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O. Introduction. 

In this paper I discuss the technique of weighted homogeneous coordinates 

which has appeared in works of various geometers a few years ago and it seems has 

been appreciated and armed by many people. In many cases this technique allows one 

to present a nonsingular algebraic variety as a hypersurface in a certain space (a 

weighted projective space) and deal with it as it would be a nonsingular hypersur- 

face in the projective space. A generalization of this approach is the technique 

of polyhedral projective spaces for which we refer to [5, 6, 15]. 
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Section 1 deals with weighted projective spaces, the spectrums of graded poly- 

nomial rings. Most of the results from this section Can be found in [7]. 

In section 2 we generalize the Bott theorem on the cohomology of twisted 

sheaves of differentials to the case of weighted projective spaces. Another proof 

of the same result can be found in [23] and a similar result for torical spaces is 

discussed in [5]. 

In section 3 we introduce the notion of a quasismooth subvariety of a weighted 

projective space. For this we define the affine quasicone over a subvariety and 

require that this quasicone is smooth outside its vertex. We show that quasismooth 

weighted complete intersections have many properties of ordinary smooth complete 

intersections in a projective space. The work of Mori [19] contains a similar re- 

sult but under more restrictive conditions. Rather surprisingly not everything 

goes the same as for smooth complete intersections. For example, recent examples 

of Catanese and Todorov show that the local Torelli theorem fails for some quasi- 

smooth weighted complete intersections (see [4, 24]). 

In section 4 we generalize to the weighted case the results concerning the 

Hodge structure of a smooth projective hypersurfaces. Our proof is an algebraic 

version of one of Steenbrink [23] and can be applied to the calculation of the De 

Rham cohomology of any such hypersurface over a field of characteristic zero. The 

present paper is partially based on my talks at a seminar on the Hodge-Deligne 

theory at Moscow State University in 1975/76. It is a pleasure to thank all of its 

participants for their attention and criticism. 

i. Weishted projective space. 

i.i. Notations 

Q = {qo,ql,...,qr } , - a finite set of positive integers; 

IQI = qo +-.. +qr ; 
S(Q) - the polynomial algebra k[T 0 .... ,T r] over a field k, graded by the condi- 

tion deg(Ti) = qi i= O,...,r ; ~(Q) = Proj(S(Q)) - weighted projective space of 

type Q. U ~r" +i - {0} Spec(S(Q)) - {(T O ..... rr)} ; m = (T O ..... T r) • 

Abbreviations: 

~r = ~(i,...,i) , S = S(Q) , • = ~(Q) • 

we suppose in the sequel that the characteristic p of k is prime to all qi ' 

though many results are valid without this assumption. We also assume that 

(q0 ..... qr ) = i. 

The last assumption is not essential in virtue of the following: 

Lemma° Let Q' = {aq0 .... ,aqr} . Then ~(Q) = ~(Q') . 

Really, S(Q') m = S(Q)am and hence in the standard notations of [12] we have 

S(Q') = S(Q)(a). Applying ([12], 2.4. D we obtain a canonical isomorphism 

(Q) = Proj(S(Q)) = Proj(S(Q)(a)) = ~(Q,) . 
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We refer to 1.3 for more general results. 

For any graded module M over a graded commutative ring 

the graded A-module obtained by shifting the graduation M(n) k 

By M we denote the 0Proj(A)-Module , associated with M. 

2.5.2) that for any f c A d 

= {m- 
F(D+(f),M) = M(f) fk :me Mkd} , 

where open sets D+(f) = Spec(A(f)) form a base of open sets in 

A we denote by M(n) 

= Mn+ k • 

Recall ([12]; 

Proj(A) . 

1.2. Interpretations. 

1.2.1. It is well known that a ~-graduation of a commutative ring is equivalent 

to an action of a 1-dimensional algebraic torus G on its spectrum. In our case 
m 

G acts on ~r+l = Spec(S(Q)) as follows 
m 

S --+ S @ k[X,X -I] 

qi 
T.--+ T. @ X , i= O,...,r 
1 1 

where G = Spec(k[X,x-l]) . 
m 

The corresponding action on points with the value in a field k'm k is given 

by the formulas 

* k,r+l r+l k' × ÷ k' 

(t,(a 0 ..... ar)) ÷ (a0 tq0 ..... ar tqr) 

The open set U = ~r+l_ {0} is invariant with respect to this action and the uni- 

versal geometric quotient u/G exists and coincides with ~(Q) . 
m 

If k = ~ is the field of complex numbers then the analytic space ~an asso- 

ciated to ~(Q) is a complex analytic quotient space ~r+l _ {0}/~* where 
* r+l 

acts on ~ by the formulas 

(t,(z 0 .... ,Zr)) ÷ (Zo tqO,...,zr tqr) 

In view of this interpretation the space ~(Q') from the lemma in i.i corresponds 

to a noneffective action of G . 
m 

1.2.2. For any positive integer q we denote by 

q-roots of unity. This is a closed subgroup of G 
m 

k[X]/(X q- I) . 

= x Consider the action of the group scheme ~Q ~q0 

is induced by the action ~Q on S 

-~T i @X Ti i ' 

where Xo -= X mod(X qi-l) in the coordinate ring of 
l qi 

qi 
The homomorphism of rings S(Q) ÷ s , T i -~ T i 

the finite group scheme of 
q 
with the coordinate ring 

~r 
... × ~ on which 

qr 

yields the isomorphism 
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S(Q) = s~Q. It is easy to see that the corresponding morphism of projective spec- 

trums is well defined and gives an isomorphism 

P(Q) = Proj(S Q) ~ ~r/ ~Q" 

In case k = ¢ 

~(Q)an = ~r(~)/ ~Q(C) 

where ~Q(~) acts by the formulas 

(g,(z 0 ..... Zr)) ~ (z0g 0 ..... Zrg r) 

g = (go'"''gr) ' gi = exp(2~ibi/qi) ' 0 ~b i < qi" 

1.2.3. The previous interpretation easily gives, for instance, that for Q = 

{l,l,...,l,n} the weighted projective space ~(Q) equals the projective cone 

over the Veronese variety Vn(~r-l) . 

For example, ~(l,l,n) , n # 1 is obtained by the blowing down the exceptional 

section of the ruled surface • (when n= 2 it is ~ ordinary quadratic cone). 
n 

1.2.4. For Q = {l,ql,...,q r} the spaces ~(Q) are compactifications of the af- 

fine space ~r . Indeed, the $~en set D+(To) is isomorphic to the spectrum of 

the polynomial ring k ,..., . Its complement coincides with the weighted 

projective space ~(ql,...,qr ) . 

1.2.5. Weighted projective spaces are complete toric spaces. More precisely, 

• (qo,...,qr ) is isomorphic to the polyhedral space ~ of [6], where & = 
~r+l 

{(x 0 .... ,x r) • : Eqix i = q0...qr } • 

1.3. The first properties 

1.3.1. For different Q and Q' the corresponding spaces ~(Q) and ~(Q') can 

be isomorphic. 

Let 

d i = (q0,...,qi_l,qi+l,...,qr) 

a i = £.c.m.(do,...,di_l,di+l,...,dr) 

a = £.c.m.(d 0 .... ,dr). 

Note that ai[qi, (ai,d i) = I and aod. = a . 
ii 

Proposition. (Delorme [7].) Let Q' = {qo/a,...,qr/ar} . Then there exists a 

natural isomorphism ~(Q) = ~(Q') . 

For the proof we consider the graded subringai S' = n~ 0 S(Q)an of S(Q) and 

note that S' = k[X0,...,Xr] , where X i = T i is of degree aqi/a i . But then 
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S(Q') = S '(a) and hence Proj(S(Q')) = Proj(S') ([12],2.4.7). Now there exists also 

an isomorphism Proj(S') = Proj(S(Q) (a)) = Proj(S(Q)) . 

Corollary. Each ~(Q) = ~(Q') , where (q~,...,qi_l,qi+l,..' ' .,q$) = 1 for i = 

O,...,r . 

Corollary. Assume that qi = a. for i = 0,...,r. Then ~(Q) = ]pr. 
1 

For example, it is so if all numbers £.c.m.(q0,...,qr)/qi are coprime. In 

this case the previous fact was independently discovered by M. Reid. 

Note that in case r = 1 we can use the previous corollary and obtain that 

~(q0,ql) = ]pl for any q0,q I . This fact however follows also from interpretation 

1.2.2. 

1.3.2. Remarks. i. There is a certain difference between the identifications of 

the proposition and of the lemma in i.I. In terms of 3.5, the spaces ~(Q) and 

IP(Q ') from the proposition are not projectively isomorphic. 

2. It can be shown that the isomorphism ~(Q) ~- ]P(Q') of 1.3.1 induces an iso- 
r 

morphism of sheaves 0~(n) = 0~,((n- ~ bi(n)qi)/a) , where h.(n)1 are uniquely 
i=O 

determined by the property 

n = bi(n)qi + ci(n)d i _  _ , O_<bl. <dl" " 

1.3.2. Let G be a finite group of linear automorphisms of a finite-dimensional 

vector space V over a field k. An element g • G is called a pseudoreflection 

if there exists an element e • V and f • V such that 
g g 

g(x) = x + fg(X)eg for every x• V . 

Lemma. ([3], ch.V, §5, th.4.) Let B be the s}~metric algebra of V and 

the subalgebra of G-invariant elements. Assume that #G is invertible in 

Then the following assertions are equivalent: 

(i) G is generated by pseudoreflections; 

(ii) A is a graded polynomial k-algebra. 

A = B G , 

k. 

Example. pQ acts on S as a group generated by pseudoreflections. 

These pseudoreflections act by the formula 

T ÷ TiSX i i' 

T. -~ T. , j # i, i = O,...,n. 
J J 

i. 3.3. Proposit ion 

(i) ~(Q) is a normal irreducible projective algebraic variety; 
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(ii) all singularities of ]P(Q) are cyclic quotients singularities (in particu- 

lar, • (Q) is a V-variety); 

(iii) a nonsingular ~(Q) is isomorphic to ~r . 

