic to G (and ks/k). Explicitly,
if ∆ is the basis of Φ(B,T ) then γ ∗ a = wγ(γ(a)) where wγ ∈ W (Φ(Gks ,T )) is
the unique element carrying γ(∆) to ∆.

The ∗-action of Gal(ks/k) on Dyn(G) := Dyn(Gks) is continuous since the
open subgroup Gal(ks/k

′) acts trivially for k′/k such that Gk′ is pseudo-split.
The explicit description using wγ ’s shows that the evident equality of diagrams
Dyn(D(G)) = Dyn(G) is Gal(ks/k)-equivariant.

Example 9.2.3. If G is quasi-split, with B ⊂ G a ks-minimal pseudo-parabolic
k-subgroup and T ⊂ B a maximal k-torus, then there is a natural Gal(ks/k)-action
on X(Tks) that preserves the basis ∆ of Φ(Bks , Tks), so wγ = 1 for all γ ∈ Gal(ks/k).
Hence, this natural action on ∆ ⊂ X(Tks) coincides with the ∗-action.

Now assume G is pseudo-semisimple. There is an evident action of Aut(Gks) =
Autsm

G/k(ks) on the diagram Dyn(G), and by Lemma 9.2.2 points in (Autsm
G/k)0(ks)

act trivially, so this defines an action of the finite geometric component group
π0(Autsm

G/k)(ks) on Dyn(G). Let T ⊂ Gks be a maximal ks-torus. Since X(T )Q
is spanned by Φ(Gks , T ), and any automorphism of Gks that is the identity on T
must be the identity on C := ZGks

(T ) (i.e., it comes from ZG,C ⊂ (Autsm
G/k)0), we

see that the natural homomorphism

π0(Autsm
G/k) −→ Aut(Dyn(G))

is injective. In particular, triviality on Dyn(G) characterizes the automorphisms of
Gks that arise from the identity component of Autsm

G/k.

To give an application to the study of ks/k-twists of G, for each γ ∈ Gal(ks/k)
let cγ : γ(Gks) ' Gks be the canonical ks-isomorphism arising from the k-descent
G. A ks/k-twist of G is built from ks-isomorphisms γ(Gks) ' Gks of the form
fγ ◦ cγ for ks-automorphisms fγ ∈ Autks(Gks) = AutG/k(ks) satisfying the cocycle
condition fγ′γ = fγ′ ◦ γ′(fγ) and the “continuity” condition fγ = 1 for all γ in
some open subgroup of Gal(ks/k). Our characterization of (Autsm

G/k)0(ks) inside

AutG/k(ks) via triviality of the action on Dyn(G) implies that we can analyze
whether or not a given ks/k-twist of G arises from a continuous 1-cocycle γ 7→ fγ
valued in (Autsm

G/k)0(ks) by keeping track of the ∗-action on the canonical diagram

Dyn(G) throughout the twisting process. This has the following useful immediate
consequence:

Proposition 9.2.4. The set H1(k, (Autsm
G/k)0) classifies isomorphism classes

of pairs (H,ϕ) consisting of a ks/k-form H of G and a ∗-compatible isomorphism
of diagrams ϕ : Dyn(H) ' Dyn(G) induced by a ks-isomorphism Hks ' Gks . (The
trivial class corresponds to such pairs for which ϕ arises from a k-isomorphism.)

Consider a maximal split k-torus S ⊂ G and a minimal pseudo-parabolic k-
subgroup P ⊂ G containing S. The set of such pairs (S, P ) is acted upon transitively
by G(k)-conjugation (Theorems 4.2.9 and 5.1.3), and by minimality P = M n U
for M := ZG(S) and the k-split U := Ru,k(P ) (Proposition 5.1.2). Fix one such
(S, P,M). It will be convenient to keep track of the k-anisotropic D(M) only
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up to a central quotient. Since the central quotient M/ZM is pseudo-reductive
with trivial center (Proposition 6.1.1) and inherits k-anisotropicity from M (as for
a central quotient of any k-anisotropic smooth connected affine k-group), the k-
anisotropic pseudo-semisimple derived group D(M/ZM ) also has trivial center (by
[CGP, Lemma 1.2.5(ii), Prop. 1.2.6]) and thus coincides with D(M)/ZD(M).

Remark 9.2.5. The formation ofM commutes with Weil restriction (so likewise
for the formation of D(M) and D(M/ZM )). To state this precisely, suppose
for simplicity that G = Rk′/k(G′) for a finite extension field k′/k and pseudo-
semisimple k′-group G′. There is a unique maximal split k′-torus S′ ⊂ G′ such that
S is the maximal split k-torus in Rk′/k(S′), and Rk′/k(ZG′(S

′)) = ZG(Rk′/k(S′))
(see [CGP, Prop. A.5.15]), so we define M ′ := ZG′(S

′). The precise claim is that
the obvious inclusion Rk′/k(M ′) ⊂M is an equality.

The explicit description of the natural map q : Gk′ → G′ on points valued in
k′-algebras (see [CGP, Prop. A.5.7]) shows that q carries Sk′ isomorphically onto
S′. Thus, q(Mk′) ⊂M ′. Since the composition of Rk′/k(q) and G ↪→ Rk′/k(Gk′) is
the canonical equality G = Rk′/k(G′), we obtain M ⊂ Rk′/k(M ′) as required.

For a maximal ks-torus T ⊂Mks , the minimal pseudo-parabolic ks-subgroups
B ⊂ Gks containing T and contained in Pks are permuted transitively by the
subgroup NMks

(T )(ks) ⊂ M(ks) since (i) pseudo-parabolic ks-subgroups of Pks
are pseudo-parabolic in Gks (Corollary 4.3.5), and (ii) the set of such ks-subgroups
of Pks is in bijective correspondence with the set of pseudo-parabolic ks-subgroups
of (P/U)ks = Mks [CGP, Prop. 2.2.10]. Thus, the natural subdiagram inclusion
Dyn(Mks ,T ,B/Uks) ↪→ Dyn(Gks ,T ,B) defines a subdiagram inclusion

ι : Dyn(D(M/ZM )) = Dyn(D(M)) = Dyn(M) ↪→ Dyn(G)

that is independent of all choices and so is ∗-compatible.

Remark 9.2.6. Let T ⊂ M be a maximal k-torus, and let ∆ be the basis
of Φ(Gks , Tks) corresponding to a minimal pseudo-parabolic ks-subgroup of Pks
containing Tks . Denote by ∆0 the set of roots in ∆ with trivial restriction to
Sks . The theory of relative root systems developed in [CGP, C.2.13ff.] ensures
that P corresponds to a basis k∆ of the relative root system Φ(G,S) and that
restriction to Sks defines a surjection ∆−∆0 → k∆ whose fibers are the orbits for
the ∗-action on ∆−∆0. Under the labeling of G(ks)-conjugacy classes of pseudo-
parabolic ks-subgroups of Gks by subsets of ∆ = Dyn(G), Pks corresponds to ∆0;
i.e., ∆0 is a basis Φ(Mks , Tks). The inclusion ι thereby specifies the set ∆0 of “non-
distinguished” roots inside ∆ as in Tits’ notion of index defined in [Ti1, 2.3] for
semisimple G.

Consider 4-tuples (G , τ,M , j) consisting of a pseudo-semisimple ks-group G , a
continuous action τ of Gal(ks/k) on the canonical diagram Dyn(G ), a k-anisotropic
pseudo-semisimple k-group M with trivial center, and a Gal(ks/k)-equivariant sub-
diagram inclusion j : Dyn(M ) ↪→ Dyn(G ). For example, any pseudo-semisimple
k-group G gives rise to such a 4-tuple (Gks , ∗,D(M/ZM ), ι) as above.

Definition 9.2.7. An isomorphism (G , τ,M , j) ' (G ′, τ ′,M ′, j′) consists of
a ks-isomorphism f : G ' G ′ such that Dyn(f) intertwines τ and τ ′ and a k-
isomorphism f0 : M 'M ′ such that j′ ◦Dyn(f0) = Dyn(f) ◦ j.

The Tits-style classification is:
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Theorem 9.2.8. The isomorphism class of a pseudo-semisimple k-group G is
determined by the isomorphism class of the associated 4-tuple (Gks , ∗,D(M), ι).

The main task in the proof of Theorem 9.2.8 is to show that if G′ is a second
pseudo-semisimple k-group and we define M ′ := ZG′(S

′) for a maximal split k-torus
S′ ⊂ G′ then the existence of an isomorphism of 4-tuples

(f, f0) : (G′ks , ∗
′,D(M ′/ZM ′), ι

′) ' (Gks , ∗,D(M/ZM ), ι)

implies triviality of the class of G′ in H1(k,Autsm
G/k). Inspired by Tits’ simplification

(and correction) of his proof in the semisimple case, we will repeatedly perform
“reduction of the structure group” until we reach a structure group with trivial
degree-1 Galois cohomology; the analysis of the final structure group involves some
new problems that one does not encounter in the semisimple case. We sketch some
key ideas, and refer the reader to [CP, 6.3.11–6.3.16] for complete details.

