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Summary

In this chapter, we discuss similarities, differences and interaction between
two natural and important classes of groups: arithmetic subgroups Γ of Lie
groups G and mapping class groups Modg,n of surfaces of genus g with n punc-
tures. We also mention similar properties and problems for related groups
such as outer automorphism groups Out(Fn), Coxeter groups and hyperbolic
groups. Since groups are often effectively studied by suitable spaces on which
they act, we also discuss related properties of actions of arithmetic groups on
symmetric spaces and actions of mapping class groups on Teichmüller spaces,
hoping to get across the point that it is the existence of actions on good spaces
that makes the groups interesting and special, and it is also the presence of
large group actions that also makes the spaces interesting. Interaction between
locally symmetric spaces and moduli spaces of Riemann surfaces through the
example of the Jacobian map will also be discussed in the last part of this chap-
ter. Since reduction theory, i.e., finding good fundamental domains for proper
actions of discrete groups, is crucial to transformation group theory, i.e., to
understand the algebraic structures of groups, properties of group actions and
geometry, topology and compactifications of the quotient spaces, we discuss
many different approaches to reduction theory of arithmetic groups acting on
symmetric spaces. These results for arithmetic groups motivate some results on
fundamental domains for the action of mapping class groups on Teichmüller
spaces. For example, the Minkowski reduction theory of quadratic forms is
generalized to the action of Modg = Modg,0 on the Teichmüller space Tg to
construct an intrinsic fundamental domain consisting of finitely many cells,
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solving a weaker version of a folklore conjecture in the theory of Teichmüller
spaces.

On several aspects, more results are known for arithmetic groups, and we
hope that discussion of results for arithmetic groups will suggest corresponding
results for mapping class groups and hence increase interactions between the
two classes of groups. In fact, in writing this survey and following the philoso-
phy of this chapter, we noticed the natural procedure in §5.12 of constructing
the Deligne-Mumford compactification of the moduli space of Riemann sur-
faces from the Bers compactification of the Teichmüller space by applying the
general procedure of Satake compactifications of locally symmetric spaces, i.e.,
how to pass from a compactification of a symmetric space to a compactifica-
tion of a locally symmetric space by making use of the reduction theory for
arithmetic groups.

The layout of this chapter is as follows. In §1, the introduction, we discuss
some general questions about discrete groups, group actions and transforma-
tion group theories. In §2, we summarize results on arithmetic subgroups
Γ of semisimple Lie groups G and mapping class groups Modg,n of surfaces
of genus g with n punctures, and their actions on symmetric spaces of non-
compact type and Teichmüller spaces respectively.1 For comparison and for
the sake of completeness, we also discuss corresponding properties of three
related classes of groups: outer automorphism groups of free groups, Coxeter
groups and hyperbolic groups. In §3, we describe several sources where dis-
crete groups and discrete transformation groups arise. In §4 and §5 we give
definitions and details of some of the properties listed earlier in §2 for arith-
metic groups and mapping class groups. In the last section, §6, we deal with
the coarse Schottky problem, a large scale geometric generalization of the clas-
sical Schottky problem of characterizing the Jacobian varieties among abelian
varieties, i.e., the image of the Jacobian map from the moduli space Mg of
compact Riemann surfaces of genus g to the Siegel modular variety Ag, an
important Hermitian locally symmetric space, which is equal to the moduli
space of principally polarized abelian varieties of dimension g.

For the detailed organization of this chapter, see the table of contents
starting on the next page.
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1The lists are certainly not complete and only results known to us are listed.
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1 Introduction

1.1 Summary

In this chapter, we discuss similarities, differences and interaction between two
natural and important classes of groups: arithmetic subgroups Γ of Lie groups
G and mapping class groups Modg,n of surfaces of genus g with n punctures.
We also mention similar properties and problems for related groups such as
outer automorphism groups Out(Fn), Coxeter groups and hyperbolic groups.
Since groups are often effectively studied by suitable spaces on which they act,
we also discuss related properties of actions of arithmetic groups on symmetric
spaces and actions of mapping class groups on Teichmüller spaces, hoping to
get across the point that it is the existence of actions on good spaces that
makes the groups interesting and special, and it is also the presence of large
group actions that also makes the spaces interesting. Interaction between lo-
cally symmetric spaces and moduli spaces of Riemann surfaces through the
example of the Jacobian map will also be discussed in the last part of this
chapter. Since reduction theory, i.e., finding good fundamental domains for
proper actions of discrete groups, is crucial to transformation group theory,
i.e., to understand the algebraic structures of groups, properties of group ac-
tions and geometry, topology and compactifications of the quotient spaces,
we discuss many different approaches to reduction theory of arithmetic groups
acting on symmetric spaces. These results for arithmetic groups motivate some
results on fundamental domains for the action of mapping class groups on Te-
ichmüller spaces. For example, the Minkowski reduction theory of quadratic
forms is generalized to the action of Modg = Modg,0 on the Teichmüller space
Tg to construct an intrinsic fundamental domain consisting of finitely many
cells, solving a weaker version of a folklore conjecture in the theory of Te-
ichmüller spaces.