For the proof of property (i) we remark that this property is preserved under 

an action of a finite group and use interpretation 1.2.2. To see (ii), we use in- 
r 

terpretation 1.2.1. Let ~ = u U. be the canonical covering of • , where U. = 
1 1 

i=0 
D+(T i) . Consider the closed subvariety V i = Spec(S/(Ti-l)) of ~r+l = Spec(S). 

The action of G on Ar+l induces the action of ~ on V. which, after iden- 
m qi l 

tifying V.I with Spec(k[T0,...,Ti_ l,Ti+ l,...,Tr]) , can be given by the formulas 

_qJ 
T. -~ T. 8 X. , j = 0,...,i-l,i+l,...,r 
3 3 i 

where notations as in 1.2.2. 

It is easy to see that U. = V./~ and, since Vo = ~r, we have property (ii) 
i i qi 1 

of ~(Q) . 

For the proof of (iii) we use 1.3.1 and the previous construction. By 1.3.1 

we may assume that (q0'''''qi-l'qi+l '''''qr ) = i . Then it is easy to see that 

the action of ~ on V. is generated by pseudoreflections only in the case 
qi 

qi = i. It remains to apply 1.3.2. 

1.4. Cohomology of 0~(n) . 

1.4.1. Recall that 0~(n) denotes an 0~-Module associated to the graded S(Q)- 

module S(Q)(n) . For any homogeneous f E S(Q) we have a natural homomorphism 

S(Q) n ÷ S(Q)(n)(f) (a÷a/1) which defines a natural homomorphism an : S(Q) n ÷ 

H0(~(Q),0~(n)) (the Serre homomorphism). 

Theorem. 

(i) ~n : Sn + H0(~' 0F (n)) is bijective for any 

(ii) Hi(~,0~(n)) = 0 for i ~ 0,r, n ~ ~ ; 

(iii) Hr(~,0~(n)) = S_n_IQI . 

neZg ; 

Proof. According to general properties of projective spectrums we can identify 

U = Spec(S) - {m} with the affine spectrum of the graded 0 F-Algebra @ 0 F (n) 
n6~ 

([12], 8.3). The corresponding projection p:U+~ coincides with the quotient 

morphism U ÷ U/G from 1.2.1. Since p is an affine morphism we have 
m 

Hi(U,0u) = Hi(p, p,(0U)) = Hi(p, @ 0 F (n)) = @ Hi(~,0~(n)) . 

n6~ ne~ 

Now we use the local cohomology theory ([13]). We have an exact sequence 

0 + H~m}(S) ÷ S ÷ H0(U,0u ) ÷ H~m}(S) + 0 

and isomorphisms 
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H~m}(S) -- Hi-I(U,0u ) ' i >i . 

It is easy to see that the homomorphism S -~ H0(U,0 U) induces on each Sn the 

Serre homomorphism en:Sn -~ H0(~,0]p(n)) . Since S is a Cohen-Macaulay ring, we 

have 

H~m}(S) = O, i ~ r+l . 

This proves assertions (i), (ii) of the theorem. 
r+l 

For the proof of (iii) we have to use the explicit calculation of H{m}(S) • 

We have 
r+l 

H{m}(S) = ~ Extr+l(s/(T0 ..... Tr)m,s) = 

m 

= i~ Extr+l(s/(r_m),s) 

m 
m 

where (T m) = (T O . . . .  ,Tm) . 

Let V be a free S-module of rang r+l with the basis 

V by the conditionn deg(e i) = qi m and consider the induced gradation on its ex- 

terior powers ~ (V) (where deg(eilA'''Aei ) = m(qi +'''+ qi )) " The Koszul 

P P 
complex for (T_ TM) : 

i 2 r+l 
S ÷ A(V) ÷ A(V) ..... ÷ A (V) ÷ 0 

e.A...Ae. ÷ Z(-I)kT TM e. A...A~. A...Ae. 
i I ip k i k i I i k Ip 

defines a resolution of graded S-modules for S/(T 2) and hence we have an isomor- 

phism of graded S-modules 

r+l r 
Extr+l(s/(r_m),S) ~- Hom( A (V),S)/Im(Hom(A(V),S) = 

Put 

then 

= (S/(Tm))(-mIQl) 

I = (S/(Tm))(-mlQI) 

r+l 
H{m}(S) = li~m I m, 

m 
where the inductive system is described as follows. 

m-a 0 m-a 
Let t TM be the image of T O ...T r 

a 0, • • - ,m r r 

for 0< a. _<m t m form a basis of I . 
i a 0, •- • ,a r m 

map 

Um,m+s: Im "+ Im+s 

s T s and is multiplication by TO... r 

u . (t m = t m+s 
m,mts a0,...,ar ) a0+s,...,ar+S 

Let e be the image of e m in 
a0,-.-a r a0,.-.,a r 

(e0,...,er) . Grade 

In this notation the transition 

r+l 
lim I . Module H{m}(S ) is a 
~> m 

in I . It is clear that 
m 
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graded S-module and elements 
q 

e 
a 0 , - .. ,a r 

form its homogeneous basis. 

deg(eq0 ..... ar) = deg(eam 0 ..... ar) = (m-a0> +... + (m-a r) -mIQ I = 

Thus we obtain that e with 
a 0, •.. ,a r 

r 

n = - E aiq i (a i > 0) 
i=0 

Hr+l - generate {m}(S)n as a k-space. Since 
r 

dimkS_n_Q = #{(b 0 ..... b r) e ~r+l :_n_IQ I = E biq i} = 
i=0 

r 
= #{(a0,...,a r) c IW r+l+ :-n = 2 aiq i} , 

i=0 

we have 

Hr+l -. 
{m}(S)n -- S_n_IQI. 

It remains to notice that 

Hr+l -. e Hr(~,O~(n)) 
{ m}(S)n 

We have 

r 
Z 

i=0aiqi 

1.4.2. Let integers a be determined by the identity 
n 

r 
Ps(t) = ~ an tn = ~ (i- tqi) -I . 

n=0 i=0 

Then as a c o r o l l a r y  o f  t h e  p r e v i o u s  t h e o r e m  we h a v e  

a i= 0 
n 

dimkHi(F,0F(n)) = 0 i # 0,r 

a_n_iQl , i = r 

In fact, Ps(t) is the Poincare series of the graded algebra 

a n = dimkS(Q) n . 

S(Q) (see 3.4) and 

1.5. Pathologies 

If ~ = ~r then the following properties are well known. 

(i) for any ne ~ 0F(n) is an invertible sheaf; 

(ii) an invertible sheaf 0F(n) is ample; 

(iii) the homorphism of multiplication S(n) 8 l~(m) + S(n+m) 

phism 0F(n) 8 0F(m) = 0F(n+m) ; 

(iv) for any graded S-module M and n e 

M(n) = MSOF 0 F (n) 

None of these properties is valid for general ~(Q) . 

induces the isomor- 

1.5.1. Let Q = {1,1,2}. The restriction of 0 F (i) to D+(T 2) is given by the 
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S(T2)-m°dule 

S(1)(T2) = {_~: a ( S2k_l} . 
T 2 

T O T 1 
It is clear that S(1)(T2) = S(T2)~ +L S (T2)T22 
one. 

This is a counterexample to property (i). 

is not a free S(T2~module of rang 

1.5.2. On a weighted projective line ~ (qo,ql) all sheaves 0~ (n) are inverti- 

ble. In fact, 01) (n)ID+(T i) is associated to the S(T )-module S(n)(Ti ) , free- 
i 

p k ly generated by Tj/Ti, where n = kqi-pqj and k/n, p/n are integers coprime 

with qj and qi respectively. 

Since ~ (q0,ql) _- ~i (1.3.1), an invertible sheaf 01~(n) is equal to some 

01~l(b n) . Moreover, if F(~,01p(~)) # 0 , then 

b = dimkF(lP,0]p(n)) - 1 . 
n 

Thus, 0 (n) is ample if dimkF(~,0]p(n)) > 2 . But, if n< min{q0,q I} and n > 0 , 

r(~,0~(n)) = 0 (1.4.1). 

This is a counterexample to property (ii). 

1.5.3. In notations of 1.5.2 assume that ql = q0 +I , qo > 1 . Then b 
q0 

b = O, b < O. But 
q0+ql +I ql +I 

+ = @ 0~i (bql+l) = 0~i (bq0+bql+l) 0~ (q0) @ ~ (ql i) 0~i (bqo) 

O~ (qo +ql +I) = 0~I (b + .I) • 
qo ql tl 

This is a counterexample to property (iii). 

1.5.4. To obtain a counterexample to property (iv) we can take M = S(m) , note 

that S(m)(n) = S(m+n) and use the counterexample from 1.5.3. 

1.5.5. We refer to the paper of Delorme ([7]) for more details concerning proper- 

ties of the sheaves 0~(n) . For example, one can find there a generalization of 

the duality theorem for ~(Q) , the particular case of which we have proved in 1.4.1. 

We remark also that according to Mori ([19]) everything is well in the open 

set V = n D k, where D k = u D+(Ti) . Namely, V is the maximal open sub- 
k>l kxqi 

scheme such that 0~(1) IV is invertible and (0~(1) IV) ~m ~ 0~(m)]V, Vmc m. 

2. Bott' s theorem. 
--i 

2.1. Sheaves ~i~ . 
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i be the S-module of k-differentials of 
~S 

2.1.1. Let S . 

i 
with a basis dT0,...,dT r . Denote by ~S its exterior i th 

usual we put ~S 0 = S). This is a free S-module with the basis 

i by the condition O~ s I < ... < s i~r~ . Grade ~S 

deg(dTslA'"AdTs i) = qsl+ ... +qsi • 

We have an isomorphism of graded S(Q)-modules 

i ~ ^< < • S(-qs I - ) . 
~S u-s I ...<siNr .... qs i 

For i = r we obtain 

~r+l S(_IQI ) 
S 

I be the canonical universal differentiation. Let d:S ÷ a S 

partial derivatives we have 
r 

da = j=0 ~--~jZ ~a dTj , a• S . 