The requirement in Definition 9.2.7 that Dyn(f) is compatible with ∗-actions
implies that the 1-cocycle c : γ 7→ f ◦ (γf)−1 is valued in the group of ks-
automorphisms of Gks whose effect on Dyn(Gks) is trivial, so c expresses G′ as
a pseudo-inner ks/k-form of G. That is, we have achieved reduction of the struc-
ture group to

(Autsm
G/k)0 = (Go ZG,C)/C

with C := ZG(T ) for a maximal k-torus T ⊂M .
Let P ⊂ G and P ′ ⊂ G′ be minimal pseudo-parabolic k-subgroups. By Remark

9.2.6 and the compatibility of (f, f0) with ι and ι′, the G(ks)-conjugacy class of Pks
corresponds to the G′(ks)-conjugacy class of P ′ks . In other words, by composing
f with a G(ks)-conjugation (i.e., changing c by a coboundary valued in the image
of G(ks) in (Autsm

G/k)0(ks)) it can be assumed that f(Pks) = P ′ks . This achieves a

further reduction of the structure group to the stabilizer of P in (G o ZG,C)/C.
Since NG(P ) = P by Proposition 4.3.6, this stabilizer coincides with (PoZG,C)/C.

Since P = M n U for a k-split smooth connected unipotent k-group U , the
structure group can be reduced further still, to

(M o ZG,C)/C = (D(M) o ZG,C)/C ′

for the Cartan k-subgroup C ′ := ZD(M)(T
′) in D(M) where T ′ := T ∩D(M) (and

ZG,C preserves M = ZG(S) inside G since it acts trivially on S ⊂ C).
For the natural map

q : (D(M) o ZG,C)/C ′ −→ (Autsm
D(M)/k)0 = (D(M) o ZD(M),C′)/C

′,

via Proposition 9.2.4 applied to D(M) we see that H1(q) carries the class of c to
the class of the pair (D(M ′),Dyn((f0)ks)). This latter class is trivial since f0 is
a k-isomorphism, so we achieve a final reduction of the structure group to ker q
provided that q is a smooth surjection.

In an evident manner, q arises from the natural restriction map

ρ : ZG,C −→ ZD(M),C′ .

This identifies ker q with ker ρ, so we are reduced to proving:

Proposition 9.2.9. The map ρ is surjective and ker ρ ' RF/k(GL1) for a
finite reduced k-algebra F .
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For a finite Galois splitting field E/k of T , Lemma 9.1.12 identifies ρE with
the projection from a ∆-indexed product onto the ∆0-indexed subproduct. Thus,
ρ is surjective with smooth connected kernel. In particular, ker ρ is a commutative
pseudo-reductive k-group.

The determination of ker ρ as a k-group (rather than just an E-group) is a
delicate problem in Galois descent because the factor fields of the k-algebra F
will not generally be separable over a purely inseparable extension of k (an issue
that does not arise in the semisimple case). Proposition 6.1.1 and Lemma 9.1.9(i)
allow us to assume ZG = 1, so by Corollary 3.2.5 (and Remarks 9.1.14 and 9.2.5)
we may assume G is absolutely pseudo-simple. The advantage of the absolutely
pseudo-simple case is that in such cases F will turn out to be a product

∏
α∈k∆ Fα

where each Fα is a field that is a compositum of separable and purely inseparable
extensions of k.

The crucial input over E is that for each a ∈ ∆ we have

Z(GE)a,(CE)a ' RF ′a/E
(GL1)

for a purely inseparable finite extension F ′a/E (by Proposition 8.3.12 when (GE)a
is of type BC1, and by (9.1.13) when (GE)a is of type A1). The extension F ′a/E
depends only on the length of a since NG(T )(E) acts transitively on the set of roots
with a given length (as G is now absolutely pseudo-simple). In particular, the purely
inseparable extensions F ′a/E coincide for all a in an orbit for the ∗-action on ∆, so
by Galois descent F ′a = Fa ⊗k E for a canonically determined purely inseparable
finite extension Fa/k.

By using the link between the ∗-action and relative root systems, one finds
(after some work) that if {ai} is a set of representatives for the ∗-action on ∆−∆0

then the E/k-descent ker ρ of ker ρE =
∏
a∈∆−∆0

RF ′a/E
(GL1) is

∏
i RLai

Fai
/k(GL1)

where La ⊂ ks corresponds to the stabilizer of a in Gal(ks/k) under the ∗-action.
Thus, we may take F to be

∏
i Fi for Fi := LaiFai (so the index set is identified

with k∆). This completes our sketch of the proof of Theorem 9.2.8.
The following application of Theorem 9.2.8 and its proof circumvents problems

that arose in Remark 9.1.4.

Corollary 9.2.10. Let G be a pseudo-reductive group over a field k. Up
to k-isomorphism, G admits at most one pseudo-split ks/k-form and at most one
quasi-split pseudo-inner form.

In the pseudo-semisimple case, the pseudo-split assertion is an immediate con-
sequence of how the pseudo-split property is expressed in the Tits-style classification
in Theorem 9.2.8. Indeed, suppose G and G′ are pseudo-split pseudo-semisimple k-
groups that are ks/k-forms of each other. The associated 4-tuples are (Gks , τ, 1, ι)
and (G′ks , τ

′, 1, ι′), where the ∗-actions τ and τ ′ on the respective canonical dia-
grams of Gks and G′ks are trivial and the diagram inclusions ι and ι′ are vacuous
since the canonical diagram of the trivial group is empty. Hence, these 4-tuples are
isomorphic, so G ' G′! The general pseudo-reductive case can be deduced from
the settled pseudo-semisimple case by close study of Cartan k-subgroups containing
split maximal k-tori; see [CP, Prop. C.1.1].

The proof of the quasi-split assertion in Corollary 9.2.10 rests on the work with
Galois descent in the proof of the Tits-style classification for the pseudo-semisimple
D(G) (e.g., Proposition 9.2.9); for further details see [CP, Prop. C.2.8].
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In view of Corollary 9.2.10, it is natural to ask for a characterization (e.g., in
terms of field-theoretic or linear-algebraic data) for when a given absolutely pseudo-
simple ks-group admits a descent to a pseudo-split (absolutely pseudo-simple) k-
group. This is addressed in [CP, Rem. C.2.13], and a satisfactory characterization
is given there away from characteristic 2 (largely due to Theorem 7.4.8 and Propo-
sition 7.5.10); this is not to be confused with the task of building a pseudo-split
ks/k-form (which can fail to exist in the absolutely pseudo-simple case in every
positive characteristic) since no initial k-group has been given.

Remark 9.2.11. The techniques in the proof of Theorem 9.2.8 can be used
to analyze the relative rank of absolutely pseudo-simple groups of type F4 over
imperfect fields k of characteristic 2. In the connected semisimple case the only
possible relative ranks are 0, 1, or 4 [Spr, 17.5.2(i)]. In the pseudo-semisimple
case relative rank 3 remains impossible, but relative rank 2 can occur (and the
possibilities with k-rank 2 are classified by conformal isometry classes of certain
anisotropic quadratic forms over k); this is addressed in [CP, App. D].

10. Structural classification

10.1. Exceptional constructions. So far we have encountered three classes
of non-standard absolutely pseudo-simple k-groups (of minimal type) with a re-
duced root system over ks:

(i) the k-groups SO(q) in §7.3 for regular quadratic spaces (V, q) satisfying
1 < dimV ⊥ < dimV over imperfect fields k of characteristic 2,

(ii) basic exotic k-groups in §7.5 for type G2 in characteristic 3 and types Bn
(n > 1), Cn (n > 1), and F4 in characteristic 2,

(iii) the pseudo-split k-groups G in Theorem 7.5.14 over imperfect fields of
characteristic 2; these have root system Bn or Cn with n > 2 and de-
pend on some auxiliary field-theoretic and linear-algebraic data, and Gss

k
is simply connected.

We shall now recall key features of the first two constructions so that we have some
context for the additional constructions that remain to be given (recovering (iii) in
the pseudo-split case).