On several aspects, more results are known for arithmetic groups, and we
hope that discussion of results for arithmetic groups will suggest corresponding
results for mapping class groups and hence increase interactions between the
two classes of groups. In fact, in writing this survey and following the philoso-
phy of this chapter, we noticed the natural procedure in §5.12 of constructing
the Deligne-Mumford compactification of the moduli space of Riemann sur-
faces from the Bers compactification of the Teichmüller space by applying the
general procedure of Satake compactifications of locally symmetric spaces, i.e.,
how to pass from a compactification of a symmetric space to a compactifica-
tion of a locally symmetric space by making use of the reduction theory for
arithmetic groups.

The layout of this chapter is as follows. In the rest of this introduction,
we discuss some general questions about discrete groups, group actions and
transformation group theories. In §2, we summarize results on arithmetic



6

subgroups Γ of semisimple Lie groups G and mapping class groups Modg,n of
surfaces of genus g with n punctures, and their actions on symmetric spaces
of non-compact type and Teichmüller spaces respectively.2 For comparison
and for the sake of completeness, we also discuss corresponding properties of
three related classes of groups: outer automorphism groups of free groups,
Coxeter groups and hyperbolic groups. In §3, we describe several sources
where discrete groups and discrete transformation groups arise. In §4 and §5
we give definitions and details of some of the properties listed earlier in §2 for
arithmetic groups and mapping class groups. In the last section, §6, we deal
with the coarse Schottky problem, a large scale geometric generalization of
the classical Schottky problem of characterizing the Jacobian varieties among
abelian varieties, i.e., the image of the Jacobian map from the moduli space
Mg of compact Riemann surfaces of genus g to the Siegel modular variety Ag,
an important Hermitian locally symmetric space, which is equal to the moduli
space of principally polarized abelian varieties of dimension g.

For the detailed organization of this chapter, see the table of contents that
proceeds this introduction.

1.2 General questions on discrete groups and discrete
transformation groups

Groups are fundamental objects and they describe symmetry in mathematics
and sciences. Basically, there are two kinds of groups: (1) discrete groups, i.e.,
groups with the discrete topology, (2) non-discrete (or continuous) groups, in
particular, Lie groups. These two classes of groups are closely related in many
ways and embeddings of discrete groups into non-discrete groups give rise to
interesting transformation groups, as seen in various results about the funda-
mental pair of groups Z ⊂ R. Of course, any group can be given the discrete
topology and hence considered as a discrete group. On the other hand, as far
as discrete groups are concerned, it is probably most natural and fruitful to
study groups that occur naturally as discrete subgroups of topological groups
or as discrete transformation groups, i.e., discrete groups acting properly dis-
continuously on topological spaces that have some reasonable properties, for
example, being locally compact.

In this expository chapter, we discuss two important classes of infinite
discrete groups: (1) arithmetic subgroups of linear algebraic groups such as
SL(n,Z) and GL(n,Z) and discrete subgroups Γ of Lie groups G; (2) mapping
class groups Modg,n of compact orientable surfaces Sg,n of genus g with n
points removed (i.e., with n punctures).

We will discuss similarities and differences between these two classes of
groups and their properties. There have been several excellent surveys on

2The lists are certainly not complete and only results known to us are listed.
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properties of mapping class groups from different perspectives and comparison
with arithmetic groups, for example, [124] [169] [188] [190] [317] [54] [164] [321].
We hope that the current survey is complementary to the existing ones.

We will also discuss similar properties of some related groups. For example,
the family of outer automorphism groups Out(Fn) of free groups Fn is closely
related to the two classes of groups mentioned above, and we will also discuss
briefly their properties. There are also excellent surveys on these topics such
as [73] [344] [412]. Other closely related families of groups discussed briefly in
this chapter include Coxeter groups and hyperbolic groups.

Since groups first arose as symmetries or transformation groups of number
fields and differential equations, and since many properties of groups can be
understood by studying their actions on suitable spaces, we will emphasize
the point of view of geometric transformation groups. We will also study two
classes of spaces naturally associated with the above two classes of groups: (1)
symmetric spaces of semisimiple Lie groups and more general homogeneous
spaces; (2) Teichmüller spaces of marked Riemann surfaces. Furthermore, we
will study actions of these groups on such spaces and their quotients, which are
locally symmetric spaces, and moduli spaces of Riemann surfaces (or algebraic
curves) respectively. Besides being important for understanding properties of
the groups, these spaces are also interesting in themselves. In some sense, the
groups are studied in order to understand the spaces on which the groups act
and also to understand the quotients of the actions. The groups themselves
have sometimes played a secondary role in some applications. For example,
Teichmüller spaces and actions of mapping class groups on them were originally
studied in order to understand the moduli spaces of Riemann surfaces. It is
often the case that a group action contains more information than the quotient,
as seen, for example, in the context of equivariant cohomology theory.