The k-linear map d extends to the exterior differentiation 

i ÷ ~i+l 
d : a s u s 

uniquely determined by the conditions 

• i w' g~S d(wAw') = dwAw' + (-l)lwAdw ' , w• ~S ' • 

i 
d(d(w)) = 0 , Vw• ~S " 

This is a free module 
i 

power A(~) (as 

{dTslA...AdT : s i 

By definition of the 

2.1.2. Recall the Euler formula: 
r 

na = j~0Z --~--~ Va~ S(Q) qj rj , n 

Using the linearity of both sides of this identity we may verify this formula 
So .Tsr 

only in the case when a is a monomial T O .. . But in this case it can be 
r 

done without any difficulties. 

2.1.3. Define the homomorphism of grades S-modules 

i + i-i 
&: a S a s , i ~ i 

by the formula 

i ^ 

A(dTslA. . .^dT s ) = Z ( -1)k+lqskTskdTslA. . .^dTskA. . .AdT 
i k=l si 

Lemma. 

(i) 

(il) 

(iii) 

A(w^w') = a(w)^w' + (-l)lw^a(w ') , 

A(da) = na, a• S 
n; 

i 
A(dw) +d(A(w)) = nw, w• (aS) n. 

i w' J 
WEas, •a ; 
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Using the linearity of A we may verify (i) only in the case w= dTslA...AdTsi, 

w'= dTsiA...AdTs~ . But this is easy. 

3 
Property (ii) is a corollary of the Euler formula. To verify property (iii) 

it suffices to consider the case w = adTslA'''AdTs''l a ~ S k . We have 

- da^A(dTslA...AdT s ) = A(dw) = ~(daAdTslA...AdT s ) = ~(da)AdTslA...AdTs. 

= kadT A...AdT - daAA(dT A...AdT ) 
s I s. S I s i 1 

d(A(w)) = d(aA(dT A...AdT ) = daAA(dT A...AdT ) +ad(A(dT ^...^dT ) = 
s I s i s I s i s I s i 

^ 
i £+i d 

= daAA(dTsl^...AdTsi) +ad(.£=IE (-i) qs£Ts£ TslA...AdTs~^-.-AdTs.1) = 

I 

• .- qs£)adT • = daAA(dTsl dT ) + ( ~ A ..AdT 
s i l=l Sl s i 

Adding we get 
i 

A(dw) +d(A(w)) = (k+ E )w = nw. 
£=I qs~ 

2.1.4. It is easy to identify the sequence 

_r+l~ r + .... + ~i + S 
0 ÷ ~S aS S 

with the Koszul complex for the regular sequence 

tain that it is an exact sequence. 

Now put 

--ias = Ker(~ A--+~si-l) = Im(a~ +l~a~) 

with the induced grading. 

So, we have the exact sequences of graded 

il 
0 ÷ ~ (n) ÷ a (n) + a S (n) ÷ 0, 

(qoT0 .... ,qrTr ) • 

S-modules : 

i_>l, neTZ 

Thus, we ob- 

2.1.5. Define the sheaf --i ~ on ~(Q) by 

--i --i ~ = ~ , where M denotes the sheaf associated to a graded S-module M. 

Also we put 

--iaF (n) = _~s(n) , n ~ 7z . 

Since M÷M is an exact functor we have exact sequences of sheaves on ~(Q) : 

0 -~ ~il D (n) ÷ _~(n) -> ~iIp-l(n) ~ 0, i>-i . 

that for i = r+l , ~ (n) = 0, thus for i = r 

(n) : ~+l<n) : S(n- [qJ) : 0~ (n- [q]). 

It is clear 
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2.1.6. Note that in the case char(k) = 0 property (iii) in lemma 2.1.3 gives an 

algebraic proof of the acyclicity of the De Rham complex 

0 ÷ k ÷ S ~  S d Ar+l -I+ "'" + ~S + O. 

2.2. Justifications. 

In this section we try to convince the reader that the sheaves % introduced 

in the previous section are good substitutes for the sheaves of germs of differen- 

on the usual projective space ~r. tials ~i ~r 

2.2.1. Let 

In this case 

I ~ = I ~r . Let us show that 

~--i~ (n) = ~$r(n) 

U = V(0~r (-i)) = Spec( @ 0~r (n)) 
neFf 

is the complement to the zero section of the tautological line bundle V(0~r(-l)) 

on ]pr and the canonical morphism p : U + I ~r is smooth. 

The standard exact sequence 

* 1 i i 
0 -~ p ~ + ~U ÷ ~U/~ ~ 0 

induces the exact sequences 

* i i 1 i-i 
0 ÷ p ~ -~ aU÷~U/~ Op.~ + O. 

The homomorphism 

i 
A : a S ÷ S (Ya.dT. + Za.q.T.) 

• i 1 . 1 1 1 
l 1 

induces after restriction to U a surjective homomorphism of sheaves 

1 _~Ou A:~ U 

we use that (qi,char(k)) = i!). It is easy to verify that A(p*~ I) = (here 0 and 

hence A defines a surjective homomorphism 

i 
~: au/~ ÷ 0 U. 

i 
Since ~U/l~ is invertible we obtain that ~ is in fact an isomorphism. 

Thus we have exact sequences 

0 -> p.~i i i-I 0 

and applying p. we obtain exact sequences 

i (n)÷ @ ~s(n)+ @ ~-l(n)-~ 0 0 ÷ @ ~2p Q 

neFf neff neff 

It is easy to see that in this way we obtain exact sequence 2.1.5 of the definition 

of g$(n) . 
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2.2.2. Lemma. In the notation of 1.3.2, let us assume that G is generated by 

pseudoreflections and its order is invertible in k. Then the canonical homomor- 

phism 

i i G 
~A/k ÷ (~/k) 

is an isomorphism of A-modules. 

i i 
Proof. Since B (reap. A) is a polynomial algebra, the B-module ~B/k (reap. ~A/k ) 

is a free B-module (reap. A-module). Since B is a free A-module ([3],ch.5, 5, 
i i i 

th.5), ~B/k is a free A-module. Let ~A/k ~ ~B/k be the canonical homomorphism 

of A-modules (the inverse image of a differential form). It is injective (because 
i 

~A/k is free and it is injective over a dense open subset of Spec A). Let T be 

its cokernel and 

0 ~ i i 
~A/k * ~B/k + T ÷ 0 

be the corresponding exact sequence. 
i 

Now, for every G-B-module M, the homomorphism m ~ ~-~ ~g(m) is a projector 

onto a direct summand (here we use the assumption that #G is invertible in k ) , 
G 

thus the functor ( ) is exact. Applying this functor to the above exact sequence, 

we get an exact sequence 

i i G T G 
0 ÷ ~A/k ~ (~B/k) ~ ~ 0 

i G being a direct summand of a free A-module, is a projective A-module. where (~B/k) , 

This shows that dim. proj. (T G) ~ i and, hence, depth (T G) edim B- i. This implies 

that T G = 0 if its localization (TG)p = 0 for any prime P of A of height i. 

Let Q be a prime ideal of B such that QnA = P and GQ = {g c G: g(Q) = Q} be 

(TG)p (TQ)GQ (~p/k ~Q/k )GQ) the decomposition group of Q, Then = = Coker ÷ (~ . 

Let G~ be the inertia group of Q , the subgroup of GQ of elements which act 
G~ G~ 

. = (BQ) ~ ~ (BQ) ~ = ~ , trivially in the residue field K of BQ Then BQ ~B~ 

t the extension B~ Ap is etale, the group GQ is a cyclic group of order e 

equal to the ramification index of the extension 
i A' = i ~i shows that ~/k @Ap Q ~B~ and, hence, Ap 

to show that 

i = .Q)G~ 

~B~ (~ 

Passing to the completions, we may assume that BQ 

v generator g of GQ acts on BQ by multiplying 

unity ~. Let tl,...,tn_ 1 

Then 

B ~ B' ([3],ch.V, 5, n°5). This 
Q i Q G!/G ~ . Q Q  

= (~B.) Thus, it suffices 
Q 

= K[[T]] , B~ = K[[Te]] and a 

T by a primitive e-th root of 

be a separable transcendence basis of K over k. 

i = ~B~ dt. A...^dt dT e 
~B 4 J 1 J i-i 
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~ = ~BQ dtj A...Adtj ^dT 

Q i i-i G' 
i Q i 

A direct computation shows that (aBQ/k) = ~B~/k"  

2.2.3. Let a: ~r + ~ be the natural projection pr ~ ~r/~Q = ~(Q) from 1.2.2. 

Let us show that 

ap = a ,  (a ) , 

G 
where G = ~Q and a, is the functor of invariant direct image ([ii],5.1). 

The action of G on ~r is induced by one on S . Since S G is a polynomial 

algebra, this latter action is generated by pseudoreflections and hence, by lemma 

2.2.2, we have an isomorphism of S(Q)-modules 

i = (a~)G 
aS(Q) 

and, hence, an isomorphism of sheaves 

~(Q) G'ai" 
= a , t ~ S )  - 

A p p l y i n g  a~ to  t h e  e x a c t  sequence (see 2 . 1 . 5 )  

0 ÷ a i ÷ a i ÷ a i-I 
~r --S ~r ÷ 0 

and using the exactness of a~ (p is an affine morphism and ( )G is an exact 

functor) we obtain an exact sequence: 

• i Gt~i-l~ 
0 + a~(a Ir ) + aS(Q) ÷ 0 

G Gi --i 
Since a,(0 r ) = 0 F we obtain by induction that a,(a r ) = a~. 

2.2.4. Let us show that ~ coincides with the sheaf ~p~i i n t r o d u c e d  f o r  any 

V - v a r i e t y  in  [23] .  