The groups arising in (ii) are always non-standard and exist over every im-
perfect field of characteristic 2 or 3. Moreover, for types G2 in characteristic 3
and F4 in characteristic 2 we saw in Corollary 7.5.11 that (up to purely inseparable
Weil restriction) they account for all deviations from standardness in the absolutely
pseudo-simple case with those root systems over ks. Hence, for the purpose of an
exhaustive description of all non-standard groups, the main work is in character-
istic 2 for types B, C, and BC. We studied type BC in the (pseudo-split) minimal
type case in §8, so in this section we largely focus on types B and C (with a mini-
mal type hypothesis). In case (i) above, the ks-group SO(q)ks has root system Bn
where dim(V/V ⊥) = 2n, and SO(q) is non-standard except precisely when n = 1
and q(V ⊥)1/2 is a line over a nontrivial extension field of k inside k1/2 (so SO(q)
is non-standard for some (V, q) over k with n = 1 if and only if [k : k2] > 2);
see Remark 7.3.2. Further work (see [CP, Prop. 7.2.2]) shows that isomorphisms
between such SO(q) and SO(q′) arise from conformal isometries between (V, q) and
(V ′, q′), akin to the well-known case of connected semisimple groups of adjoint type
B.
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Since GO2n+1 = GL1 × SO2n+1 and SO2n+1 = AutSO2n+1/k, by Hilbert 90 the
ks/k-forms of SO2n+1 are the k-groups SO(q) for non-degenerate quadratic spaces
(V, q) of dimension 2n+1 such that qks is conformal to the standard split quadratic
space q2n+1. Such conformality over ks always holds since in the odd-dimensional
non-degenerate case in characteristic 2 we can arrange for the quadratic form to be
x2 on the defect line by k×s -scaling. In contrast, for regular degenerate q as above,
SO(q) is generally a proper k-subgroup of Autsm

SO(q)/k (due to “extra” conformal
isometries arising from an action of the short root field when it is larger than k;
see Example 7.4.6). This suggests that for (V, q) over ks, the ks-group SO(q) may
have a k-descent that is not an SO(q′).

To motivate where to find such additional k-descents, recall that the automor-
phism scheme of a smooth quadric hypersurface in P2n is a form of GO2n+1/GL1 =
SO2n+1. This generalizes to certain non-smooth quadrics:

Proposition 10.1.1. Let D be a geometrically integral non-smooth quadric in
a Severi–Brauer variety X over k. Assume D is regular at its ks-points. Then
Autsm

D/k is connected and affine, and GD := D(Autsm
D/k) is absolutely pseudo-simple

of type B with trivial center. The Cartan k-subgroups of GD are tori.

See [CP, Rem. 7.3.2, Prop. 7.3.3] for a proof of this result. IfX(k) 6= ∅ thenD '
(q = 0) ⊂ P(V ∗) = X for some (V, q) as above (the injectivity of q|V ⊥ is equivalent
to the regularity hypothesis on D), so GD = SO(q) by [CP, Prop. 7.3.3(iii)]. Using
general X, the k-groups GD generalize the SO(q)-construction.

Remark 10.1.2. For GD with ks-rank n > 2, the root field is equal to k and the
minimal field of definition K/k for its geometric unipotent radical satisfies K2 ⊂ k.
To see this we may assume k = ks, so GD ' SO(q) for some (V, q) as above. The
long root groups of SO(q) are 1-dimensional (see [CP, Prop. 7.1.3]), so the root
field is k, and Theorem 7.4.7(iii) implies that K2 is contained in the root field.

Remarkably, the k-groups GD are exactly the non-reductive absolutely pseudo-
simple groups G whose center is trivial and whose Cartan subgroups are tori. (Note
that any such G is trivially of minimal type, since ZG = 1.) The idea of the proof is
that since D depends functorially (with respect to isomorphisms) on GD by [CP,
Prop. 7.3.3(ii), Rem. 7.3.2], it suffices to check the result after passing to a finite
Galois extension on k to reduce to the case where G contains a split maximal k-torus
T . In those cases the pseudo-split k-subgroups Ga = 〈Ua, U−a〉 for a ∈ Φ(G,T )
may have nontrivial center (unlike G) but inherit the minimal type property from
G (Example 7.1.7) and hence fall into the rank-1 classification scheme in Theorem
7.2.5. The Cartan subgroups of such Ga must be tori when the same holds for G,
so this severely limits the possibilities for such Ga. By taking that into account,
one finds that the constructions SO(q) for “pseudo-split” (V, q) with varying q|V ⊥
are sufficient to exhaust all possibilities for G in accordance with the Isomorphism
Theorem (i.e., Theorem 9.1.7) because of the assumption that the Cartan subgroups
(whose structure is generally mysterious) are tori. See [CP, Prop. 7.3.7] for further
details.

Within the class of k-groups of the form GD, the ones arising as an SO(q) have
an intrinsic characterization:

Proposition 10.1.3. For D as above, the following conditions are equivalent:

(i) GD ' SO(q) for some (V, q),
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(ii) GD contains a Levi k-subgroup,
(iii) the Severi–Brauer variety X is trivial (i.e., X = PN

k for some N).

The equivalence of (i) and (ii) is [CP, Prop. 7.3.5], and the equivalence of these
with (iii) is (part of) [CP, Thm. 7.3.6].

Remark 10.1.4. The construction of Levi k-subgroups of SO(q) implies that
the non-empty non-smooth locus of D has codimension in D equal to 2n, where
(GD)ks has root system Bn. Indeed, we may assume k = ks, so D = (q = 0) with

q = x1x2 + · · ·+ x2n−1x2n + c0y
2
0 + · · ·+ cdy

2
d

in suitable projective coordinates on PN
k for some n > 1 and d = N − 2n > 0;

here, c0, . . . , cd are linearly independent over k2. The root system for SO(q) = GD
is Bn, and the singularities in Dk are the points where x1, . . . , x2n vanish and∑√

cjyj = 0. Hence, the singular locus of Dk is a linear space in PN
k

of codimension
2n+1, so it has codimension 2n in the hypersurface Dk. The formation of the non-
smooth locus commutes with extension of the ground field, so this closed locus in
D has codimension 2n as well.

The GD-construction goes beyond the SO(q)-construction even in arithmeti-
cally interesting cases: for every n > 2 and local function field k over a finite field
of characteristic 2 there exist basic exotic k-groups G of type Bn that have k-rank
< n − 1, and then G /ZG is such a GD that is not of the form SO(q) (see [CP,
Ex. 7.2.4]). The short root field of this GD is k1/2, and G admits a pseudo-split
ks/k-form (as does any basic exotic k-group!), so its maximal central quotient GD
does as well. This pseudo-split ks/k-form of GD admits a Levi k-subgroup by The-
orem 5.4.4 and so must be an SO(q′) by Proposition 10.1.3. Hence, this GD is not
obtained by the SO(q)-construction but is related to it through ks/k-twisting.

Over general imperfect fields k of characteristic 2, the class of k-groups GD
goes beyond even Galois-twists of the k-groups SO(q) (though that can only occur
if [k : k2] > 8, as we shall soon see). To understand this, first note that every SO(q)
admits a pseudo-split ks/k-form H [CP, Prop. 7.1.2]. Any pseudo-split pseudo-
reductive k-group admits a Levi k-subgroup (Theorem 5.4.4), so H = SO(q′) for
some (V ′, q′) by Proposition 10.1.3. Thus, it is equivalent to determine if GD admits
a pseudo-split ks/k-form. A subtle degree-2 cohomological obstruction implies that
such a pseudo-split form exists if [k : k2] 6 4 [CP, Cor. C.2.12]. This is optimal
because if [k : k2] > 8 and k has sufficiently rich Galois theory (more specifically,
if k admits a quadratic Galois extension k′/k such that ker(Br(k) → Br(k′)) 6= 1)
then for every n > 1 there exist k-groups GD with ks-rank n which do not admit
a pseudo-split ks/k-form (e.g., the maximal central quotients of the type-B groups
constructed in [CP, C.3.1, C.4.1] are such k-groups).

We shall now build upon the Severi–Brauer construction GD via fiber products
and universal smooth k-tame central extensions to make “exceptional” construc-
tions that account for all non-standard absolutely pseudo-simple G of minimal type
with root system Bn or Cn (n > 1) over ks, with k any imperfect field of charac-
teristic 2. By considering universal smooth k-tame central extensions, it suffices to
make such k-groups G with Gss

k
simply connected.

Remark 10.1.5. In what follows, the “minimal type” hypothesis is an addi-
tional constraint precisely when [k : k2] > 16. To explain this, let Φ be a root
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system of type B or C (with rank n > 1), and consider absolutely pseudo-simple
k-groups G such that Gks has root system Φ and Gss

k
is simply connected. If

[k : k2] 6 8 then Gabber proved that G is automatically of minimal type [CP,
Prop. B.3.1, Prop. 4.3.3(ii)]. (The core of his proof is a study of the possibilities for
V ∗K/k when K2 ⊂ k and [K : k] 6 8 in order to use a splitting criterion for central

extensions in [CGP, Prop. 5.1.3] to show that the minimal type central quotient
map G → G/CG is an isomorphism. This leads to the verification of a property
introduced in Definition 10.2.9 that will be proved equivalent to “minimal type”
in Proposition 10.2.10 when Gss

k
is simply connected.) In contrast, if [k : k2] > 16

then there exist such G over k that are not of minimal type; see [CP, B.1, B.2] for
the construction.