Given a discrete group Γ, the following problems are natural:

(1) Finite generation of Γ and some variants, for example, bounded genera-
tion. In general, it is much more difficult to find explicit generators than
to prove existence.

(2) Finite presentation of Γ and derivation or understanding other properties
from the presentation.

(3) Internal structures such as finite subgroups, subgroups of finite index,
normal subgroups of Γ, and overgroups of finite index (i.e., groups that
contain Γ as subgroups of finite index). Existence of torsion-free sub-
groups of finite index is important and allows one to define virtual prop-
erties of Γ.

(4) Combinatorial properties of Γ such as the word problem, the conjugacy
problem, and the isomorphism problem for classes of groups that contain
Γ.
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(5) Other finiteness properties of Γ such as FP∞, FP , FL in homological al-
gebra and the existence of CW-models of classifying (or universal) spaces
EΓ for proper and fixed point free actions of Γ and EΓ for proper actions
of Γ, which satisfy various finiteness conditions, for example, existence of
only finitely many cells in all dimensions modulo Γ, of finitely many cells
in each dimension modulo Γ, or EΓ and EΓ being of finite dimension.

(6) Cohomological groups and cohomological invariants of Γ such as coho-
mological dimension and the Euler characteristic, and properties such as
the Poincaré duality and generalized Poincaré duality properties.

(7) Other algebraic invariants of Γ and its associated group ring ZΓ such
as K-groups and L-groups of the group ring ZΓ in the algebraic and
geometric topology.

(8) Large scale properties of Γ endowed with word metrics (or equivalently
its Cayley graphs with each edge of length 1) such as growth rate, quasi-
rigidity properties, asymptotic dimension, the rationality of the growth
series, and large scale properties of infinite subgroups of Γ such as bounds
on the distortion function.

(9) External properties: existence of linear representations and their prop-
erties such as Property T for Γ-actions on Hilbert spaces, and existence
of actions on topological spaces and manifolds (i.e., non-linear represen-
tations) and their properties such as Property FA of Serre for actions on
trees.

(10) Realizations of Γ as subgroups of linear groups, discrete subgroups of Lie
groups and other topological groups.

(11) Ends, compactifications and boundaries of Γ and related Γ-spaces when
the group Γ is infinite.

As pointed out earlier, a notion closely related to the one of discrete group
is that of topological transformation group. Many of the above properties
of groups Γ can be studied and understood by using actions of Γ on suitable
topological spaces. On the other hand, finding the right space is often not easy,
and general groups probably do not act on spaces with desirable properties
since such actions usually impose some conditions on the groups. The groups
studied in this chapter do act on good spaces in the sense that the spaces
have rich structures that can be described and understood, and hence they are
special and interesting from this point of view.

For discrete subgroups Γ of Lie groups G, it is relatively easy to find spaces
on which these groups Γ act. For example, there are natural classes of homo-
geneous spaces associated with the Lie groups G on which the discrete groups
Γ act. But for other discrete groups such as the mapping class groups of sur-
faces Modg,n and the outer automorphism groups of free groups Out(Fn), the
situation is more complicated and the construction of analogous spaces is less
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direct. For the mapping class groups of general manifolds and for automor-
phism groups of general discrete groups, the construction of analogous spaces
are not known and might not be possible. This makes Modg,n and Out(Fn)
really special.

We also note that the idea of transformation groups was motivated and
occurred before the concept of group was introduced. For example, transla-
tions and rotations in the plane R2, in the space R3 and their compositions
were known in the ancient times, though not in the language of group theory.
When the concept of group was formally introduced, it was also introduced
for transformation groups on roots of algebraic equations.

Let X be a topological space. Assume that a group Γ acts on it by
homeomorphisms. Then the pair (Γ, X) is called a topological transforma-
tion group. We always assume that the action is proper, i.e., for any compact
subset K ⊂ X, the subset {γ ∈ Γ | γK ∩ K 6= ∅} is compact. When Γ is
given the discrete topology, this is equivalent to the fact that Γ acts prop-
erly discontinuously on X, i.e., for any compact subset K ⊂ X, the subset
{γ ∈ Γ | γK ∩K 6= ∅} is finite. In the literature and also in the following, if a
discrete group acts properly discontinuously on a topological space, we often
say that the group acts properly on the space.3

In the following, we assume that Γ is a discrete group and that Γ acts
properly on X. Such a Γ-space X is called a proper Γ-space, and the pair
(Γ, X) is called a proper transformation group, or a discrete transformation
group.

For any proper Γ-space, the following questions are natural:

(1) The structure of each orbit of Γ and its relation with the ambient space
X. This is closely related to structures of finite subgroups of Γ. Suppose
that X is a metric space and Γ acts isometrically. Then another natural
question is whether Γ endowed with the word metric is quasi-isometric
to the Γ-orbits endowed with the induced subspace metric from X.