Recall that 

~i . ai 
a~ = 3,( w ) 

where j : W + • is the open immersion of the smooth locus of • • In notations 

of 2.2.3, let us consider a commutative diagram 

a-i (W) j' ~ ~r 

a t 

Here a' = ala-l(w)' and 
-i 

action of ~Q on a 

lemma 2.2.2, we get 

a 

W J -+~ 

j' is the natural immersion. Since W is smooth, the 

(W) is generated locally by pseudoreflections. Then, by 
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Since 

,G ~i 
a ,(~ -i ) " 

a (w) 

codim(]P-W,~) _>2 (~ is a normal scheme) and 

•, i ~i 
3"(~-i ) = ~r 

a (W) 

~r is smooth, 

Thus 

~i j,(~) . ,G ~i G, , ~i aG(~r ) 
fl~ = = 3*(a* (~a-l(w)) = a, lj,(~a_l(w)) = 

2.3. Cohomology of ~$(n) . 

2.3.1. Let us consider the graded S(Q)-modules --i~s ' introduced in 2.1.4 and let 

i H{m } denote the local cohomology group for a S-module M (cf. 1.4). 

Proposit ion. 

0, j # i+l, r+l 

k, j = i+l # r+l . 

Proof. We have exact sequences (2.1.4) 

0 + --i i --i-i 0 , i > 1 

i 
which, after applying the functor H{m} ' yield the exact sequences of local coho- 

mology 

j-i i j-l---i-l- " --i " (~) + ... 
. . . .  H{m}(aS) ÷ H{m}(a S ) ÷ H~ H~m } m } ( a s )  ÷ ~ 

j i 
i S(-n) for some n ~ ~ and S is a Cohen-Macaulay ring, H{m}(£ S) = 0 Since ~S = 

if j # r + I . Thus, we have an isomorphism 

)  -l-i-1 
= H{m}(~ S ) for j # r + i. 

By induction, we obtain 

{m} ( n s ) "  

Now, first terms of the Koszul complex from (2.1.4) give an exart sequence 

÷ ÷ m +  0 , 

which easily implies that 

H~m}(~) = { 0, 1 # 2, r + l  

k , i = 2 # r + i . 

This proves the proposition. 

Corollary. --i~s is a Cohen-Macaulay S-module if and only if i = r. 
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2.3.2. For any subset jc [0,r] = {0 .... ,r} denote by [Qj[ the sum Z 
jeJ 

Notice that IQ[0,r][ = [Q[ in our old notations. Put a n = dimeS(Q) n . 

Theorem. Let h(j ,i;n) = dimkHJ (~ --i , ~]p (n)) . Then 

h(0,i;n) = #J=iZ an_[Qj] - h(0, i-l;n) , i->l , n ~2Z 

h(j,i;n) = 0 , if j # 0,i,r , n • 2Z 

h(i,i;0) = i, i = 0,...,r 

h(i,i;n) = 0, n # 0, i # r,0 

h(r,i;n) = E a - h(r,i-l;n) , i>0 nc2Z 
#J=r+l-i -n-[Q j[ - ' 

qj. 

Proof. Using the same arguments as in the proof of theorem 1.4.1 we obtain the 

exact sequence 

0 ÷ H + ÷ (n)) ÷ ÷ 0 
n 7z 

and an isomorphism 

J (~,~(n)) . H{m}(as) ÷ n~m Hi-1 

Applying 2.3.1 we get that 

H0(]p,~(n)) = (~S) n-i = Ker(~s 4--i-l~s )n 

HJ(~,~(n)) = 0, j # 0,i,r, n~ 7Z 

Hi(~,~(n)) = k, n = 0, i # r 

Hi(]P,~(n)) = 0, n # 0, i ~ 0,r 

i 
Now ~S = @ S(-IQjI) and A is surjective (2.1). So, we get all the assertions 

• #J=i 
except the last one. 

Consider exact sequence 2.1.5 

0 ÷ ~(n)÷ _~s(n) ÷ ~-l(n) ÷ 0 

and the corresponding cohomology sequence 

Hr-l(~(n)) ÷ Hr-l(~-l(n)) -~ Hr(~ (n))÷ Hr(_~s(n) ) ÷ Hr(~-l(n))÷ 0. 

~(n) -~ • 0~ (n-[QjI) we can apply theorem 1.4.1 and obtain that Since 
#J=i 

r i 
dimkH (is(n)) = 

#J=r+l-i a-n- 1QJ [ 

Using this sequence and preceeding results we obtain the last equality. 

2.3.3. Corollary. 
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Hr(~,~(n)) = O, 
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if n <min{IQj[: #J = i} 

if n >-min{IQjl: #J = r+l-i} . 

2.3.4. Corollary (Bott-Steenbrink). If n > 0 

HJ(~,~(n)) ~ 0 

only when j = 0 and n >min{IQjl: #J = i} . 

then 

2.3.5. Corollary. 

i 
h(0,i;n) = ~ (-i)/+i E 

/=0 #J=~ an-IQJ 1 

h(r,i;n) = h(O,r-i;-n) . 

Here the first assertion immediately follows from 2.3.2 and to verify the second 

one we have to consider the identity 

h(r,i;n) - h(0,r-i;-n) = h(0,r+l;-n) = dimkH0(~,~--r+l (-n)) = 0 . 

2.3.6. Corollary. If k = K , then 

, i even 

0 , i odd 

i, p = q 

~P'q(]p) = 

0, p # q 

This follows from the degeneracy of the spectral sequence 

HP+q(x,K) proven by Steenbrink [23]. 

P,q = Hq(~,~--P) ----> 
E 1 

3. Weighted complete intersections. 

3.1. Quasicones. 

3.1.1. Let X be a closed subscheme of a weighted projective space ~(Q) and 

p : U + ~(Q) be the canonical projection. 

The scheme closure of p-l(x) in A r+l is called the affine quasicone over 

X. The point 0 ¢ C X is called the vertex of C X. 

Let J be the Ideal of X in • then the ideal I of C X in S is equal 
0 * 

to H (U,p (J)@0~ 0U) = n~H0(~'J0~@0~ (n)) . 
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3.1.2. Proposition. 

(i) I is a homogeneous ideal of S(Q) ; 

(ii) the maximal ideal m 0 of the vertex of C X coincides with the irrelevant 

ideal of the graded ring S(Q)/I and has no immersed components (i.e. 

depthm(S/I) ~ i); 

(iii) The closed embedding Proj(S/I) + Proj(S) = • corresponding to the natural 

projection S ÷ S/I determines an isomorphism Proj(S/I) = X ; 

(iv) I is uniquely determined by the properties above. 

This is an easy exercise in the theory of projective schemes, which we omit 

(it will not be used in the sequel). 

3.1.3. An affine variety V is called Nuasiconic (or quasicone) if there is an 

effective action of G on V such that the intersection of the closures of all or- 
m 

bits is a closed point. This point is called the vertex of a quasicone. 

3.1.4. Proposition. Let V be an affine algebraic variety over a field k. The 

following properties are equivalent: 

(i) V is a quasicone; 

(ii) k[V] = F(V,0v) has a nonnegative grading with k[V]0 = k ; 

(iii) there is a closed embedding j : V ÷~r+l such that j(V) is invariant with 

respect to the action of G on A r+l defined as in 1.2.1; 
m 

(iv) there is a closed embedding j : V +Ar+l such that the ideal of j(V) is 

generated by weighted-homogeneous polynomials with integer positive weights 

(i.e. homogeneous elements of some S(Q) ) . 

The proof consists of standard arguments of the algebraic group theory (cf. 

[8], [20]). 

Corollary. Any affine quasicone is a quasicone. Conversely any quasicone without 

immersed components in its vertex is an affine quasicone for some Xc ~(Q) . 

3.1.5. A closed subscheme Xc ~(Q) is called quasismooth (with respect to the em- 

bedding X + ~(Q) ) if its affine quasicone is smooth outside its vertex. 

3.1.6. Theorem. A quasismooth closed suhscheme X c ~(Q) is a V-variety. 

Proof. Let C X be the affine quasicone over X and x~ X be a closed point. In 

notations of the proof of 1.3.2 let W i = V in C X. Let us show that for any y ~W. 
i 

over xSW.l is nonsingular in y. We have to show that the tangent space TCx(Y) 

is not contained in the tangent space Tv.(y ). Let p' : C X + X be the restriction 

* -i I 

of p to C X = C X- {0} and F = p' (X)re d . The fibre F is an orbit of the 
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point y with respect to the action of G m restricted to C X. If 

(yo,...,Yi_l,l,Yi+l,...,~r) denotes the coordinates of y , then F coincides with 

the image of the map Gm = Spec(k[t,t-l]) ,~r+l = Spec(S) which is given by the 

formula: 

-- q0 -- qi -I qi -- qi +I -- q2 
. . . .  ,yr t ) (To, .... Ti_l,Ti,Ti+ 1 .... ,Tr) ÷ (yo t ,. ,Yi_l t ,t ,Yi+l t ,. 

The tangent line to the curve F is the image of the corresponding tangent map and 

defined by the equation 

To-Yo = qOYo'''''Ti-i -yi-I = qi-lYi-l'Ti -I = qi'''''Tr-Yr = qrYr " 

It is clear that TF(Y) ~ TV (y) = V.1 and, since TF(Y ) c TCx(Y ) , we obtain that 
i 

y is anonsingular point of W.. 
l 

The end of the proof is the same as in the proof of 1.3.2: we obtain that 

U k c X is locally isomorphic to the quotient of the nonsingular variety W i by the 

cG of the point Yi " isotropy group Gy m 

3.2. Weighted complete intersections. 

3.2.1. Assume that the ideal IcS of the affine quasicone C X of Xc ~ is 

generated by a regular sequence of homogeneous elements of the ring S(Q) . If 

dl,...,d k are the degrees of these elements then we say that X is a weighted com- 

plete intersection of multidegree d = (dl,...,dk) and denote X by Vd(Q) . 

