
Euler and Infinite Series

Morris Kline

Mathematics Magazine, Vol. 56, No. 5. (Nov., 1983), pp. 307-314.

Stable URL:

http://links.jstor.org/sici?sici=0025-570X%28198311%2956%3A5%3C307%3AEAIS%3E2.0.CO%3B2-M

Mathematics Magazine is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Oct 23 02:22:57 2007

http://links.jstor.org/sici?sici=0025-570X%28198311%2956%3A5%3C307%3AEAIS%3E2.0.CO%3B2-M
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html


Euler and Infinite Series 

MORRISKLINE 
Courant Institute of Mathematical Scierrces 
New York, NY I0012 

The history of mathematics is valuable as an account of the gradual development of the many 
current branches of mathematics. It is extremely fascinating and instructive to study even the false 
steps made by the greatest minds and in this way reveal their often unsuccessful attempts to 
formulate correct concepts and proofs, even though they were on the threshold of success. Their 
efforts to justify their work, which we can now appraise with the advantage of hindsight, often 
border on the incredible. 

These features of history are most conspicuous in the work of Leonhard Euler, the key figure in 
18th-century mathematics, and one who should be ranked with Archimedes, Newton, and Gauss. 
Euler's recorded work on infinite series provides a prime example of the struggles, successes and 
failures which are an essential part of the creative life of almost all great mathematicians. The few 
examples discussed in this paper will serve to illustrate how Euler surmounted the difficulties he 
encountered. 

Euler first undertook work on infinite series around 1730, and by that time, John Wallis, Isaac 
Newton, Gottfried Leibniz, Brook Taylor, and Colin Maclaurin had demonstrated the series 
calculation of the constants e and 7~ and the use of infinite series to represent functions in order to 
integrate those that could not be treated in closed form. Hence it is understandable that Euler 
should have tackled the subject. Like his predecessors, Euler's work lacks rigor, is often ad hoc, 
and contains blunders, but despite this, his calculations reveal an uncanny ability to judge when 
his methods might lead to correct results. Our discussion will not follow the precise historical 
order of Euler's investigations of series; he made contributions throughout his lifetime. 

To appreciate the first example of Euler's work on series, we must consider some background. 
A series which caused endless dispute was 

It seemed clear that by writing this series as 

the sum should be 0. It seemed equally clear, however, that by writing the series as 

1 - ( 1 - 1 ) - ( 1 - 1 ) - . . .  
the sum should be 1. But still another sum seemed as reasonable. If S denotes the sum of the series 
(I), then 

s = 1 - ( 1 - 1 + 1 - 1 +  . . . ) =  1 - S .  

Hence S = 5 .  This value was also supported by the formula for summing a geometric series with 
common ratio - 1. 

Guido Grandi (1671-1742), in his little book Quadratura circula et hyperbolae per infinitas 
hyperbolas geometrice exhibita (1703), obtained the third result by a v&ant of the geometric series 
argument, using the binomial expansion 

-= 1 1 - x + x 2 - x 3 +  . . . ,
1 + x  

with x = 1. (He also argued that since the sum was both 0 and 5,  he had proved that the world 
could be created out of nothing.) In a letter to Christian Wolf published in the Acta eruditorum of 
1713, Leibniz agreed with Grandi's result but thought that it should be possible to obtain it 
without resorting to the function 1/(1 + x). He argued that, since the successive partial sums are 
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1,0,1,0,1,. . . ,with 1 and 0 equally probable, one should therefore take +,the arithmetic mean, as 
the sum. This argument was accepted by James, John and Daniel Bernoulli. Leibniz conceded that 
his argument was more metaphysical than mathematical, but said that there is more metaphysical 
truth in mathematics than is generally recognized. 