Consider D as above, so GD has root system Bn over ks for some n > 1. If
n > 2 then the root field of GD is k by Remark 10.1.2. But if n = 1 then GD of
type A1 can have a root field larger than k. This explains the additional condition
on the root field imposed in the rank-1 case of the following definition (ensuring
that in such cases there is no intervention of a nontrivial Weil restriction).

Definition 10.1.6. For n > 1, a type-Bn generalized basic exotic k-group is
the universal smooth k-tame central extension G of a k-group of the form GD for
a non-smooth geometrically integral quadric D in a Severi–Brauer variety over k,
provided that GD has root field k if the non-smooth locus in D has codimension 2.

In this definition, G/ZG recovers GD since the k-groups GD and G/ZG have
trivial center (see Proposition 6.1.1), and the codimension-2 case at the end corre-
sponds to GD with ks-rank 1 due to Remark 10.1.4. The k-groups G in Definition
10.1.6 are absolutely pseudo-simple and of minimal type (see [CP, Lemma 5.3.2] for
the latter), and for any separable extension k′/k of fields a k-group G is generalized
basic exotic of type B if and only if Gk′ is (as the same holds for groups arising from
the GD-construction, due to the characterization of that construction in terms of
non-reductive absolutely pseudo-simple groups whose Cartan subgroups are tori).

For any absolutely pseudo-simple k-group H with a reduced root system over
ks, the root field and minimal field of definition over k for the geometric unipo-
tent radical are unaffected by passage to a pseudo-reductive central quotient ([CP,
Rem. 3.3.3] and Proposition 6.2.2). Hence, G has root field k and the minimal field
of definition K/k for its geometric unipotent radical satisfies K2 ⊂ k.

For n > 2, the basic exotic k-groups of type Bn are precisely the k-groups G in
Definition 10.1.6 for which the short root field F< coincides with minimal field of
definition K/k for the geometric unipotent radical (as may be checked over ks via
Proposition 7.2.3(ii) and Theorem 7.5.14 over ks with V = Ks and V> a ks-line).
The link to the basic exotic construction goes further: for any G as in Definition
10.1.6 with n > 2 and minimal field of definition K/k for its geometric unipotent
radical, we shall soon give a canonical procedure to “fatten” its short root groups
over ks to become RKs/ks(Ga) and thereby obtain a basic exotic k-group containing
the generalized basic exotic k-group G.

Put another way, for n > 2 a type-Bn generalized basic exotic k-group with
minimal field of definition K/k for its geometric unipotent radical (so K2 ⊂ k
by Remark 10.1.2) is obtained from a basic exotic one with the same K/k by
“replacing” each short root group RKs/ks(Ga) with the ks-subgroup corresponding
to a nonzero ks-subspace V ⊂ Ks satisfying ks〈V 〉 = Ks. (No such V 6= Ks exists
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when [K : k] = 2, as occurs whenever [k : k2] = 2, so the need for Definition
10.1.6 occurs if and only if [k : k2] > 2.) The type-Bn generalized basic exotic
groups for n > 2 were initially found via this latter perspective in the pseudo-split
case by inspecting the possibilities in Theorem 7.5.14. The desire to remove the
pseudo-split condition eventually led to the discovery of the GD-construction that
underlies a more satisfactory definition (for all n > 1).

Here is a canonical link between the generalized basic exotic case and the basic
exotic case, via a fiber-product construction in the spirit of Theorem 7.5.7.

Proposition 10.1.7. Let G be a type-Bngeneralized basic exotic k-group with
n > 2, and let K/k be the minimal field of definition for its geometric unipotent
radical. Let G′ be the connected absolutely simple K-group GK/Ru,K(G) of type
Bn.

The K-group G′ is simply connected, and if π : G′ → G
′

is the very special

K-isogeny for G′ then for f := RK/k(π) the image G := f(G) ⊂ RK/k(G
′
) is a

Levi k-subgroup of RK/k(G
′
). In particular, the k-group f−1(G) containing G is a

basic exotic k-group with associated invariants (K/k,G′).

The proof of this result is immediately reduced to the case k = ks, so (by The-
orem 5.4.4) G contains a Levi k-subgroup L that in turn contains a split maximal
k-torus of G. Since LK → G′ is an isomorphism (by the definition of L being a
Levi k-subgroup of G), everything can then be verified by computations with open
cells; see [CP, Prop. 8.1.3] for the details.

There is a notion of “very special quotient” G → G for any G as above, with
G semisimple and simply connected of type Cn (see [CP, Def. 8.1.5]). This is an
important ingredient in a “basic exceptional” construction for type B2 given in
[CP, §8.3] that goes beyond the generalized basic exotic construction when n = 2
and [k : k2] > 16, but it will not be described here.

Remark 10.1.8. The need for the additional (minimal type) basic exceptional
construction when n = 2 is due to reasons similar to what we saw for BC2 in
Proposition 8.3.4 and the discussion immediately preceding it (namely, a field-
theoretic invariant for n > 2 can be replaced with an appropriate vector subspace
of the same field-theoretic invariant if n = 2 and [k : k2] > 8). Such additional
k-groups exist if and only if [k : k2] > 16 (see [CP, Rem. 8.3.1]), and are studied in
detail in [CP, §8.3].

For n > 2, a type-Cn analogue of Definition 10.1.6 uses a fiber-product con-
struction similar to the type-Cn basic exotic case resting on Theorem 7.5.7. (If
n = 2 then C2 = B2 but this variant of Definition 10.1.6 is new: relative to the
pseudo-split basic exotic construction for a given (K/k, n), it fattens the long root
groups rather than shrinking the short root groups.)

This type-C analogue rests on data (K/k,K ′/k,G′, G, j) defined as follows.
Fix a nontrivial purely inseparable finite extension K/k satisfying K2 ⊂ k, and fix
n > 2. Let G′ be a connected semisimple K-group that is absolutely simple and

simply connected of type Cn, with π : G′ → G
′

its very special isogeny.
Let G be a k-group that is either absolutely simple and simply connected of

type Bn or is a type-Bn generalized basic exotic k-group whose geometric unipotent
radical has minimal field of definition K ′/k contained in K/k; define K ′ = k when
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G is semisimple. Assume there is given a k-subgroup inclusion

j : G ↪→ RK/k(G
′
)

such that the associated K-homomorphism GK → G
′
identifies G

′
with the quotient

G
ss

K (recovering j via iG). Finally, we impose the most subtle hypothesis: assume

j(G) is contained in the image of f := RK/k(π).

Note that if G is absolutely simple then such an inclusion j amounts to iden-

tifying G with a Levi k-subgroup of RK/k(G
′
) via j (see [CGP, Lemma 7.2.1]),

so in such cases we have specified exactly the setup for the type-Cn basic exotic
construction.

Proposition 10.1.9. The fiber product

G = G×RK/k(G
′
) RK/k(G′)

is absolutely pseudo-simple of minimal type, K/k is the minimal field of definition
for its geometric unipotent radical, and the natural map GK → G′ identifies G′

with Gss
K . In particular, Gss

k
is simply connected and Gks has root system Cn.

The main idea in the proof of Proposition 10.1.9 is to introduce an auxiliary
basic exotic k-subgroup and use its properties to analyze G. More specifically, we
may assume k = ks, so G contains a Levi k-subgroup L; this is also a Levi k-

subgroup of RK/k(G
′
). Since L ⊂ im(f), it follows that f−1(L) is a basic exotic k-

group, so f−1(L) is smooth and even absolutely pseudo-simple of type Cn. A choice
of Levi k-subgroup L of f−1(L) then enables one to carry out calculations with root
groups and open cells to establish the desired properties of G (e.g., smoothness);
see [CP, Prop. 8.2.2] for the details.

Remark 10.1.10. For any separable extension of fields k′/k, an absolutely
pseudo-simple k-group G arises from the construction in Proposition 10.1.9 if and
only if Gk′ does over k′. The implication “⇒” is obvious, and for the converse
direction we shall use the procedures in Proposition 10.1.9 that reconstruct from
the fiber product some of the data that enters into the construction.

Suppose Gk′ is a fiber product in the desired manner. Let K/k be the minimal
field of definition over k for the geometric unipotent radical of G, and define G′ =
Gss
K . Note that the formation of K/k and G′ are compatible with scalar extension

along k → k′, and so is the very special isogeny π : G′ → G
′
. The following

properties hold because they are all satisfied after scalar extension to k′: K2 ⊂ k,
G′ is absolutely simple and simply connected of type Cn with n > 2, the map G→
RK/k(G′) has trivial kernel, the image G of f := RK/k(π) is either absolutely simple
and simply connected of type Bn or is type-Bn generalized basic exotic, the minimal
field of definiton K ′/k for the geometric unipotent radical of G is a subextension of

K/k (as purely inseparable extensions of k), and the K-homomorphism GK → G
′

corresponding to the inclusion j of G into RK/k(G
′
) is identified with G

ss

K (using
that K ′ ⊂ K over k).