(2) The nature of fixed point sets XF in X of finite subgroups F of Γ. For
example, is the fixed points set XF nonempty? If X is contractible, is
the fixed points set XF contractible?

(3) The structure of the quotient Γ\X. For example, when is Γ\X compact?
Suppose that Γ\X is noncompact. What is its end structure? How to

3Non-proper actions of infinite discrete groups occur naturally and also play an important
role in understanding structures of the groups. For example, the action of SL(2,Z) on
H2 extends continuously to the boundary H2(∞) = S1, and the extended action on the
boundary S1 is not proper. This is a special case of the action of an arithmetic subgroup
Γ ⊂ G on the Furstenberg boundaries of a semisimple Lie group G. This action on the
Furstenberg boundaries has played a crucial role in understanding rigidity properties of
arithmetic groups. Another type of problems related to understanding quotients of non-
proper actions, or rather the non-proper actions themselves, occurs in non-commutative
geometry.
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compactify it? Suppose that X has a measure which is invariant under
the left action of Γ. When does Γ\X have finite measure? Suppose
that X is a geodesic space. What is structure of geodesics of Γ\X that
go to infinity?4 What are properties of the geodesic flow of Γ\X? For
example, is it ergodic? Another natural problem concerns existence and
distribution of closed geodesics of Γ\X, which correspond to periodic
orbits of the geodesic flow.

(4) Suppose that X is a Riemannian manifold. What are the spectral
properties of the Laplace operator of Γ\X? For example, one can ask
about the existence of continuous spectrum and discrete spectrum (or
L2-eigenvalues) of Γ\X, the existence of generalized eigenfunctions for
the continuous spectrum, the existence of discrete spectrum inside the
continuous spectrum, the asymptotic behavior of the counting function
of the discrete spectrum, and the connection between the spectral theory
and the geometry of Γ\X, for example, the lengths of closed geodesics.

(5) Let X be a Riemannian manifold and Γ be an infinite discrete group.
What are L2-invariants of X with respect to the action of Γ, and what
are the relations with the corresponding invariants of Γ\X?5

(6) Fundamental domains for the Γ-action on X and rough fundamental do-
mains for Γ satisfying various finiteness conditions. How to construct
them and how to understand their shapes at infinity if Γ\X is noncom-
pact? How are these fundamental domains related to the structure at
infinity of X and Γ\X?

(7) Assume that Γ is infinite and hence X is noncompact. What kind of
compactifications does X have? How does Γ act on the boundaries of
these compactifications? What are the properties of limit sets of orbits
of Γ on the boundaries and what are their relations to other properties
of Γ or to the quotient Γ\X?

(8) Relations between structures of X and Γ\X such as compactifications
and function theory if X is a Riemannian manifold. For example, how
can compactifications of X be used to compactify noncompact quotients
Γ\X? How are eigenfunctions and spectra of X and Γ\X related?

In studying these problems, constructing good fundamental domains is a
crucial step. The best example to explain this fact is the action of Fuchsian
groups on the Poincaré upper half plane. Because of this consideration, in this
chapter, we will discuss various aspects of fundamental domains and rough
fundamental domains for actions of arithmetic groups on symmetric spaces in

4A striking application of understanding structures going to infinity is the McShane
identity in [301, Corollary 5, Theorems 4 & 2].

5The basic point of view is that instead of taking Γ-invariant functions or differential
forms, one considers L2(X) as a representation of Γ and takes the von Neumann dimension.
See [270] for details.
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some detail. This is an important part of the foundational reduction theory
of arithmetic groups. These results motivate results on fundamental domains
for the action of Modg,n on the Teichmüller space Tg,n.

If X is a metric space and if Γ acts cocompactly and isometrically on X,
then Γ with any word metric associated to a finite generating set is quasi-
isometric to X, and boundaries of X can often naturally be thought of as
boundaries of Γ. On the other hand, in many instances, the quotient of Γ\X
is not compact, and boundaries of X can also be considered as boundaries of
Γ, and they have played a fundamental role in the study of Γ. This is the case
for non-uniform arithmetic groups discussed below, especially in their rigidity
properties.

As mentioned before, for general groups Γ, it is not easy to find suitable Γ-
spaces. On the other hand, there are some general constructions of such spaces.
A particularly important class of Γ-spaces is the class of universal spaces for
proper actions of Γ. These spaces are unique up to homotopy equivalence and
are usually denoted by EΓ. They are the terminal spaces in the category of
proper Γ-spaces.

An EΓ-space is characterized by the following conditions: (a) Γ acts prop-
erly on EΓ. (b) For any finite subgroup F ⊂ Γ, the set of fixed points (EΓ)F

is nonempty and contractible. In particular, EΓ is contractible.
If Γ is torsion-free, then EΓ is the universal space EΓ for proper and fixed

point free actions of Γ, which is also the universal covering space of a classifying
space BΓ of Γ, where BΓ is characterized uniquely up to homotopy equivalence
by the conditions: π1(BΓ) = Γ, and πi(BΓ) = {1} for i ≥ 2.