Euler took a hand in this argument. To obtain the sum of the series (I), he argued in a manner 
similar to Grandi, substituting x = - 1 in the expansion 

and obtained 

At this early stage of his work on series, Euler used expansion of functions into series to sum other 
divergent series. For example, he substituted x = - 1 in the expansion 

1 / ( 1 + x ) 2 = ( 1 + X ) - 2 = 1 - 2 x + 3 x 2 - 4 ~ 3 +  . . .  
and obtained 

0 0 = 1 + 2 + 3 + 4 + . . .  . 
To Euler, this seemed reasonable; he treated infinity as a number. He then considered the 
geometric (or binomial) series for 1/(1 - x)  with x = 2 and obtained 

- 1 = 1 + 2 + 4 + 8 +  . . . .  (3) 
Since the terms of series (3) exceed the corresponding terms of series (2), Euler concluded that the 
sum - 1 is larger than infinity. Some of Euler's contemporaries argued that negative numbers 
larger than infinity are different from those less than 0. Euler objected and argued that infinity 
separates positive and negative numbers just as 0 does. 

In a paper of 1734/35 [q,Euler started with the series 

y = sin x =x - x3/3! + x5/5! + .. . (4) 
and rewrote the equation in the form 

He then treated the left side of (5) as an infinite polynomial and argued as follows. (The argument 
is based on the fact that the sum of the reciprocals of the roots of the polynomial p (x)  = 1 - a ,  x 
+ a 2 x 2- a3x3+ . . . +(- 1) kakxk is a , ,  the sum of the squares of the reciprocals of the roots of 

p ( x )  is a12 - 2a2,  and so on, for higher roots.) Let A, B, C, . . . be solutions of equation (5). Then 
the polynomial can be factored into an infinite product, 

If A is the smallest value of x whose sine is y, then all other solutions B, C, . . . are m -A, 2m + 
A,3m-A, . . . ;  - m - A,-2m+A,-3m-A,. . . .Thus 

and so on for higher powers of the reciprocals. If, in equations (4) and (5), we take y = 1, then 
A = m/2, so that (6) becomes 
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and (7) becomes 

or 

1 1 1 7T
I+,+,+,+ . . .  =-

3 5 7 8 '  

Other series that were "summed" in the same manner are 

and so on. From these series he deduced others. For example, since 

one can use (9) to obtain 

and in a similar manner, obtain 

and other sums. R. Ayoub [I]discusses Euler's use of (4) to compute such sums, W. F. Eberlein [3] 
discusses Euler's use of the infinite product for the sine function, and H. H. Goldstine [9,3.1,3.2] 
indicates Euler's expansions of such functions as f (ex - e-") and the use of these expansions in 
computing sums such as (9). 

Euler's attempts to sum the reciprocals of powers of the positive integers were not completely 
idle. In another paper of the same period [4], Euler made a somewhat bizarre use of infinitesimal 
calculus to find the difference between the sum of the harmonic series and the logarithm, a 
difference whose expansion utilizes precisely these series of powers. Let 

If we regard n as infinite, then 1 is an infinitesimal and we can write ds = l/n = l/n dn. An 
integration yields 

s = log n + C. 

To find C, note that 

Setting x= 1,2,3,. . . ,n - 1, in turn, and adding the n - 1 equations yields 
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The limiting value y of C as n becomes infinite is today called Euler's constant. 
In a paper of 1740 [q,Euler obtained one of his finest triumphs, namely, 

where the B2, are the Bernoulli numbers (see below). The connection with the Bernoulli numbers 
was actually established a little later in his Institutiones calculi differentialis of 1755 [8].In the 1740 
paper he also determined the sum C:= 1)"-'(l/vn) for the first few odd values of n .  

In Ars conjectandi (1713), James Bernoulli, who was treating the subject of probability, had 
introduced the now widely used Bernoulli numbers. Bernoulli had given the following formula for 
the sum of powers of consecutive positive integers without demonstration: 

This series terminates at the last positive power of n ,  and the B's are the Bernoulli numbers: 

B2= 1/6, B4 = - 1/30, B6 = 1/42, B8 = - 1/30, B10 = 5/66, . . . . 
Bernoulli also gave the recurrence relation which permits one to calculate these coefficients. 

I N S T I T U T I O N E S  

C A L C U L I  


D I F F E R E N T I A L I S  
C U M  B I U 8  V I U  

I N  A N A L Y S I  F I N I T O R U M  
A C  

D O C T R I N A  S E R l E R U M  

AUCTO.. 