Consequently, the 5-tuple (K/k,K ′/k,G′, G, j) satisfies the conditions required
in Proposition 10.1.9 (in particular, G ⊂ im(f) by design). Hence, f−1(G) is as in
Proposition 10.1.9, and this coincides with G inside RK/k(G′) because this can be
checked over k′.
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The description of G as in Proposition 10.1.9 yields (see [CP, 8.2.4]) that
the short root groups of Gks have the form RKs/ks(Ga) and the long root groups
are given by V ⊂ RKs/ks(Ga) for some nonzero ks-subspace V ⊂ Ks such that
ks〈V 〉 = K ′s (so dimV > 1 when K ′ 6= k, whereas long root groups for type-Cn
generalized basic exotic groups are 1-dimensional). The root field F of G coincides
with the long root field (as in Theorem 7.4.7(iii)), so Fs is the maximal subfield of
Ks over which V is a subspace.

We have G = D(RF/k(Gprmt
F )) by Proposition 7.4.5. The F -group Gprmt

F can
also be constructed as in Proposition 10.1.9. Indeed, by Remark 10.1.10 it suffices
to check over Fs = F ⊗k ks, so we may (and do) assume k = ks. We can use the
F -vector space structure on V and Theorem 7.5.14 to make an F -group H ′ that is
a fiber product as in Proposition 10.1.9 such that G ' D(RF/k(H ′)). But then the

natural map GF → H ′ identifies H ′ with Gprmt
F by [CP, (2.3.13)], so Gprmt

F arises as
in Proposition 10.1.9 as claimed. Returning to general k (not necessarily separably

closed), since Gprmt
F has root field F we see that the intervention of nontrivial Weil

restrictions is avoided in the following definition via a condition on the root field:

Definition 10.1.11. For n > 2, a type-Cn generalized basic exotic k-group is a
k-group G arising as in Proposition 10.1.9 for which the root field is k.

Remark 10.1.12. The centralizer of a split maximal k-torus in a pseudo-split
generalized basic exotic k-group of type Bn or Cn (n > 2) can be described as a
direct product similar to (7.5.1) by using Lemma 9.1.10; see [CP, Prop. 8.2.5].

By design, the condition of equality between the root field and the ground field
holds for generalized basic exotic groups of types B and C, as well as for basic exotic
groups of types F4 or G2 (and for the rank-2 basic exceptional groups addressed
in Remark 10.1.8). Thus, we get a strictly larger class of groups by incorporating
Weil restrictions:

Definition 10.1.13. A generalized exotic group G over an imperfect field k
of characteristic p ∈ {2, 3} is a k-group isomorphic to D(Rk′/k(G′)) for a nonzero
finite reduced k-algebra k′ and a k′-group G′ whose fiber G′i over each factor field
k′i of k′ is any of the following: basic exotic of type G2, basic exotic of type F4,
type-B or type-C generalized basic exotic, or basic exceptional of type B2 = C2.

Any such k-group G is pseudo-semisimple, and if k′ is a field purely inseparable
over k then the root system of Gks coincides with the reduced and irreducible
root system of G′k′s . In particular, for general k′/k as in Definition 10.1.13, the

group Gks is a direct product of non-standard pseudo-semisimple ks-groups with
a reduced root system and G is absolutely pseudo-simple precisely when k′ is a
field purely inseparable over k. Moreover, G is of minimal type (see the discussion
following Definition 7.1.2) and Gss

k
is simply connected (by [CGP, Thm. 1.6.2(2),

Prop. A.4.8]).

Remark 10.1.14. By Proposition 9.1.13, the maximal smooth k-subgroup
ZG,C = Autsm

G,C of the scheme of automorphisms of G restricting to the iden-
tity on C is always connected (and even pseudo-reductive). For certain absolutely
pseudo-simple G we have given an explicit description of ZG,C exhibiting the con-
nectedness: Rk′/k(T ′/ZG′) in the standard case where Rk′/k(T ′) is the preimage
of C in the central extension Rk′/k(G′) of G (use Lemma 9.1.9(i), Remark 9.1.14,
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and Remark 6.1.3), (9.1.13) for G of minimal type with root system A1 over ks,
and Proposition 8.3.12 for G of minimal type with root system BCn over ks. Such
a description of ZG,C for absolutely pseudo-simple generalized exotic groups with
ks-rank > 2 is given in [CP, Prop. 8.5.4].

The property of being generalized exotic is insensitive to scalar extension to
ks. Indeed, this is an immediate consequence of Galois descent and the following
result that proves the input data (k′/k,G′) is uniquely functorial with respect to
isomorphisms among such k-groups G = D(Rk′/k(G′)).

Proposition 10.1.15. Let k′ and `′ be nonzero finite reduced k-algebras and
let G ′ and H ′ be groups over k′ and `′ respectively such that the fiber G ′i and H ′

j

over each respective factor field k′i and `′j of k′ and `′ is absolutely pseudo-simple
of minimal type. Assume the root field of G ′i is equal to k′i for each i, and that the
root field of H ′

j is `′j for each j.
Every k-isomorphism σ : G := D(Rk′/k(G ′)) ' D(R`′/k(H ′)) =: H arises

uniquely from a pair (ϕ, α) consisting of a k-algebra isomorphism α : k′ ' `′ and a
group isomorphism ϕ : G ′ 'H ′ over α.

Proof. By Galois descent we may assume k = ks, so each factor field k′i of k′

and `′j of `′ is purely inseparable over k. Thus, the natural map Rk′i/k
(G ′i )k′i → G ′i

is a smooth surjection with connected unipotent kernel [CGP, Prop. A.5.11(1),(2)],
so the maximal geometric reductive quotient of Rk′i/k

(G ′i ) is the same as that of

the absolutely pseudo-simple k′i-group G ′i . This quotient is perfect, so it is also the
maximal geometric reductive quotient of the derived group Gi := D(Rk′i/k

(G ′i )) by

[CGP, Prop. A.4.8]. Hence, each Gi is absolutely pseudo-simple over k by Lemma
3.2.1, and is of minimal type (by behavior under Weil restriction and passage to
normal subgroups reviewed immediately after Definition 7.1.2); the same likewise
holds for Hj := D(R`′j/k

(H ′
j )).

Since
∏
Gi = G and

∏
Hj = H, by Proposition 3.2.2 and dimension considera-

tions {Gi} is the set of minimal nontrivial smooth connected normal k-subgroups of
G and {Hj} is the analogous such set for H. Hence, each k-isomorphism σ : G ' H
arises uniquely from a bijection τ : I ' J and k-isomorphisms σi : Gi ' Hτ(i). This
reduces our task to the case where k′ and `′ are fields.

Using that k′ is the root field for G ′ by hypothesis, we claim that k′/k is
the root field for G. To compute the root field of G, consider the root system
Φ = Φ(G,T ) for a maximal k-torus T ⊂ G; this is naturally identified with the
irreducible root system Φ(G ′,T ′) for the unique maximal k′-torus T ′ ⊂ G ′ such
that T ⊂ Rk′/k(T ′). Fix a root a ∈ Φ with maximal length (this is any root when
Φ is simply laced, and is a divisible root when Φ is non-reduced). Let Ga be the
rank-1 pseudo-simple k-subgroup generated by the ±a-root groups of G, and define
G ′a likewise; these have root system A1 (since a is divisible when Φ is non-reduced).
These rank-1 groups inherit the minimal type property from G and G ′ respectively,
so ker iGa

and ker iG ′a are trivial (see Example 7.1.4). The root fields of G and G ′

coincide with those of Ga and G ′a respectively: if Φ is reduced then this is part of
Theorem 7.4.7, and if Φ is non-reduced then this is Definition 8.3.6. Our task is
reduced to showing that Ga has root field k′.

Open cell considerations imply that the roots for Rk′/k(G ′a) relative to a∨(GL1)
are ±a, and the root groups coincide with those of Ga. Hence, Ga = D(Rk′/k(G ′a))
by Remark 3.1.11. By Theorem 7.2.5, the group G ′a with root system A1 and root
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field k′ has the form HV ′,K′/k′ or PHV ′,K′/k′ with {c ∈ K ′ | cV ′ ⊂ V ′} = k′ when
k′ is imperfect of characteristic 2, and G ′a is equal to SL2 or PGL2 otherwise. It is
then immediate that Ga has root field k′ (using the good behavior of HV ′,K′/k′ and
PHV ′,K′/k′ under D ◦Rk′/k [CP, Ex. 3.1.6] when k is imperfect of characteristic 2).