It is known that if Γ is virtually torsion-free, i.e., if there exists a finite
index torsion-free subgroup of Γ, then for any model X of EΓ, the virtual
cohomological dimension vcd Γ satisfies the upper bound:

vcd Γ ≤ dimX. (1)

It was proved by Serre [384] that if Γ is virtually torsion-free and vcd Γ
is finite, then there exists a finite dimensional model of EΓ. Some natural
questions concerning EΓ are the following:

(1) Assume that Γ is virtually torsion-free. Does there exist a model X of
EΓ such that dimX = vcd Γ?

(2) Assume that Γ is virtually torsion-free and vcd Γ is finite. Is there a
model X of EΓ such that Γ\X is compact? Furthermore, can X satisfy
the condition dimX = vcd Γ?

(3) Assume that Γ is virtually torsion-free and vcd Γ is finite. Given a
natural model X of EΓ such that Γ\X is noncompact, is it possible to
find a Γ-equivariant compactification X of X such that the inclusion
X ↪→ X is a homotopy equivalence? Is it possible to find a Γ-stable
subspace with a compact quotient (or rather a finite CW complex) under
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Γ such that it is an equivariant deformation retraction of X? If dimX >
vcd Γ, is there a Γ-equivariant deformation retract S of X such that
dimS = vcd Γ and Γ\S is compact? (Such deformation retracts S are
often called spines of X. More generally, any cocompact deformation
retract is also called a spine of X.)

(4) Assume that Γ is torsion-free and satisfies the Poincaré duality. When
does Γ admit a model of BΓ given by a compact manifold without bound-
ary? If such a manifold model of BΓ exists, is it unique up to homeo-
morphism?

(5) For some important arithmetic groups such as SL(n,Z), find explicit
models of EΓ and EΓ given by CW-complexes so that we can compute
cohomology and homology groups of Γ.

Questions (2) and (3) are closely related to the problem of existence of
fundamental domains for Γ that are unions of simplices, or Γ-equivariant cell
decompositions of X. In fact, once X has a Γ-equivariant simplicial complex
structure, then it is easier to construct deformation retracts and spines. The
second part of question (4) is called the Borel conjecture for Γ, which asserts
that two closed aspherical manifolds with the same fundamental group Γ are
homeomorphic to each other. (Note that if M is an aspherical manifold, i.e.,
πi(M) = {1} for i ≥ 2, then it is a model of BΓ for Γ = π1(M).) See [132]
[136] for precise statements and references.

Though arithmetic subgroups of semisimple Lie groups and mapping class
groups are virtually torsion-free, some other natural groups, for example S-
arithmetic subgroups of algebraic groups of positive rank over function fields
such as SL(n, Fp[t]), where Fp is a finite field and t is a variable, are not vir-
tually torsion-free. Then their cohomological dimensions are equal to infinity.
For such groups, finding good models of the universal spaces for proper actions
is still important.

In this chapter, we will discuss results addressing the above questions for
arithmetic groups and mapping class groups. Many results are also known
for related groups such as the outer automorphism group Out(Fn) of the free
group Fn, Coxeter groups and hyperbolic groups.

Besides these common questions and properties shared by these different
classes of groups and spaces, we will also discuss the Jacobian (or period) map
between the moduli spaceMg of compact Riemann surfaces of genus g and the
Siegel modular variety Ag, which is an important arithmetic locally symmetric
space and is also the moduli space of principally polarized abelian varieties of
dimension g, to show that there are interactions between these different spaces.

We hope that the results presented in this chapter will justify the rather
unusual title of this chapter: as in the famous book “A tale of two cities” by
Charles Dickens, what happened in London, Paris and on ways between them
made the whole story interesting and exciting. Arithmetic groups and mapping
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class groups are interesting in their own, but analogies and relations between
them have motivated many new problems and results for each of these groups.
The Jacobian map between Mg and Ag has also played an important role in
understanding Mg. Therefore, various results and perspectives on arithmetic
groups, mapping class groups and their associated spaces are all different parts
of one tale!
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2 Summaries of properties of groups and spaces in this
chapter

To emphasize similarities and differences between arithmetic groups and map-
ping class groups on the one hand, and between symmetric spaces and Te-
ichmüller spaces on the other hand, we make four lists of properties for them
in parallel. The paper of Harer [169] is a valuable reference on comparing the
properties of arithmetic groups and mapping class groups, mainly concentrat-
ing on cohomological properties. The surveys [188] and [124] are also extensive
and cover many different topics. Besides studying arithmetic groups and map-
ping class groups, the surveys [75] [344] also compare the similarities between
these groups and the outer automorphism groups of free groups. We try to
include some other properties and hope to provide a different perspective. On
the other hand, it is clear from the table of contents that the current survey is
not comprehensive, and many results on arithmetic groups and mapping class
groups are not mentioned. For more results about mapping class groups, see
also the books [124] [334] [335]. For more references on arithmetic groups, see
[198] [39] [411].
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After these four lists, for comparison, we also list some similar properties
of Out(Fn) and two other important classes of groups: Coxeter groups and
hyperbolic groups. We will be less exhaustive about properties of these latter
three classes of groups.