In case I is a principal ideal (F) and FE S(Q) d we say that X is a 

weighted hypersurface of degree d and denote X by Vd(Q) . 

3.2.2. In the sequel, C X will denote the punctured affine quasicone C X- {0} . 

Let p : C X ÷ X be t h e  c o r r e s p o n d i n g  p r o j e c t i o n .  

Lemma. Assume that X = Vd(Q) is quasismooth, Then 

(i) Pic(Cx) = 0 if dim X~ 3 ; 
* 

(ii) any G -equivariant etale covering of C X 
,m 

(ii)' Zl(Cx) = 0 if k = C and dim Xe 2 ; 

(iii) HI(c~,0C*> = 0, 0< i< dim X. 
~ X 

is trivial if dim Xz 2 ; 

Proof. (i) Since the local ring 0Cx, O is a complete intersection ring of dimen- 

sion 4, regular outside its maximal ideal, it is a factorial ring ([13], exp. XI). 

This shows that Pic(C X) = Pic(Cx) • The latter group, being isomorphic to the 

group of classes of invertible divisorial ideals of a graded commutative ring, is 

trivial ([i0]). This proves (i). 

(ii) A similar reference ([13], exp. X) shows that 0C. ~ is pure. Hence, every 
x 

etale covering of C X is a restriction of an etale covering of C X. Moreover, 
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the same is true for Gm-equivariant coverings. Let f : Y + C X be an irreducible 

G m-equivariant etale covering of C X . Then Y = Spec B , where B = n~ Bn is an 

integral ~ -graded k-algebra, and f is defined by an inclusion of graded rings 

k[Cx] cB. Let m = k[C]> ° = n~o k[Cx]n be the maximal ideal of the vertex o e C X- 

Then mBc B>o and B/mB is a finite separable k-algebra. Since B is integral, 

this easily implies that B m = 0 for m < 0 and B ° is a finite algebra over 

k[Cx]/m = k. Since B is a subalgebra of an integral algebra B this implies 
o 

that B is a field. Thus, we obtain that Y is a quasicone and its vertex is 
o 

the only point lying over the vertex of C X . Because f is etale and k is alge- 

braically closed, this implies that f is an isomorphism. This proves (ii). 

(ii)' Let C X be Gm-equivariantly embedded into ~n . The subgroup ~+ of posi- 

tive real numbers of the group ~ acts freely on C X . Intersecting every ~+- 

orbit with a sphere S 2n-I of small radius c with the center at the origin, we 

, a s2n_ 1 get a map C X + ~+x K e , where K = n C X. It is easily verified that this 
, £ 

map is a diffeomorphism of C X onto ~+xK . Now, since the vertex of C X is a 

complete intersection isolated singularity, the space K is (d-2)-connected 

(d = dim C X = dim X+ i) (see [14,18]). Thus, nI(Cx) = ~I(KE) = 0 if dim Xe2 . 

To verify (iii) we again use the local cohomology theory. Since C X = Spec(S/I) 

is affine, 

i * 0C~) = Hi+I.c = i+l 
H (Cx, {0}( X,OCx ) H{mo}(S/I ) . 

Since S/I, being a quotient of a regular ring by a regular sequence, is a Cohen- 

Macaulay ring, i+l = 0 , if i+l # dlm(S/I) = dim X+ i . H{m0}(S/I) 

3.2.3. Remark. If char k> 0 , then -algt~*~ "i <UX ~ may be not trivial. For 

example, n~ig(An_ {0}) # 0, because A n has nontrivial etale coverings. 

3.2.4• Theorem. Under the conditions of the lemma 

(i) Pic(X) = ~ , if dim X~ 3 ; 

(ii) ~Ig(x) = 0 , if dim X~2 ; 

(ii)' Zl!X) = 0 , if k = ~ and dim Xe2 ; 

(iii) HI(X,Ox(n)) = 0 , n ~ ~ , O< i < dim X. 

Proof. Let L be an invertible sheaf on X Since Pic(C X) = 0 P (L) = 0 * 
• , C X 

and is determined as a Gm-sheaf by some character X L eHI(G ,Aut(0~*)) = HI(G ,G )= 
m OX m m 

= ~ • In this way we obtain a homomorphism f : Pic(X) ÷ ~ . If p*(L) = p*(L') 

~m(p*(L)) L' p~(p*L')) and, hence, f is injective. as Gm-sheaves , then L = p = = 

This proves (i). 

Let X' be an etale finite covering of X and A be a corresponding 0 X- 

Algebra (i.e. X' = Spec(A)). Since the covering X' = X' XxCx* of C X* is a 
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= Spec(p (A)) is tri- Gm-equivariant covering, by lemma 3.2.2 (ii) we get that X' * 

vial. 

Hence the Gm-0c~-Algebra B = p*(A) = A0-X80r*~X splits, i.e. B = B 1 × B 2 , 

where B. are nontrivial. Since G is connected, the Subalgebras B 1 and B 2 
l m 

are invariant Subalgebras and we have a splitting of Gm-Algebras B = B 1 × B 2 • 
Gm G 

Applying p, , we obtain that A = p,dm(B) = p,m(B I) Gm × p, (B2) splits. This 

shows that the covering X' splits and proves (ii). 

To prove (ii)' we apply Lemma 3.2.2 (ii) and notice that the canonical homo- 

morphism ~I(Cx) ÷ ~I(X) is surjective because the fibres of C X ÷ X are path- 

wise connected. 

To prove (iii) we note that 

Hi(c~,0 ,) H i * 0 = (Cx, XS0~ 0 U) = Hi(X,0~Sp,0 U) = n~Hi(X,0x@0~ 0~ (n)) . 

C x 

But 0XS0~ 0 F (n) = Ox(n ) and we can apply 3.2.2 and obtain (iii). 

3.2.5. Remark. The proof of (i) easily gives that Pic(X) is generated by some 

0x(n) , where, in general, n # i. For example, Pic(~(l,...,l,n)) is 

generated by 0]p (2) . 

3.2.6. One can also prove 3.2.4 (and its generalizations to torical spaces) using 

the methods of [13] (cf. [9]). 

3.3. The dualizin$ sheaf. 

3.3.1. Recall that according to Grothendieck for any normal integral projective 

Cohen-Macaulay variety X there is a sheaf w X (the dualizing sheaf) such that 

n-i * 
Hi(X,F) " = (Ext (X;F,~x)) (n = dim X) 

for any coherent 0x-MOdule F. The sheaf ~X can be determined as the sheaf of 

germs of differential forms which are regular at nonsingular points of X (see, for 

example [16]). 

In other words, 

= ~n 
~0 X J,( Z ) 

where j : Z + X is the open immersion of the nonsingular locus of X. 

In this section we shall compute ~X for a quasismooth weighted complete in- 

tersection. 

3.3.2. Lemma. Let X be a closed quasismooth subscheme of 

jecting quasicone, Z be the nonsingular locus of X, then 
G 
m 1 

P, (f~C~/X) I z -~ 0 Z • 

, C x be its pro- 
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* + U defines an exact sequence Proof. The embedding of smooth schemes C X 

0 j/72 I @OuO C -~ f21 ÷ ÷ ~u/ :~  ~ c ~ / x  + o 

* in U Consider the surjective homomorphism where J is the ideal sheaf of C X 

7:1 ~U/~ + 0 U from 2.2.1 (its construction does not use the assumption that ]P = 

~r , the latter is used only to check that ~ is an isomorphism). It is easy to 
i 

see that the induced map ~ : ~C~/X ÷ 0C.*. is well defined and is surjective. 
x 

G 
m 

Since p, is exact, the map 
G G 

m,~l . 
p,m(~) : P* t c* ) ÷ OX 

~x/x  
is surjective. Thus, it is sufficient to show that the restriction of the left hand 

side sheaf to Z is an invertible sheaf. 

This verification is local. Let xe Z and Z be its neighbourhood of the 
x 

form W/G where W is a nonsingular subvariety of C~ of codimension i and G 

is a finite subgroup of G constructed in the proof of theorem 3.1.6. 
m 

Since W is regularly embedded in C~, we have an exact sequence: 

i i 
0 ÷ NWlCx ÷ ~c~iXOOcOW + ~WlZx ÷ o . 

Since NW/Cx is locally free of rank i we may assume (replacing W by smaller 

one) that NW/Cx = 0 W . 

It is clear that 
G 
m.~l 0 : pT(~lc,/x00 0 W) 

P* ( C~/X 0CxOW) X C~ 

G i 
Since x is nonsingular, G acts by pseudoreflections and hence p,(~ ) = 0 

G W/Zx 
m 

(see the proof of 2.2.2). Applying p, to the above sequence we obtain 
G 
m,~l , G 0 

P. t c*IxJlZxx = p*(W) : 0Zx 

This proves the lemma. 

3.3.3. proposition. In conditions of 3.3.2 
G 
m, ~n+l, 

~X = p* tg , ) (n = dim X) . 
C X 

Proof. Since X is a normal Cohen-Macaulay variety (it follows easily from 3.1.6), 

by 3.3.1 it is sufficient to show that 
G 
m,~n+l, 

P* t C~ ) Iz ~ an "z 

Consider the exact sequence 

0 ~ p*~ + ~I[p-I(z) ÷ ~Ip-l(x) ÷ 0. 
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G 
Applying p,m and using 3.3.2 we obtain the exact sequence 

i Gm.~l., 
0 + ~Z + p* ( C~ )Iz ÷ 0Z ÷ 0 . 

Taking the exterior power we get 
G 

n = n = m. ~n+l I Z 
~z ~Z~OzOz P* < c~ ) 

q.e.d. 

3.3.4. Theorem. Let X = Vd(Q) 

multidegree d = (d I ..... ds) . 

~X = Ox(l~l -IQI) 

where 1~I = dl+'''+d s 

be a quasismooth weighted complete intersection of 

Then 

Proof. Let I be the ideal of the projecting quasicone over 

There is an isomorphism of graded A-modules 

1/12 = B(-dl) + ... + B(-d s) . 