We have proved that k′/k is the root field for G. Likewise, `′/k is the root
field for H. The existence of σ then implies that k′ = `′ as purely inseparable
extensions of k. Upon identifying k′ and `′ uniquely in this manner, the natural
maps Gk′ → G ′ and Hk′ → H ′ are the maximal pseudo-reductive quotients of
minimal type (see [CP, Prop. 2.3.13]), so σk′ induces a k′-isomorphism ϕ that is
the unique one which does the job. �

By Theorem 7.4.8, in the absolutely pseudo-simple case standardness can only
fail over imperfect fields k of characteristic 2 or 3. For any such k, the generalized
exotic k-groups account for all deviations from standardness over k in the minimal
type case when the root system over ks is reduced:

Theorem 10.1.16. The non-standard absolutely pseudo-simple k-groups G of
minimal type for which Gks has a reduced root system and Gss

k
is simply connected

are the generalized exotic k-groups that are absolutely pseudo-simple.

Let us sketch the proof of Theorem 10.1.16. The main point is that Proposition
7.4.5 reduces the problem to the case of G whose root field is k, for which the aim
is to show that such G are precisely the groups given by either the basic exotic
construction for types F4 or G2, the generalized basic exotic construction of types
B or C, or the rank-2 basic exceptional construction. We may assume k = ks. Since
G is of minimal type and has a reduced root system, ker iG = 1 (as noted in Example
7.1.4). The root field condition ensures that the minimal field of definition K/k for
the geometric unipotent radical of G satisfies Kp ⊂ k (use Theorem 7.4.7(ii),(iii) if
G has rank > 2 and Theorem 7.2.5 in the rank-1 case).

Inspection of open cells shows that the known constructions exhaust all possi-
bilities. More precisely, for types G2 and F4 we see via Theorem 7.4.7(ii),(iii) and
consideration of a Levi k-subgroup L ⊂ G that the image of iG : G ↪→ RK/k(LK)
is a basic exotic k-group. (This recovers Proposition 7.5.10 with a new proof, but
does not recover Corollary 7.5.11.) Theorem 7.2.5 and the explicit description at
the end of Remark 7.3.2 settle the rank-1 case, and Theorem 7.5.14 settles types
Bn and Cn for n > 2 (using some additional elementary calculations when n = 2 to
show that the rank-2 basic exceptional construction – which we have not discussed
– accounts for the cases that are not generalized basic exotic; see [CP, Thm. 8.4.5]
for details). This completes our sketch of the proof of Theorem 10.1.16.

10.2. Generalized standard groups. Over every imperfect field k of char-
acteristic p ∈ {2, 3}, we have built non-standard pseudo-split absolutely pseudo-
simple k-groups realizing all of the exceptional possibilities for the root system.
The most concrete non-standard absolutely pseudo-simple groups occur in charac-
teristic 2: the centerless k-groups SO(q) of type Bn (n > 1) in §7.3, the k-groups
HV,K/k of type A1 in Definition 7.2.1, and the pseudo-split groups of minimal type
given by Theorem 7.5.14.

Building on those groups and basic exotic k-groups (Definition 7.5.9), we de-
fined generalized basic exotic k-groups in §10.1 (see Definitions 10.1.6 and 10.1.11).
For p = 2, birational group laws were used in §8 to build all pseudo-split absolutely
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pseudo-simple k-groups of minimal type with root system BCn for any n > 1.
We shall combine all of the preceding constructions to generalize the standard
construction, and characterize the k-groups obtained in this manner (yielding all
pseudo-reductive k-groups except possibly when char(k) = 2 and [k : k2] > 2, as
well as all pseudo-reductive k-groups of minimal type without restriction on k).

Consider pairs (G′, k′/k) consisting of a nonzero finite reduced k-algebra k′ and
a smooth affine k′-group G′. We defined the standard construction over k in terms
of Weil restrictions Rk′/k(G′) with (G′, k′/k) for which the fiber G′i of G′ over each
factor field k′i of k′ is connected reductive. The pair (G′, k′/k) is not determined by
the pseudo-reductive k-group G obtained from that construction (e.g., see (2.2.3),
but recall from Proposition 2.2.7 that we can always arrange for such G′i to be
semisimple, absolutely simple, and simply connected without affecting the standard
pseudo-reductive G). Limiting G′ as follows will circumvent non-uniqueness.

Definition 10.2.1. For a nonzero finite reduced k-algebra k′ and smooth affine
k′-group G′, the pair (G′, k′/k) is primitive if the fiber G′i over each factor field k′i
of k is in any of the following three classes of absolutely pseudo-simple k′i-groups:

(i) connected semisimple, absolutely simple, and simply connected;
(ii) basic exotic, generalized basic exotic, or rank-2 basic exceptional (as

defined in [CP, Def. 8.3.6]);
(iii) absolutely pseudo-simple of minimal type with a non-reduced root system

over k′i,s and root field equal to k′i.

(In case (iii), the notion of root field is as in Definition 8.3.6.)

If (G′, k′/k) is a primitive pair then the associated pseudo-semisimple k-group

G := D(Rk′/k(G′))

satisfies some good properties: it is of minimal type since that property is preserved
under Weil restriction [CP, Ex. 2.3.9] and is inherited by smooth connected normal
subgroups [CP, Lemma 2.3.10], and G ss

k
is simply connected (as it is the direct

product of the analogous such geometric quotients for the fibers G′i over the factor
fields k′i of k′, due to [CP, Prop. 2.3.13]). Moreover:

Lemma 10.2.2. The center ZG is k-tame.

The idea of the proof of Lemma 10.2.2 is to show that ZG ⊂ Rk′/k(ZG′) =∏
i Rk′i/k

(ZG′i) and ZG′i is k′i-tame for each i; see (the proof of) [CP, Prop. 9.1.6]
for the details.

Definition 10.2.3. A generalized standard pseudo-reductive k-group is a k-
group that is either commutative pseudo-reductive or of the form

G = (G o C)/C

where: G := D(Rk′/k(G′)) for a primitive pair (G′, k′/k), C is the Cartan k-
subgroup G ∩Rk′/k(C ′) of G for a Cartan k′-subgroup C ′ ⊂ G′, C is a commutative
pseudo-reductive group fitting into a factorization diagram

(10.2.3) C
φ−→ C

ψ−→ ZG ,C

of the canonical map C → ZG ,C arising from the conjugation action of C on G ,
and C is embedded anti-diagonally as a central k-subgroup of G o C.
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In the preceding definition, ZG ,C is the k-group defined as in Proposition 6.1.2;
it is commutative and pseudo-reductive (see Proposition 9.1.13). Moreover, the
k-group (G o C)/C is automatically pseudo-reductive because it is an instance of
the construction in Proposition 2.2.1, and C is a Cartan k-subgroup of G because
it is easily seen to be its own centralizer in G (as C is its own centralizer in G ).

Example 10.2.4. Every standard pseudo-reductive k-group is generalized stan-
dard, due to Proposition 2.2.7. In the context of the standard construction (so only
case (i) in Definition 10.2.1), we have G = Rk′/k(G′), C = Rk′/k(T ′) for a unique
maximal k′-torus T ′ ⊂ G′, and ZG ,C = Rk′/k(T ′/ZG′).

Proposition 10.2.5. If G is a pseudo-reductive k-group then it is generalized
standard if and only if D(G) is generalized standard. Likewise, if G = G/Z is a
pseudo-reductive central quotient of G then G is generalized standard if and only if
G is generalized standard. The same holds with “standard” in place of “generalized
standard” throughout.

The first equivalence is [CP, Cor. 9.1.14], but the proof below is much simpler.

Proof. We treat “generalized standard”, and the same arguments apply with-
out change for “standard”. To prove the first assertion, suppose G is generalized
standard, arising from a 4-tuple (G′, k′/k, C ′, C) and factorization diagram as in
Definition 10.2.3. Clearly D(G) arises from (G′, k′/k,C ′, φ(C )) (with the evident
factorization diagram).

Conversely, assume D(G) arises from a 4-tuple (G′, k′/k,C ′, C) and factoriza-
tion diagram as in (10.2.3). Perfectness of D(G) forces C = φ(C ), so D(G) =
G /(kerφ) with G := D(Rk′/k(G′)). Note that D(G) is a central quotient of G ,
since the conjugation action of kerφ on G is classified by the homomorphism
ψ ◦ φ : kerφ→ ZG ,C that is trivial.