We state properties to be discussed in this chapter in the following order:

(1) arithmetic groups (§2.1),

(2) symmetric spaces and locally symmetric spaces (§2.2),

(3) mapping class groups Modg,n (§2.3),

(4) Teichmüller spaces and moduli spaces (§2.4),

(5) outer automorphism groups Out(Fn) (§2.5),

(6) outer spaces Xn (§2.6);

(7) Coxeter groups (§2.7),

(8) hyperbolic groups (§2.8).

2.1 Properties of arithmetic groups Γ

The following notation will be used in this chapter. Let G ⊂ GL(n,C) be a
linear semisimple algebraic group defined over Q, and G = G(R) the real locus
of G, a real Lie group with finitely many connected components.6

Let K ⊂ G be a maximal compact subgroup. Then the homogeneous space
X = G/K with an invariant metric is a symmetric space of noncompact type,
in particular it is a simply connected and nonpositively curved complete Rie-
mannian manifold. Let Γ ⊂ G(Q) be an arithmetic subgroup. An important
example of an arithmetic subgroup is SL(n,Z). (See §4 below for a precise
definition of arithmetic groups.) Then Γ acts properly on X and the quotient
Γ\X is called an arithmetic locally symmetric space.

The rank of X is defined to be the maximal dimension of flat geodesic
subspaces of X, which is equal to the R-rank of G, i.e., the maximal dimension
of R-split tori of G, and it plays a very important role in the study of X and of
lattice subgroups of G acting on X. The Q-rank of G is equal to the maximal
dimension of Q-split tori in G and plays an important role in understanding
the geometry of Γ\X. For example, Γ\X is compact if and only if the Q-rank
of G is equal to 0. Because of this, we also call it the Q-rank of Γ\X, or

6We assume that G is a semisimple linear algebraic group for simplicity. Most of the
results stated here work for reductive algebraic groups as well, or with suitable modification.
For various applications and induction involving parabolic subgroups, it is important to con-
sider reductive but non-semisimple algebraic groups. For example, GL(n,C) is a reductive,
non-semisimple algebraic group.
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rather the Q-rank of Γ for convenience, though the terminology may not be
so standard. It follows from the definition that the Q-rank of Γ\X is less than
or equal to the rank of X.

For the sake of the discussion below, we can keep the example G =
SL(n,C) ⊂ GL(n,C), n ≥ 2, in mind. Then the Q-rank and R-rank of G
are both equal to n − 1. For the arithmetic subgroup Γ = SL(n,Z), the quo-
tient Γ\X is noncompact. This is consistent with the fact that the Q-rank of
SL(n,Z) is positive.

In the rest of this subsection, we list some properties of arithmetic groups
Γ roughly according to the following categories:

(a) combinatorial properties,

(b) group theoretical properties,

(c) cohomological properties,

(d) large scale (or asymptotic) properties,

(e) ridigity properties,

(f) classifying spaces and properties of actions.

More details on some of these properties will be provided later.

(a) Combinatorial properties.

(1) Γ is finitely generated.

(2) In many cases, for example if Γ = SL(n,Z), n ≥ 3, or if Γ is equal to the
integral points of Chevalley groups7 of rank at least 2, Γ is also boundedly
generated. The bounded generation of arithmetic subgroups is closely
related to a positive solution of the congruence subgroup problem (see
§4.11 and [354, §6] [265, Theorem D] [349] for the definition and for
more details.) But if the R-rank of G is equal to 1, Γ is not boundedly
generated.

(3) Γ is finitely presented. (See §4.11.)

(4) The word problem is solvable for Γ, and the conjugacy problem of Γ is
also solvable, but the solvability of the isomorphism problem for arith-
metic groups is not known in general. See [159] [160] [161] [4] for related
results and references. Some related results on Dehn functions, isoperi-
metric functions are also known. See [71] for definitions and [197, §17.9]
for other references.

(b) Group theoretical properties.

7Roughly speaking, a Chevalley group is a semisimiple linear algebraic group defined over
Z in the sense that its Lie algebra has a basis, a Chevalley basis, whose structure constants
are integers. Once such a Chevalley basis is constructed, the Chevalley group can be defined
as the identity component of automorphism group of the Lie algebra and its Z-structure is
determined by the Z-structure of the Lie algebra.
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(5) Γ is residually finite. (See §4.12.)

(6) Γ admits torsion-free subgroups of finite index. (See §4.12.)