The exact sequence 

IS i->0 0 ÷ 1/12 ÷ ~ @S B -~ ~B 

gives the homomorphism 

s o r +i -s i 
r+l-s = A(I/I~)@ B n (~B) f : ~B (-Idl) -> 

Since C~ is smooth, the restriction of 

~r+l-s 
c~ = B([_d] - ]Q[) . 

It remains to use the above proposition. 

X and B = S/I. 

2+I(~)8sB B(-IQI) A = . 

f to C~ is an isomorphism. Hence 

3.4. The Poincare series. 

3.4.1. Let A = n~0 An be a graded k-algebra of finite type. 

series is defined by 

PA(t) = E (dimkAn)tn . 
n=0 

If Xo,...,x r are homogeneous generators of A and qo,...,qr 

then PA(t) is a rational function of the form 
r 

eA(t) = F(t)/i~ 0 (i- t qi) 

where F(t) is a polynomial ([2], Ii.i). 

Then its Poincare 

are its degrees, 

3.4.2. Assume that A = S(Q) is a graded polynomial k-algebra. Then ([3], ch.V, 

§5, n°l) 
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and 

This formula follows from the above formula. 

Then A i = A i -1 / ( f i  ) and obviously 

d. 

t iPAi_l(t) + PAi(t) = PAi_l(t) . 

Thus 

PS(Q)(t) = I/i~o(l- t qi) . 

Let fl,...,fs be a regular sequence of homogeneous elements of the ring 

d l,...,dr be its degrees, let A = S(Q)/(fl,...,f s) . Then 
s d. 

PA(t) = i~l(1-t l)/ ~ (i-tqi) . 
i=0 

Put A 0 = S (Q) , 

d. 

PAi(t) = (i-t z)pA -i i (t) ' i = l,...~S 

S(Q) 

A i = S(Q)/(f I .... fi ). 

and we obtain our formula. 

3.4.3. For X = Proj(A) we put 

Px(t) = n~o(dimkHO(X,Ox(n))tn 

Lemma. Let m = n~0 An be the irrelevant ideal of A . Assume that depthm(A) ~ 2 

(for example, A is normal). Then 

PA(t) = Px(t) • 

The same argument as in the proof of 3.2.4 (iii) and 1.4.2(i) shows that the Serre 

homomorphism of graded algebras 

A ÷ n~m HO(X, Ox(n)) 

is bijective. 

3.4.4. Theorem. Let X = Vd(Q) be a quasismooth weighted complete intersection, 

Px(t) = n~ 0 an tn be the power series defined above. Then 
s d. r . 

Px(t) = i=~(l- t 1)/i$0(i- t qz) . 

Corollary. Define pg(X) = dimk Hdim X(X,0x) , then in notations of the theorem 

pg(Vd(Q)) = ald I _ IQI 

Indeed, since w = 0x(Id I -IQI) is the dualizing sheaf (3.3.4) we have that 
X 

dimkHdim X(X'0x) = dimkH°m(0x'~x) = dimkHO(X'~x) = al~l- IQI " 

3.5. Examples. 

3.5.1. We shall say that two closed subvarieties X c]P and X' c I ~' are affine 
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isomorphi 9 if their affine quasicones are isomorphic and projectively isomorphic if 

their quasicones are Gm-iSomorphic. It is clear that in general there are only two 

implications 

projectively isomorphic => affine isomorphic 

projectively isomorphic => isomorphic 

between these three notions. 

3.5.2. Weighted plane curves. 

projective plane • (q0,ql,q2) 
i 

coincides with the canonical sheaf ~X 

~xl = 0x(d_q0_ql_q2) 

Its genus is calculated by the formula 

g = coefficient at t d-IQl 

(i- td)/i~O (i- t qi) . 

A quasismooth hypersurface X = Vd(Q) in a weighted 

is a smooth projective curve. Its dualizing sheaf 

and we have (3.3.4): 

in the formal series 

The affine quasicone of such a curve is given by a weighted-homogeneous equation 

f(x0,xl,x 2) = 0 with an isolated singularity at the origin. Such singularities 

were studied by many authors ([1,8,18,20]). 

Let 

m = d-q0-ql- q2 " 

Each weighted plane curve with m< 0 is affine isomorphic to one of the fol- 

lowing curves 

(q0,ql,q2) Equation d 

1 

2k 

4k+2 

2k-2 

12 

18 

3O 

1 D (i,i,i) x 0 = 0 

2k 2 2 
(l,k,k) x 0 +Xl+X 2 = 0 

(2,2k+l,2k+l) x2k+l+ x21 +x22 = 0 

1 ~ (2 ,k-2 ,k-l) k-i 2 2 
x 0 + XlX 0 + x 2 = 0 

I~ (3,4,6) x40+x31 +x22 = 0 

3 3 2 
1 D (4,6,9) X0Xl+Xl+X 2 = 0 

5 3 2 
]P (6,10,15) Xo+Xl+X 2 = 0 

Name 

A2k_ I , 

A2k , 

D k 

E 6 

E 7 

E 8 

k>l 

k_>l 

k_>4 

The equations of corresponding projecting quasicones are well known two-dimensional 

singularities, which are called the platonic singularities, D__U_U Val singularities, 

Klein singularities, ADE singularities, double rational singularities, simple sin- 

gularities, O-modal singularities. 

Note that any curve which is affine isomorphic to a curve of type D k or E 
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is projectively isomorphic to this curve. 

It is clear that all such curves with m < 0 are isomorphic to yl . 

When m= 0 each weighted plane curve is projectively isomorphic to one of the 

following curves: 

(qo,ql,q 2) 

(1,1,1) 

(1,1,2) 

(1,2,3) 

d 

3 

4 

6 

Equation 

3 3 3 
x 0+x l+x 2 +ax0xlx 2 = 0 , 

4 4 2 2 2 
x 0+x l+x 2+axOx I = 0 , 

x~+ 3 2 22 
x l+x 2+axlx 2 = 0 , 

a3+27 # 0 

2 
a -4#0 

4a 3 + 27 # 0 

Name 

36 or P8 

37 or X 9 

38 or Jl0 

It can be shown (V. I. Arnold) that for any fixed m there is only a finite 

number of collections (q0,ql,q2;d) for which there is a smooth weighted plane 

curve Vd(q0,ql,q2) . 

For m= 1 there are exactly 31 collections. The corresponding affine quasi- 

cones have a canonical quasihomogeneous singularity embeddable in ~3. There is 

a natural correspondence between the 31 collections and the 31 possible signatures 

of the Fuchsian groups of the first kind with compact quotient for which the alge- 

bra of automorphic forms is generated by three elements ([8,25]). 

Of course, a general smooth projective curve is not isomorphic to any weighted 

plane curve. 

3.5.3. Surfaces. There are no classification results in this case, there are only 

some interesting examples. 

Let f(x0,xl,x 2) = 0 be an equation of a smooth weighted plane curve Vd(Q). 

Then the equation 

f(x0,xl,x 2) +x~ = 0 

defines a quasismooth hypersurface Vd(qO,ql,q2,1) . 

For curves with m = 0 we obtain in this way dell Pezzo surfaces [15] of de- 

gree 3, 2 and 1 respectively (M. Reid). 

For curves with m = 1 we obtain simply-connected projective surfaces with 

the dualizing sheaf ~X ~ 0X" Resolving its singularities (which are double ra- 

tional points) we get minimal models of nonsingular K3-surfaces. One example of 

such a surface is the following Klein surface: 

x7+ x3+ 2 42 V42(6,14,21,I) : 0 i x 2 + x 3 = 0 • 

This surface has 3 singular points 

(i,-I,0,0) of type A 1 

(0,-I,i,0) of type A 6 

(-i,0,i,0) of type A 2 . 
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For any such surface the complement to the curve x 3 = 0 is isomorphic to the 

affine surface with an equation 

f(x0,xl,x 2) + i = 0 

which is diffeomorphic to the Milnor space F@ for the singularity f(x0,xl,x 2) =0 

([18]). This fact can be used for the explanation of some observations in the sin- 

gularity theory by means of the theory of algebraic surfaces (see [21]). 

3.5.4. Multiple spaces. Let X ÷ ~r-i be a finite Galois covering with a cyclic 

automorphism group of order m branched along a smooth surface wc~r-i of degree 

d. Let f(x0,...,Xr_ I) = 0 be the equation of W. Assume that (d,char(k)) = i. 

Then X is isomorphic to a weighted quasismooth hypersurface 

Vd(Q) : f(x0 ..... Xr-l) + xmr = 0 

where Q = {i ..... l,d/m}. 

It is easy to see that such X is smooth. From 3.2.4 we obtain that all such 

varieties are simply-connected if r e 3 (i.e. ~ig(x) = 0 or ~I(X) = 0 if 

k = ~) (cf. [22]). Moreover, Pic(X) = ~ if r e4 . 

The Poincare series Px(t) has the form (3.4.4) : 

Px(t) = (i- td)/(l- t)r(l- t d/m) = (i+ t d/m+ "''+td(m-l)/m)/(l- t) r • 

In particular, 

pg(X) = the coefficient at 

For example 

td_r_d/m = m-i I d(m-l-S)m 1 
s$0 1 . 

r-i 

m = 2, r = 2 (hyperelliptic curve) pg = d/2 - i 

= m = 2, r = 3, d = 6 (K3-surface) pg i . 

It is very useful for the construction problems in algebraic geometry to con- 

sider also weighted multiple planes, cyclic coverings of weighted projective spaces. 

For example, the Klein surface from 3.5.3 is such a multiple plane. 

4. The Hodge structure on the cohomology of weighted hypersurfaces. 

4.1. A resolution of ~i 
X" 

Let X = VN(Q) be a quasismooth weighted hypersurface, C X its affine quasi- 

cone, Ic S(Q) the ideal of C X, f ~ S(Q) N its generator, A = S(Q)/I the coor- 

dinate ring of C X, m 0 the maximal ideal of the vertex of C X, C~ = C X- {0} . 