The Cartan k-subgroup C /(kerφ) = φ(C ) = C of D(G) uniquely extends to a
Cartan k-subgroup C\ of G (see [CGP, Lemma 1.2.5(ii),(iii)]), and G = D(G) ·C\.
The conjugation action of C\ on D(G) is classified by a homomorphism

C\ −→ ZD(G),C/(kerφ) = ZG ,C

(equality by Lemma 9.1.9(i)) extending the canonical homomorphism C → ZG ,C .
In this way we get a 4-tuple (G′, k′/k,C ′, C\) and factorization diagram for the
generalized standard k-group

(G o C\)/C = (D(G) o C\)/φ(C ) = G

(as D(G) ∩ C\ = C = φ(C )).
Next, we show that the generalized-standard property for G is equivalent to

the same for a pseudo-reductive central quotient G. By the preceding, we may
assume G (and hence G) is perfect. Since a perfect generalized standard k-group

is of the form G /(kerφ), in view of the bijection C 7→ C := C /Z between the sets
of Cartan k-subgroups of G and of any pseudo-reductive central quotient G /Z we
see immediately that G is generalized standard if and only if G is (using the same
(G′, k′/k) for each). �

If a pseudo-reductive k-group G arises via the generalized standard construction
for some 4-tuple (G′, k′/k, C ′, C) then C is identified with a Cartan k-subgroup of
G and moreover D(G) = D(Rk′/k(G′))/Z for a central k-subgroup Z := kerφ that
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is k-tame by Lemma 10.2.2. In particular, D(Rk′/k(G′)) is uniquely determined
by G: it is the universal smooth k-tame central extension of D(G)! Taking into
consideration Proposition 10.1.15, we obtain:

Corollary 10.2.6. The triple (G′, k′/k, j) incorporating the k-homomorphism
j : D(Rk′/k(G′)) → G (a central quotient map onto D(G)) is uniquely determined
by G up to unique isomorphism.

If G is generalized standard then for any 4-tuple (G′, k′/k, C ′, C) giving rise
to G via the generalized standard construction, not only is the resulting triple
(G′, k′/k, j) uniquely determined by G up to unique isomorphism, but it can be
arranged that C is any Cartan k-subgroup of G that we wish. To prove this,
first note that the proof of the initial assertion in Proposition 10.2.5 reduces this
to the pseudo-semsimple case by passing to D(G) because C 7→ C ∩ D(G) is a
bijection between the sets of Cartan k-subgroups of G and of D(G) (due to [CGP,
Lemma 1.2.5(ii),(iii)]). Now we may assume G is perfect, so by Lemma 10.2.2 it is
generalized standard if and only if the universal smooth k-tame central extension

G̃ of G has the form D(Rk′/k(G′)) for a primitive pair (G′, k′/k). The set of Cartan
k-subgroups C of such a G is in bijective correspondence with the set of Cartan

k′-subgroups C ′ of G′ via the condition C = C /Z for C := G̃ ∩ Rk′/k(C ′) and

Z := ker(G̃� G), in which case

G = G̃/Z = (G̃o C)/C

gives a generalized standard description (where C → ZG ,C arises from the conjuga-
tion action of C = C /Z on G ).

We summarize these conclusions as follows, recording the extent of the non-
uniqueness of the data giving rise to a specified generalized standard pseudo-
reductive k-group.

Proposition 10.2.7. If G is a generalized standard pseudo-reductive k-group
and (G′, k′/k) is the associated pair as in Corollary 10.2.6 then for every Cartan
k-subgroup C of G there exists a unique Cartan k′-subgroup C ′ of G′ such that the
central quotient map

G := D(Rk′/k(G′))� D(G)

carries C := Rk′/k(C ′) ∩ G onto C ∩D(G). Moreover, for any such C ′ and C the
4-tuple (G′, k′/k,C ′, C) and the factorization diagram

(10.2.7) C −→ C −→ ZD(G),C∩D(G) = ZG ,C

arising from C-conjugation on D(G) give rise to G via the generalized standard
construction.

The equality in (10.2.7) is a special case of Lemma 9.1.9(i). Since we have the
flexibility to require that a “generalized standard” description of a given pseudo-
reductive k-group rests on a chosen Cartan k-subgroup C ⊂ G (even prior to
knowing that G is generalized standard!), we immediately deduce from Proposition
10.2.7 the following result via Corollary 10.2.6 and Galois descent:

Corollary 10.2.8. A pseudo-reductive k-group G is generalized standard if
and only if Gks is generalized standard, and likewise for “standard” in place of
“generalized standard”.
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The relevance of Corollary 10.2.6 in the proof of Corollary 10.2.8 is that for a
Cartan k-subgroup C ⊂ G, the triple (H ′,K ′/ks, i) with a primitive pair (H ′,K ′/ks)
corresponding to the generalized standard presentation of Gks relative to Cks via
Proposition 10.2.7 has a canonically associated k-descent (G′, k′/k, j) that together
with C underlies a generalized standard presentation for G.

To characterize when a pseudo-reductive k-group is generalized standard, we
require a notion that refines “minimal type”:

Definition 10.2.9. A pseudo-reductive k-group G is locally of minimal type if
the subgroup of Gks generated by any pair of opposite root groups (relative to a
maximal ks-torus) is a central quotient of an absolutely pseudo-simple ks-group of
minimal type.

This condition depends on G only through its derived group (as D(G)ks con-
tains all root groups of Gks relative to a maximal ks-torus). As the terminology
suggests, if G is of minimal type then it is locally of minimal type. Indeed, we may
assume k = ks, and then for a maximal k-torus T ⊂ G the minimal type property
for G is inherited by Ga for each a ∈ Φ(G,T ) due to Proposition 7.1.5 and the
explicit description of Ga in terms of centralizers and derived groups in Remark
3.2.8. Here is a partial converse, refining Lemma 9.1.10.

Proposition 10.2.10. Let G be a pseudo-semisimple k-group locally of minimal
type such that Gss

k
is simply connected. Then G is of minimal type.

Proof. We may and do assume k = ks. For a maximal k-torus T ⊂ G, Cartan
k-subgroup C := ZG(T ), minimal field of definition K/k for Ru(Gk) ⊂ Gk, and
G′ := GK/Ru,K(GK), we want to prove the triviality of CG := C ∩ ker iG where
iG : G → RK/k(G′) is the natural map. For any a ∈ Φ(G,T ), let Ga denote the
rank-1 pseudo-simple k-subgroup 〈Ua, U−a〉 ⊂ G.

The Cartan k-subgroup Ca := ZGa
(a∨(GL1)) of Ga is equal to C∩Ga (since the

isogeny complement (ker a)0
red ⊂ T to a∨(GL1) centralizes Ga), and Ga ∩ ker iG =

ker iGa (see Example 7.1.7), so Ca∩ker iG = CGa . For a basis ∆ of Φ(G,T ) we have
T =

∏
a∈∆ a∨(GL1) since Gred

k
= Gss

k
is simply connected. Hence, the composition∏

a∈∆ Ca
π // C

iG|C
// RK/k(TK) ↪→ RK/k(G′)

has kernel
∏
a∈∆ CGa

. The map π is surjective by Lemma 9.1.10, so
∏
a∈∆ CGa

→
CG is surjective. It therefore suffices to prove that each CGa

is trivial. Since (Ga)ss
k

is generated by a pair of opposite root groups in Gss
k

(Example 7.1.7), and the

latter group is simply connected, (Ga)ss
k

= SL2. Thus, we may replace G with Ga
to reduce to the case that G is absolutely pseudo-simple of rank 1.

Now by hypothesis G = H/Z for an absolutely pseudo-simple H of minimal
type and Z ⊂ ZH . Since Gss

k
= SL2 is simply connected, so the central quotient

map Hss
k
� Gss

k
is an isomorphism, the equality of the minimal fields of definition

over k for the geometric unipotent radicals of G and H (see Proposition 6.2.2)
identifies iH with iG ◦ q for the central quotient map q : H � G. It follows that
CG = q(CH) is trivial (as H is of minimal type). �

The “minimal type” property can fail in the standard absolutely pseudo-simple
case over every imperfect field (see Example 6.2.6), but “locally minimal type” is
truly ubiquitous: it is an immediate consequence of Theorem 7.2.5, Proposition
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6.2.15, and Proposition 8.3.9 that every pseudo-reductive k-group G is locally of
minimal type except possibly when char(k) = 2 and [k : k2] > 2. Here is a large
supply of pseudo-reductive groups locally of minimal type over arbitrary fields:

Example 10.2.11. If G is a generalized standard pseudo-reductive k-group
then it is locally of minimal type. To prove this we may assume k = ks, and
by Proposition 10.2.5 we may replace G with D(G) so that G is perfect. Now
G = G /Z for G := D(Rk′/k(G′)) with a primitive pair (G′, k′/k) and central closed
k-subgroup Z ⊂ D(Rk′/k(G′)). For each factor field k′i of k′, let G′i be the k′i-
fiber of G′. Consider the pseudo-simple normal k-subgroups Gi := Gi/Zi of G,
where Gi = D(Rk′i/k

(G′i)) and Zi = Z ∩ Gi. Each Gi is generalized standard by
normality in G, and these pairwise commute and generate G, so we may treat each
Gi separately to reduce to the case that k′ is a field.