(7) Γ has only finitely many conjugacy classes of finite subgroups. (See
§4.12.)

(8) Γ is contained in only finitely many other arithmetic subgroups of G.
(See §4.12.)

(9) If G = SL(n) and G(Z) = SL(n,Z) and n ≥ 3, then every arithmetic
subgroup Γ of SL(n,Z) is a congruence subgroup, i.e., contains a prin-
cipal congruence subgroup. This property fails for arithmetic subgroups
of SL(2,Z). In general, for a linear algebraic group G ⊂ GL(n,C) de-
fined over Q, the original congruence subgroup problem asks if every
arithmetic subgroup Γ ⊂ G(Z) contains a congruence subgroup. This
is equivalent to the condition that the congruence subgroup kernel as-
sociated with G(Z) (or with G(Q)) is trivial. More generally, if the
congruence subgroup kernel of G(Z) is finite, we say that the congru-
ence subgroup problem has a positive solution for G(Z), though not
every arithmetic subgroup of G(Z) contains a congruence subgroup. It
is known that if G is simply connected and absolutely almost simple, if
the R-rank of G (or the rank of the symmetric space X = G/K) is at
least 2, and if the Q-rank of G is positive, then the congruence subgroup
kernel is finite. If the R-rank of G is equal to 1, then the congruence
subgroup kernel of G(Z) is infinite in general. The congruence subgroup
problem, or the congruence subgroup kernel, is usually formulated and
studied for the more general class of S-arithmetic subgroups of linear
algebraic groups defined over number fields. (See [361] [362, p. 303-304]
and [197, §4.4] for the most general statements, complete results and
more references.)

(10) The Tits alternative holds for Γ: every subgroup of Γ is either virtually
solvable or contains a subgroup isomorphic to the free group F2 on two
generators. (See §4.14.) For related results on maximal subgroups of
infinite index, see the paper [280].

(11) Γ is irreducible, i.e., it is not a product of two infinite groups up to finite
index, if and only if G is almost simple over Q. (See [195, Remark 2.5]
and [20].)

(12) Assume that Γ is irreducible and the R-rank of G (or the rank of X) is at
least 2, then every normal subgroup of Γ is either finite or of finite index
(Margulis normal subgroup theorem). (See [278] and §4.12.) If the R-
rank of G is equal to one, there are in general infinite normal subgroups
of infinite index. (See [110].)
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(13) The rank of Γ as an abstract group is equal to the real rank of the Lie
group G, or equivalently the rank of the symmetric space X = G/K.
(See [22] and references therein.)

(c) Cohomological properties.

(14) The virtual cohomological dimension of Γ is finite and is equal to dimX−
rQ, where rQ is the Q-rank of Γ (or G). (See §4.18.)

(15) The cohomology groups Hi(Γ,Z) and the homology groups Hi(Γ,Z) are
finitely generated in every degree. Cohomology and homology of arith-
metic groups have been extensively studied and there is a huge literature
on them. (See the most recent survey [379] and the references there.)
(See also §4.19.)

(16) The cohomology ring H∗(Γ,Z) is finitely generated, which is an analogue
of Evens-Venkov theorem for finite groups. (See [357] [213].)

(17) The Euler characteristic of Γ can be computed and often expressed in
terms of special values of the Riemann zeta function and more general
L-functions, and Bernoulli numbers in some cases. (See [168] [384, §3.7]
[385, §3.1], [79, pp. 253-256], [352].) Basically, this follows from the
Gauss-Bonnet formula for the locally symmetric space Γ\X and the for-
mula for the volume of Γ\X since the Euler-Poincaré measure in the
Gauss-Bonnet formula is also invariant under G and hence is propor-
tional to the Haar measure.

(18) Γ is a virtual duality group of dimension dimX − rQ, where rQ is the
Q-rank of Γ. The dualizing module of Γ is the only nonzero reduced ho-
mology group of the Q-spherical Tits building ∆Q(G), which is an infinite
simplicial complex of dimension rQ−1, whose simplices are parametrized
by proper Q-parabolic subgroups of G. Γ is a virtual Poincaré duality
group if and only if rQ = 0 is equal to 0, i.e., if and only if the quotient
Γ\X is compact. (See §4.19.)

(19) The cohomology of families of classical arithmetic groups such as SL(n,Z)
stabilizes as n → ∞. This has important implications for K-groups of
Z and rings of integers of number fields. (See [59] and also [197] for
references.)

(d) Large scale properties.

(20) If G has no compact factor, then Γ is Zariski dense in G (Borel density
theorem). (See §4.13.)

(21) Γ grows exponentially, i.e., the number of elements in a ball with respect
to any word metric of Γ grows exponentially with the radius. (See §4.14.)
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(22) The asymptotic dimension of Γ is finite. Recall that for any metric space
(M,d), its asymptotic dimension is the smallest integer n such that for
every R > 0, there exists a covering of M by uniformly bounded sets
{Uα} such that every geodesic ball of radius R meets at most n + 1
sets from {Uα}. This notion was introduced by Gromov. (See [200] for
references.)