L E O N H A R D O  E U L E R O  
& C A D .  n l r  S C I I N T .  ST SL@G. LIT*. IO.VPL D l l l C T l l l i  

,IO,.,ID*.. A O l D .  C"...CLTX.. ..l.O.. I . I C * B T I , A . Y *  

..O,"."" .*.I,,"*. . ,LO"D,*,", , ,  
.O",*. 
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Another famous result of Euler's, the Euler-Maclaurin summation formula, is a generalization of 
Bernoulli's formula (10). Let f ( x )  be a real-valued function of the real variable x with 2k + 1 
continuous derivatives on the interval [0, n]. Then (in modem notation) Euler's formula is 

where 

Here n and k are positive integers, and P2,+ , (x)  is the (2k + 1)th Bernoulli polynomial (which 
also appears in Bernoulli's Ars conjectandi). It can be represented for 0 G x g 1 by 

The Bernoulli numbers Bi are related to the Bernoulli polynomials by 

where Bl = - f , and B2,+, =0 for k = 1,2, . . . . They are often defined today by a relation given 
later by Euler, namely, 

Euler's derivation of formula (1 1) is interesting in its use of the infinitesimal calculus in treating 
finite series. He begins by noting that if s(n)  =Cr=,f (i), then 

hence (solving for ds/dn and integrating), 

In order to express the sum s in terms off,  recursion is used. Differentiating (12) repeatedly gives 

and so on. Substituting these values for ds/dn, ds2/dn2, ds3/dn3, . . . in (12) gives 
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which is cumbersome, but does show the form in which s can be expressed. Euler wrote 

and substituted s and its derivatives into (13) to obtain recursion relations for the coefficients of 
f ,  df/dn, d2f/dn2, etc., finally obtaining formula (1 1). A discussion of Euler's derivation of the 
Euler-Maclaurin formula as well as some of his interesting applications of it is contained in 
[9,3.3,3.4]; a modern summary of Euler's work on the formula is contained in [I, p. 10741. 

If n is allowed to go to infinity in the Euler-Maclaurin formula (1 l), the infinite series is 
divergent for almost all f (x)  which occur in applications. Nevertheless, under modest additional 
hypotheses, the remainder R ,  is less than the first term neglected, and so the series and the 
integral give useful approximations to each other, depending on which is easier to compute. 

Independently of Euler, Maclaurin (Treatise on Fluxions, 1742) arrived at the same summation 
formula but by a method a little surer and closer to that which we use today. The remainder was 
first added and seriously treated by Poisson. 

Euler also introduced in his Institutiones of 1755 a transformation of series, still known and 
used [12]. Given a series C:='=,bn, he wrote it as CFs0(- l)"an. Then by a number of formal 
algebraic steps he showed that 

where 

His derivation of (15) is as follows. Let a, = (- l)"bn and introduce variables x and y related by 
x=y/ ( l  - y ) = y + y 2 + y 3 +  . . . .  Then 

Setting x = 1 and y = 5 yields 

as required. 
The transformation in (15) often converts a convergent series into a more rapidly converging 

one. However, for Euler, who did not usually distinguish between convergent and divergent series, 
the transformation could also transform divergent series into convergent ones. For, if one applies 
(15) to the series (I), whch is C?=,(- I)", then since a, = 1 and Anao = 0 for all n > 1, the sum on 
the right is 1/2. Likewise for the series 

the transformation in (1 5) gives 

MATHEMATICS MAGAZINE 



1. 

um nobts propoiittun lit vfum Calculi di&. 
renrialis ram In vntuerP Anolyfi , q n m  in 
doRsina de feriebus oftendere; norlnulla Tub. 
lidia ex Algebra communl, qune vulgo tre$ 
tati non folent, hie cnlnr repetende. Qusc 

q:arnnis mnvtmarn paltern iam in 1nt:oduCtione fumus 
complexi, tatnen qozcd.un ibi fiint prncrcrm~rT.'~, ,cl it[+ 
dio quod expedi.~t eo rum dernutn explanii, qilsndo ne- 
conitas td eurgat, vci qu13 CUIIRU, qwtiw oP;s fit ittu. 
rum,praeuideri non potcrant. Muc pertinet transform;t- 
rio Merum, cui hoc Cnput deh~nauimns, qua q:toeuis 
feries in innumerabSes dias ieries transnxutorur, quae om- 
nes eandem habesnt Lmmem communem; ita vt, ii B 
nei propofitae f  l fir cqgn$ reliqwe ferias orpner 
f i u l  fumrnpri queant. Hoc antkm caphe praemiffo, eo 
vherius do8rinnm Onerum per cslculum ditierentialem 

Euler demonstrates (Institutiones, Pars Posterior, Chap. 0 his transformation of series with many examples. Here he 
"sums" the alternating series of triangular numbers, C:=,,(- l )"(n + l ) ( n + 2)/2 = 1 / 8 ,  the alternating series of 
squares, x2=0( -  l )"(n + 112= 0 and of fourth powers C:=o(- l )"(n+ 1)4= 0. 