For a maximal k-torus T ⊂ G, the Cartan k-subgroup ZG(T ) has the form
(G ∩ Rk′/k(C ′))/Z for a unique Cartan k-subgroup C ′ ⊂ G′ (argue as in the han-
dling of Cartan subgroups in the proof of Proposition 10.2.5). Thus, upon writ-
ing C ′ = ZG′(T

′) for a unique maximal k′-torus T ′ ⊂ G′, we have canonically
Φ(G,T ) = Φ(G′, T ′) since pseudo-reductive central quotients of pseudo-reductive
k-groups have the same root system (as we see via consideration of an open cell,
for instance).

For each a ∈ Φ(G,T ) and the corresponding a′ ∈ Φ(G′, T ′), clearly Ga is a
central quotient of Ha := D(Rk′/k(G′a′)). It is therefore enough to show that Ha

is of minimal type, and by Proposition 7.1.5 that reduces to Rk′/k(G′a′) being of
minimal type. Since G′ is of minimal type (by inspection of the possibilities for G′

in the definition of the generalized standard construction!), so the same holds for
G′a′ (Example 7.1.7), it suffices to check that Rk′/k preserves the property of being
of minimal type, and that in turn is an elementary verification with the definitions
(see [CP, Ex. 2.3.9] for the details).

The preceding discussion of ubiquity of the “locally minimal type” property is
optimal because if char(k) = 2 and [k : k2] > 2 then for any n > 1 there exist
pseudo-split absolutely pseudo-simple k-groups G with non-reduced root system
BCn such that G is not locally of minimal type. Examples of such G are given
in [CP, B.4] (built as quotients of k-subgroups of Weil restrictions of symplectic
groups, without any appeal to birational group laws).

Continuing to assume char(k) = 2, if we consider pseudo-reductive k-groups
G with a reduced root system then one can do better with the degree bounds.
To be precise, such a G is locally of minimal type whenever [k : k2] 6 8 (see [CP,
Prop. B.3.1]), but whenever [k : k2] > 16 there exist pseudo-split absolutely pseudo-
simple k-groups G not locally of minimal type (see [CP, 4.2.2] for examples with
root system A1, and those are used to make others with root system Bn or Cn for
any n > 2 in [CP, B.1, B.2]).

Remark 10.2.12. According to Proposition 6.2.9, for a non-reductive abso-
lutely pseudo-simple k-group G, iG is an isomorphism if and only if G is standard
and the order of the fundamental group of Gss

k
is not divisible by the characteristic

p of k. If iG is an isomorphism then G is clearly of minimal type. If moreover G is
standard (which is the case if iG is an isomorphism), then the root system of Gks
is reduced. Now we will assume that the root system Φ of Gks is reduced and the
order of the fundamental group of Gss

k
is not divisible by p, and explore when G
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fails to be standard (equivalently, iG fails to be an isomorphism). So let us assume
that G is not standard.

Since the root system Φ of Gks has been assumed to be reduced, Theorem 7.4.8
gives that k is imperfect with p ∈ {2, 3} and that if p = 3 then Φ is of type G2

whereas if p = 2 then Φ is of type F4 or Bn or Cn with some n > 1 (where B1 and
C1 mean A1). The group Gss

k
must be simply connected: this is obvious for types

F4 or G2, and it holds for types B and C (with p = 2) since we assumed that the
fundamental group of Gss

k
has order not divisible by p.

If G is of minimal type then ker iG = 1 (as noted in Example 7.1.4), so in
such cases G must be generalized exotic due to Theorem 10.1.16 and thus iG is
not surjective. The minimal type property is automatic for types G2 and F4 by
Corollary 7.5.11. On the other hand, if Gks has a root system of type B or C (of
some rank n > 1), so p = 2, then G is locally of minimal type by [CP, Prop. B.3.1]
(and hence is of minimal type by Proposition 10.2.10 unless [k : k2] > 16).

As a special case, we recover (with an entirely different proof) Tits’ result in
[Ti3, Cours 1992-93, II] that iG is an isomorphism when Φ has trivial fundamental
group (i.e., types E8, F4, and G2) assuming p 6= 2 for F4 and p 6= 3 for G2.

The appearance of the root systems Bn, Cn, and BCn (n > 1) in examples of
pseudo-split absolutely pseudo-simple groups not locally of minimal type is natural,
in view of Theorem 7.4.8 and Corollary 7.5.11. The main reason for our interest in
the “locally of minimal type” property is due to:

Theorem 10.2.13. A pseudo-reductive group G is generalized standard if and
only if it is locally of minimal type.

Proof. In Example 10.2.11 we established the implication “⇒”. For the con-
verse result we may assume k = ks (Corollary 10.2.8) and G is perfect (Proposition

10.2.5). Letting q : G̃ � G be the (pseudo-semisimple) universal smooth k-tame

central extension, it suffices to show that G̃ = D(Rk′/k(G′)) for some primitive pair

(G′, k′/k). We first check that G̃ is locally of minimal type.

For a maximal k-torus T̃ ⊂ G̃ and its isogenous image T ⊂ G we have naturally

Φ(G,T ) = Φ(G̃, T̃ ) since G is a central pseudo-reductive quotient of G̃. For each
a ∈ Φ(G,T ) the centrality of ker q implies (via consideration of open cells) that

the a-root group of G̃ maps onto that of G, so q carries G̃a onto Ga with kernel

that is k-tame (since ker q is k-tame by design). But (G̃a)ss
k

= SL2 since this group
is generated by a pair of opposite root groups in the connected semisimple group

G̃ss
k

that is simply connected (due to the characterization of G̃). Hence, G̃a is the
universal smooth k-tame central extension of Ga.

The k-group Ga is absolutely pseudo-simple of rank 1, and it admits a pseudo-
simple central extension of minimal type (as G is assumed to be locally of minimal
type). Thus, by a systematic study of the structure of rank-1 pseudo-simple k-
groups (via Theorem 7.2.5(i) and Proposition 6.2.2 for root system A1), the univer-

sal smooth k-tame central extension G̃a of Ga is of minimal type; see [CP, Lemma
5.3.2] for the details.

We have shown that G̃ is locally of minimal type, so it is of minimal type by

Proposition 10.2.10. By replacing G with G̃ we may arrange that Gss
k

is simply con-

nected, and aim to find a primitive pair (G′, k′/k) such that G = D(Rk′/k(G′)). The
pseudo-simple normal k-subgroups Gi of G are of minimal type, and by Proposition
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3.2.4(ii) multiplication π :
∏
Gi → G is a surjective homomorphism with central

kernel. But Gss
k

is simply connected, so π is an isomorphism by Lemma 9.1.10. We

may therefore treat each Gi separately, so now G is (absolutely) pseudo-simple.
Consider the irreducible root system Φ of G. Since G is absolutely pseudo-

simple and of minimal type, if Φ is non-reduced then G has the desired form (using
Weil restriction from its root field) due to Proposition 8.3.7.

Assume instead that Φ is reduced. We shall separately treat the cases that G
is standard or not standard. Suppose G is standard. By inspection, G is a central
(pseudo-reductive) quotient of Rk′/k(G′) for a finite extension k′/k and connected
semisimple k′-group G′ that is simply connected. But then the minimal fields of
definition over k for the geometric unipotent radicals of G and Rk′/k(G′) coincide by
Proposition 6.2.2, so this common field is equal to k′/k (see [CGP, Thm. 1.6.2(2)]).
Hence, Gss

k′ is a central quotient of G′ yet is simply connected (as it is a k′-descent
of Gss

k
), so naturally G′ ' Gss

k′ and we get a factorization

Rk′/k(G′)� G
iG
↪→ Rk′/k(G′)

of the identity map. This forces iG to be an isomorphism.
Finally, assume G is not standard. In this case k must be imperfect of charac-

teristic 2 or 3 (by Theorem 7.4.8) and the non-standard absolutely pseudo-simple
k-groups G of minimal type with Gss

k
simply connected are given as in Theorem

10.1.16. Hence, G has the desired form due to Definition 10.2.1. �

An application of Theorem 10.2.13 and our preceding discussion of all cases
of failure of the “locally minimal type” property, we see that if Gks has a reduced
root system then G is generalized standard except possibly when char(k) = 2 and
[k : k2] > 16, and that whenever char(k) = 2 and [k : k2] > 16 there exist pseudo-
split absolutely pseudo-simple k-groups that are not generalized standard (with any
desired root system of type B or C with any rank n > 1). In particular:

Corollary 10.2.14. Every pseudo-reductive k-group is standard except possi-
bly if k is imperfect with char(k) = p ∈ {2, 3} and one of the following holds: the
root system Φ of Gks is non-reduced (only possible when p = 2), some irreducible
component of Φ has an edge of multiplicity p, or p = 2 with [k : k2] > 2 and Φ has
an irreducible component of type A1.

The proof of Corollary 10.2.14 when char(k) 6= 2, 3 or in characteristic p ∈ {2, 3}
with [k : kp] = p has nothing to do with non-reduced root systems or the explicit
non-standard constructions that occupied much of §7–§8.
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