Since X is a V-variety (3.1.6) its cohomology has (in case k = C) a pure 

Hodge structure and the corresponding Hodge numbers are calculated by the formula 

(see [23]) 

hP'q(x) = dimk(Hq(X,~) ) . 
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In this section we shall construct a suitable resolution for the sheaf 

4.1.1. Define a k-linear map 

i ~+i i z 0 df : m S 

setting for homogeneous elements of the S-module 

df(w) = fdw + (-l)i+l[~ 1 wAdf , 

where [w[ denotes for brevity the degree of w. 

i 
~S (2. i. i) 

~X " 

n emNa. 

(i) 

(ii) 

(iii) 

(-i) iwAdf i df(wAw') = df(w) Aw' + (w') , WE ~S' 

df(df(w)) = 0 Vwe ~i 
' S; 

d(df(w)) = (i + )dfAdw, Ywe ~S ; 

(iv) df(dw) = " dfAdw, Yw• m S ; 

(v) df((~S)n) c (~i+l- 
" S )n+N " 

This is directly verified. 

Let us show that df induces a linear map of S-modules 

w' •4; 

--i i A i-I 
~S = Ker(~s---+eS ) (2.1.4). 

Lemma (continuation). 

i 
(vi) df(&(w)) = -A(df(w)) , w• ~S ; 

(vii) df(~) =i+l c u S . 

It is clear that (vii) follows from (vi). Let us prove (vi). Recalling pro- 

perties of the map A (2.1.3), we obtain 

A(df(w)) = 8(fdw+ (-i) i+l l~[ wAdf) = f&(dw) + (-i) i+l I~I &(wAdf) = 

= -fd(A(w)) + f[w]w+ (-i) i+l [~[ A(w)Adf-[w]fw = 

= -fd(A(w)) + (-I) i ]A(~ A(w)Adf = -df(A(w)) 
N 

4.1.2. Properties (ii) and (v) of the lemma make possible to introduce the follow- 

ing complex R[ of graded S-modules: 
1 

Rki = ~((k-i)N) 

d k = (-l)kdf : R~l ÷ R~+ll 

k + k-i determine morphisms Property (vi) implies that the homomorphisms A : ~S ~S 

of complexes 

A : R; ÷ Ri_l[-i ] . 

Property (vii) shows that 
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is a subcomplex of R~ such that 
1 

Ri = Ker(Ri + Ri_l[-l]) 

Ri-l[-l] = Im(Ri ÷ Ri_ I[-I]) . 

Thus we have the exact sequence of complexes of graded S-modules: 

--° i --° 
0 + R i ÷ R ÷ Ri_l[-l] + 0, ie ~ . 

4.1.3. The multiplication by f defines the inclusion of graded S-modules 

~sk ÷ ~ (N) ' --k ~ (N) ' ~ S  

which induces the inclusion of complexes 

• --• --o 

R; ~ Ri_ 1 , R i ÷ Ri_ 1 . 

Consider the corresponding quotient complexes 

, • 

The exact sequence of complexes from 4.1.2 induces the exact sequence of com- 

plexes of graded S-modules: 

o 

0 + K- i + K_ i ÷ Ki_l[-l] + 0 m 

4.1.4. Lemma (De Rham). Let A be a commutative ring, wcA r+l be a regular 

sequence of elements of A, he ~(A r+l) , p ~ r . Then wAh = 0 iff N B ~ PAI(Ar+I) 

such that h = wAB. 

This is a reformulation of the theorem of acyclicity of the Koszul complex for 

a regular sequence. 

We shall use this lemma in the following situation: A is the coordinate ring 

of CX, A r+l i i i i = ~s/f~s , w is the image of df in ~s/f~s. 

* is smooth, the jacobian ideal Since C X 

0f = ( ~f .. Sf ) c S(Q) 
~T O' "'~T 0 

is mO-primary and hence df determines a regular sequence. 

It is clear that the differential of the complex K~ coincides (up to the 
l 

multiplication by a constant) with the exterior multiplication by df. Since 
s 

K s i i 
i = A(~s/f~s) 

we may use the De Rham lemma and deduce 

Corollary: 

H q(K~.) = 0 , q # r + i , Vi ~ ZZ . 
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4.1.5. Proposition. 

Hq(K I) = 0, q->0, ieZZ 

Proof. The above corollary and exact sequence 4.1.3 imply that 

Hq(Ki) = Hq-I(K;_I[-I]) = Hq-2(Ki_l ) , qNr . 

Since for q< 0 and q > r Hq(Ki) = 0 we obtain the assertion of the proposition. 

4.1.6. Define a graded A-module ~ by the equality 

--i Ker(~+~i+l. Ker(~(N)/~ df --i+1 --i+l 
gA = i J = > m S (2N)/~ S (N)) . 

Then we deduce from 4.1.5 that the sequence of graded A-modules 

0 + "~A ÷ ~ ( N ) / ~  + ~ + I ( 2 N ) / ~ + I ( N )  . . . . .  ~s((r-I)N)/~s((r-i-I)N) + 0 

is a resolution of ~i" 

Taking associated sheaves on X = Proj(A) , we obtain the resolution of the 

sheaf ~i: 

0 + ~ ÷ ~7(N)/~ ..... ÷ ~((r-l)N)/~((r-i-l)N) ÷ 0 . 

4.1.7. We are almost at the goal. It remains to show that the sheaf ~ coincides 
~i . ~i 

with the sheaf ~x~i defined as in 2.2.4 by setting ~X = J*( U ) , where U = 

X - Sing(X). 

i l i and Let Z be an open set of nonsingular points of X such that ~ Z = ~Z 

~i~ 80]p 0Z = ~i 801~ 0Z . We have the exact sequence of locally free sheaves 

1 80 V 0Z 1 0 0÷~x/~l z d ~ ÷~z ÷ 

where NX/]pIZ = 0z(-N) is the normal sheaf of Z÷I ~ . 

This sequence determines exact sequences 

0 + i + 0z d_<  z+l(N) 

which can be extended to the right to obtain the resolution 

0 ÷ ~iz ÷ ~i~ (N) 80~ 0Z ÷ ~2m-i+l(2N) @0P 0Z -~ "'" " 

Since 

~+k((l + k)N) @ 

we see that this resolution is the resolution of 

Hence 
i 

and we obtain that 

0]p 0Z -~ ~ +k((l +k)N)/~ +k(kN) l Z 

--i ~7 (4.1.6) restricted on --A Z . 
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A = ~X " 

Thus, we have constructed the resolution of ~i 
X 

r ((r-i+l)N)/~ ((r-l)N) ÷ 0 . 0 ÷ ~ix ÷ ~i (N)/~ ..... ~i~ 

4~2. The Griffiths theorem. 

This theorem generalizes for weighted hypersurfaces a result of [II] and allows 
i Hi 

to calculate the cohomology H (X,~ X) as certain quotient spaces of differential 

forms on • with poles on X. 

th 
4.2.1. Denote by K p the p component of the resolution of ~iax f r o m  4 . 1 . 7 :  

K p = ~i+P((p+I)N)/~+P(pN) i 

Using the exact sequence 

0 ÷ ~$+P(pN) ÷~+P((p+I)N) ÷ K p ~ 0 

and the theorem of Bott-Steenbrink (2.3.4) we obtain that 

Hq(X,K p) = Hq(~,K p) = 0 , q> 0, p > 0 

Hq(X,K 0) = Hq(~,K 0) = Hq+l(~,~) = { k, q=i-i 
0, q#i-I 

Put 

L = K e r ( K  1 + K 2)  . 

Then we have the exact sequence of sheaves 

0 ÷ Hi K 0 
~X ÷ ÷ L ÷ 0 

which gives the exact cohomology sequence 

.... Hq-I(x,L) ÷ Hq(x,~) ÷ Hq(X,K 0) ÷ Hq(X,L) .... . 

The sequence 

0 ÷ L ÷ K 1 K 2 K r - i - 1  

i s  a n  a c y c l i c  r e s o l u t i o n  o f  L .  Thus  we h a v e  

H q ( X , L )  = H q ( F ( X , K ' ) )  = 0 ,  q > r - i - 2  

H r - i - 2 ( X , L  ) = r ( X , K r - i - 1 ) / i m r ( X , K  r - i - 2 )  = 

r ( ~ , ~  ( (r - i )N)  / r ( P , g ~  ( ( r - i - 1 ) N ) )  + 

I m r ( ~ - , ~  -1 ( ( r - i -1 )N)  . 

4.2.2. Theorem (Weak Lefschetz theorem). The homomorphism 

H q(X,~ X)Hi ÷ Hq(X,K 0) ~ Hq+l(~,~) 

is an isomorphism, if q > r-i-i and an epimorphism if q=r-i-i . 
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Proof. Follows from the exact cohomology sequence 4.2.1 and the above calculation 

of Hq(X,L) . 

Corollary. Assume that k = ~ . Then we have an isomorphism of the Hodge struc- 

tures 

Hn(x,~) = Hn+l(~,~) 

if n # r-i and an epimorphism 

Hr-I(x,K ) ÷ Hr(~,~) . 

For n er-i this directly follows from the theorem. For n< r-i we use the 

Poincare duality for V-varieties (which are rational homology varieties). 

Since the Hodge structure of • is known and very simple (2.3.6) we see 

that, as in the classic case, only cohomology Hr-I(x) are interesting. 

4.2.3. Put 

h~'r-i-l(x) = hi'r-i-l(x) - a 

where 

j i, r = 2i 
a 

0, r # 2i . 

Then we obtain that 

i,r-i-l. 
h 0 (X) = dimkHr-i-2(X,L) . 