These results are the same as those Euler got by taking the sum of the series to be the value of the 
function from which the series is derived. 

Euler took up the subject of sums of series in a major paper of 1754/55 entitled "On Divergent 
Series" [5], in which he recognized the distinction between convergent and divergent series. 
Apropos of the former he says that for those series in which by constantly adding terms we 
approach closer and closer to a fixed number, which happens when the terms continually 
decrease, the series is said to be convergent and the fixed number is its sum. Series whose terms do 
not decrease and may even increase are divergent. 

On divergent series, Euler says one should not use the term "sum" because this refers to actual 
addition. Euler then states a general principle which explains what he means by the definite value 
of a divergent series. He points out that the divergent series comes from finite algebraic 
expressions and then says that the value of the series is the value of the algebraic expression from 
which the series comes. Euler further states, "Whenever an infinite series is obtained as* the 
development of some closed expression, it may be used in mathematical operations as the 
equivalent of that expression, even for values of the variable for which the series diverges." He 
repeats this principle in his Institutiones of 1755: 

Let us say, therefore, that the sum of any infinite series is the finite expression, by the 
expansion of which the series is generated. In this sense the sum of the infinite series 
1 - x + x Z- x 3+ . . . will be 1/(1 + x) ,  because the series arises from the expansion of the 
fraction, whatever number is put in place of x. If this is agreed, the new definition of the word 
sum coincides with the ordinary meaning when a series converges; and since divergent series 
have no sum in the proper sense of the word, no inconvenience can arise from this terminology. 
Finally, by means of this definition, we can preserve the utility of divergent series and defend 
their use from all objections. 

It is fairly certain that Euler meant to limit this doctrine to power series. 
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Other 18th-century mathematicians also recognized that a distinction must be made between 
what we now call convergent and divergent series, though they were not at all clear as to what the 
distinction should be. They were dealing with a new concept and, like all pioneers, they had to 
struggle to clear the forest. Certainly the interpretation of series suggested by Newton, and 
adopted by Leibniz, Euler, and Lagrange, that series are just long polynomials and so belong in 
the domain of algebra, could not serve as a rigorous foundation for the work with series. 

One outstandillg characteristic of the 18th-century investigations is that mathematicians trusted 
the symbols far more than logic. Because infinite series had the same symbolic form for all values 
of x, the distinction between values of x for which the series converged and values for which they 
diverged did not seem to demand much attention. And even though it was recognized that some 
series, such as 1 + 2 + 3 + . . . ,had infinite sums, mathematicians preferred to try to give meaning 
to the sums rather than question the applicability of summation. Of course, they were fully aware 
of the need for some proofs. We have seen that Euler did try to justify his use of divergent series. 
But the few efforts to achieve rigor, significant because they show that standards of rigor vary 
with the times [lo], did not validate the work of the century, and mathematicians almost willingly 
took the position that what cannot be cured must be endured. 

Though we have only glimpsed some of Euler's work, almost all of the great mathematicians of 
the 18th century contributed to the subject of infinite series [13]. It is fair to say that in this work 
the formal view dominated. Aware of the power of formal manipulation, mathematicians either 
ignored or deferred consideration of any limitations to their techniques, such as the importance of 
convergence. Their work produced useful results, and they were satisfied with this pragmatic 
sanction. They exceeded the bounds of what they could justify, but they were at least prudent in 
their use of divergent series. However, these 18th-century mathematicians were to have the last 
word. Dimly, they saw in divergent infinite series, ideas which were later to gain acceptance, 
namely, summability and asymptotic series [2], [ll], [13, chapter 471, [14]. 

I wish to thank Professor Edward J. Barbeau of the University of Toronto for his critique and for supplying 
some material on Euler's proofs. 
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