Hence by calculations of 4.2.1 we obtain 

Theorem (Grif f iths-St eenbrink). 

i,r-i-i r 
h 0 (X) = dimk(r(~,~]p((r-i)N))/F(l~,~((r-i-l)N)) + 

r-i 
ImF(~, ~ip ((r-i-l)N))) . 

4.3. Explicit calculation. 

4.3. i. Let 

~f ~f 

Of = ( -~0 ..... ~--Tr ) 

be the  j a c o b i a n  i d e a l  w i t h  r e s p e c t  to  a g e n e r a t o r  f c S(Q) N of  t h e  i d e a l  o f  t h e  

affine quasicone C x of a weighted quasismooth hypersurface Xc ID(Q) . 
~f 

By the Euler formula 2.1.2 each ~. is a homogeneous element of S(Q) of 
l 

d e g r e e  N -  q i "  Hence t h e  i d e a l  Of i s  homogeneous and t h e  q u o t i e n t  space  

S(Q)/0f has a natural gradation. Since ef is m0-primary this quotient space 

is finite d i m e n s i o n a l .  
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4.3.2. Theorem (Steenbrink). Assume that char(k) = 0. Then 

hi,r-i-l(x = dimk(S(Q)/0f)(r_i)N_iQ I 0 

Proof. We have a natural isomorphism of graded S(Q)-modules: 

~i/~(-N)Adf = (S(Q)/ef)(-IQ I) • 

Since (see the proof of theorem 2.3.2) 

F(~,~(a)) = (~)a, Ya~ ~ 

r+l 
and the differential F(~,~ (a)) + r(~, g~ (a+N)) corresponds to the operator 

df from 4.1.1, we can reformulate theorem 4.2.3 in the following form: 

--r ~--r-i f~s(_N))(r_i)N n 0"i'r-i-l(X) = dimk(~s/df~ S (-N) + 

Thus it remains to construct an isomorphism of graded S-modules 

~s/df~s -I(-N) + f~s (-N) ~ ~r+l" r~S /~s(-N)'Ad-i . 

By property (iii) of lemma 2.1.3, we obtain that the k-linear map 

d: ~S ÷ ~+i 

is in fact an isomorphism of graded S-modules (here we use that char(k) = 0!). 

By property (iii) of lemma 4.1.1, we set 

d(d?~-l(-N)) c a~(-N)^df . 

I n  f a c t ,  w e  h a v e  h e r e  a n  e q u a l i t y .  S i n c e  d i s  S - l i n e a r  i t  i s  s u f f i c i e n t  t o  s h o w  

that all forms 

dXilA'''AdX'l ^df ~ d(d?~-l(-N))) • 
r 

But 

where a,c 

Thus 

r-i s+l A~Xi 
d(df(A(dXil...dx i ))) = d(df(s~l(-l) x i dXilA... ^...^dx.l )) = 

r s s r 
^ 

= d(rfdx. ^...^dx. + (-l)ra(z(-l)S+Ix. dx. A...Adx. A...Adx° )^df) = 
11 1 r 1 11 1 1 s s r 

= C d x .  ^ . . . A d x .  ^ d f  
11 i r 

are some rational numbers which we are too lazy to write down explicitly. 

d induces an isomorphism 

r+l r 
~s/df~s -I(-N) ~ ~S /~s(-N) df . 

We have 

But, since f E 8f (the Euler formula), 

d(f~s) c dfA~s . 

f_r+l e ~Adf and hence 
~S 
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Thus 

f~(-N) c df~-l(-N) 

and we are through. 

4.3.3. The theorem above can be reformulated in the following form. Define a 

function £ : 2g__>~l + 7z by 

1 r 
£(a) = ~ i__X0 (ai+l)q i a = (a0, .,ar) e2zr+l 

' "" ->0 

Let {Ta}a£ J be a set of monomials of S(Q) whose residues mod ef generate 

the basis of the space S(Q)/0f (such monomials are called basic monomials). Then 

•, r-i-i (X) 
h 0 = #{ac J: £(a) = r-i} 

4.4. Examples and supplements. 

4.4.1. Suppose f(T0,...,T r) • S is of the form 

T N 
f(T0'''''Tr) = r + g(T0 .... 'Tr-l) " 

If (Tb)bcj , are basic nomomials for g(T 0 .... ,Tr~ I) considered as elements 
b br 

of S(q0 .... 'qr 1 ) ' then the set {T T : bE J' , 0~b ~N-2} is the set of basic 
- r r 

monomials for f. 

This implies that 
b +i 

hi,r-i-1.., r 
0 ~x) = #{b • J' : £(b) + ~ = r- i} 

= #{b• J' : r-i- l<£(b) <r- i} . 

This formula was obtained in [Ii] in the homogeneous case. 

4.4.2. 

then 

More generally, if 

f(T 0 ..... T r) = g(T 0 .... ,Tr_ I) + T~ 

hi'r-i-l(x) e : r- - + N _<£(b) r-i-N #{b j' i i } 
0 < 

For example, if g is homogeneous then X is a multiple space (3.5.4) and we ob- 

tain 

i'r-l-i(x) #{b • 7z r h 0 = :(r-i-2)N+m_< Ibl _< (r-i-l)N-m , 0_<b. _<N-2} 
3 

where ]b I = b 0 + --" + br_ I (cf. III, 8.8). 

This can be written in more explicit form 

h o ,  r _ i _ l  ( r - i - 1 ) N - m  
= Z c 

s 
s= ( r - i - 2 ) N - m  

c s i s  t h e  c o e f f i c i e n t  a t  t s i n  (1 + . . .  + tN~2 )  r . w h e r e  
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4.4.3. Let y c ~ (q0,...,qr_l) = ~ (Q') be the hypersurface defined by the poly- 

nomial g(T0,...,Tr) from 4.4.1. Then 

hi,r-i-2(y) = #{b~ J' : £(b) = r-i-l} 
0 

Assume now that k = K. The exact sequence of Hodge structures 

.... Hi(x) + Hi(X-y) + Hi-l(y)(-l) ~ Hi+I(x) + ... 

(dual to the compact cohomology sequence) determines the morphisms of the Hodge 

structures: 

i, : Hi-I(Y) (-i) ÷ Hi+I(x) 

which are obviously induced by the analogous morphisms 

Hi(~ (Q'))(-I) ÷ Hi+2(~ (Q)) 

Applying the Weak Lefschetz theorem (4.2.2) we have that i, is an isomorphism 

if i # 0, r- i. Thus for U = X-Y 

Hi(U) = 0, i # 0,r-i . 

The Hodge structure on Hr-I(u) has the following form 

GrW(Hr-I(u)) = 0, i # r,r-i 
1 

GrW(Hr-I(U))r = Hr-2(Y)(-I)0 

Gr~_I(Hr-I(u)) = Hr-I(H)0 , 

where 

Hr-l(x)0 = Coker(Hr-3(y)(-l) + Hr-I(x)) 

Hr-2(Y)0 = Ker(Hr-2(y)(-l) ----+ Hr(x)) 

For the Hodge numbers hP'q(u) we obtain (cf. [19]) 

hP'q(u) = 0, if p+q ~ r-l,r 

hi'r-i-l(u) i'r-i-l(x) = #{b e J' : r-i-l< £(b)< r-i} 
= h 0 

h~,r-i(u) = . i-l,r-i-l~ 
h 0 (Y) = #{b e J' :£(b) = r-i-l} 

where we recall that 

r T b 
J' = {b~ ~ e0 : are basic monomials for g(T0,...,Tr_l) }. 

4.4.4. 

set 

tion 

The calculations of 4.4.3 presents an interest since the open affine sub- 

UcX is isomorphic to the nonsingular affine variety in ~r with the equa- 

analytic functions. 

g(x 0 .... ,Xr_ I) = i . 

This variety plays an important part in the theory of critical points of 

The cohomology space Hr-I(u) is isomorphic to the space of 



the vanishing cohomology of the isolated critical point 0 ~ C r of the analytic 

function t = g(ZO,...,Zr_ I) ([18]). Its dimension (the Milnor number) 

= dimcC[T 0 ..... Tr_l]/@g = #j' . 

It can be seen from above as follows: 

r-i r-2 
i,r-i-l- - i-l,r-i-l- 

dimeHr-l(u) = E h 0 (X) + ~ h 0 (Y) = 
i=0 i=l 

= #{b~ J' : l(b) < r} 

and so we have to show that for any basic monomial T b l(b) < r 

r-I 
deg(r b) < E ('N-qi) = rN - [Q'I • 

i=0 

Let 

Then ([i]) 

~k = #{b ~ J' : deg(T b) = k} 

k 
= E ~k z Xg(Z) k 

r-i zN-qi_l 

Xg(Z) = i=0 zqi-I 

It is clear that ×g(Z) is of degree n = rN-21Q' I and hence for k>n 

This proves the assertion above. 

Note that the Hodge numbers of Hr-I(u) can be expressed in terms of 

follows 

hi'r-i-l(u) = E(r-i-I)N-IQ ] < k< (r-i)N-IQ 1 ~k 

hi'r-i(g) = ~(r-i-l)N-JQJ 

The symmetry of the Hodge numbers is in the accord with the symmetry of 

or, equivalently, 

~k = 0. 

~k as 

Dk: 

~k = Hn-i 

4.4.5. Let X = Vn(Q) be a quasismooth surface (r=3). We know that 

h0'2(X) = h2'0(X) = #{a e J: £(a) = I} = HN_jQ j 

hl'l(x) = #{a~ J :l(a) = 2} = ~2N_jQ 1 

B2(X) = 2h2,0(X) + NI'I(x) = 2HN_jQ j + ~2N_IQ I , 

In case 

where 

E~ k k r N-qi qi z = n (z -l)/(z -i) 
i=0 

It is clear that ~N-I-'J~J = aN-'-'IWJ in notations of 3.4.4. ID (Q) = ~3 we 



have 

[ l ]  

[2] 

70 

E~k zk = ((zN-l-l)/(z-l))4 = (i+ z+ ''' +zN-2) 4 
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