(23) If Γ is cocompact, then the tangent cone (or asymptotic cone) of Γ
with respect to any word metric is the same as the cone at infinity of
the symmetric space X = G/K, which is an affine R-building. If Γ is
irreducible and the rank of G (or X = G/K) is at least 2, then its tangent
cone is not determined yet but is homeomorphic by a Lipschitz map to a
subset of an affine R-building, by a result of [267]. (See also [344].) See
also [31] [113] for other quasi-isometry invariants of Γ.

(24) If Γ is cocompact, then Γ clearly has one end. Otherwise, the number
of ends of Γ depends on the real rank of G. When G has real rank at
least 2, Γ has one end. This follows from the Property T of Γ and a
characterization of groups with infinitely many ends by Stallings [394],
which implies that a group having Property FA has one end. (See [197,
p.154] for more detail.)

(e) Rigidity properties.

(25) Assume that Γ is irreducible and G has trivial center and is not isomor-
phic to PSL(2,R). Then for any arithmetic subgroup Γ1 of a semisimple
Lie group G1 with trivial center, any isomorphism ϕ : Γ → Γ1 extends
to an isomorphism ϕ : G → G1 (Mostow strong rigidity). (See [322].)
Furthermore, Γ also satisfies the Margulis superrigidity. There is also
a lot of work on rigidity for nonlinear actions in the Zimmer program.
There are also other rigidity results for measure equivalence and orbit
equivalence, and for lattices in more general locally compact groups. (See
[278] [432] [315] and the references in [197].) For rigidity results on von
Neumann algebras related to arithmetic groups, see [350] and references
therein.

(26) When Γ is irreducible and X is of rank at least 2, Γ is quasi-isometry
rigid in the sense that any group quasi-isometric to Γ is isomorphic to Γ
up to finite index. (See [122] and the references there.)

(27) The Borel conjecture and the integral Novikov conjectures in L-theory
(i.e., surgery theory), K-theory, and C∗-algebra theory hold for Γ. The
original Borel conjecture states that if two closed aspherical manifolds
are homotopy equivalent, then they are homeomorphic. The Borel con-
jecture is equivalent to the condition that certain assembly maps are
isomorphisms. The isomorphism of an assembly map in each theory is



19

sometimes called the Borel conjecture in that theory as well. (See [133]
[200] and references therein.)

(28) If G has trivial center and no nontrivial compact factor, then Γ is C∗-
simple, i.e., the reduced C∗-algebra C∗r (Γ) of Γ is simple. (See [34].)

(29) Γ is Hopfian, i.e., every surjective homomorphism ϕ : Γ → Γ is an
isomorphism, by the general result of Malcev for linear groups. (See
[417, §4.4]).

(30) Γ is co-Hopfian, i.e., every injective homomorphism ϕ : Γ → Γ is an
isomorphism (See [351].)

(31) If the rank of G is equal to 1, then Γ has Property RD and the Baum-
Connes conjecture in the theory of C∗-algebras holds for Γ (see [96]) (note
that the Baum-Connes conjecture is an analogue of the Borel conjecture
and also of the Farrell-Jones conjecture in geometric topology; it asserts
that an assembly map for topological K-groups in C∗-algebras is an
isomorphism), and Γ is also weakly amenable (see [99]). On the other
hand, if G is a simple Lie group of rank greater than or equal to 2 and
Γ is non-uniform, then Γ does not have Property RD (see [219] [267]).

(f) Classifying spaces and properties of actions.

(32) There exist Γ-cofinite universal spaces EΓ for proper actions of Γ. (See
§4.19.) If the associated symmetric space X = G/K is linear in the sense
that it is a homothety section of a self-adjoint homogeneous cone, then Γ
admits Γ-cofinite universal spaces EΓ of dimension equal to the virtual
cohomological dimension of Γ, which is realized by a spine of X, i.e., a
Γ-equivariant deformation retract of X. (See [14] and §4.19.)

(33) Γ satisfies Property T when Γ is irreducible and G has real rank at least
2. Recall that a group Γ satisfies Property T if the trivial representation
is isolated in the unitary dual of Γ, or, equivalently, if whenever Γ acts
on a Hilbert space unitarily with an almost fixed point, then it has a
fixed point. (See [35] for detailed discussions and applications. See also
the papers [119] [116].)

(34) Γ satisfies Property FA of Serre and hence does not split when Γ is
irreducible and when G has real rank at least 2. Recall that a group Γ
has Property FA if every action on a tree has at least one fixed point. If Γ
acts on a tree but does not have Property FA, then it splits, i.e., admits
an amalgam (free product with amalgamation). If Γ has Property T,
then it has Property FA. (See [6] [279] [416].)

Remark 2.1. In the above discussion, we have assumed that Γ is an arithmetic
subgroup of a semisimple Lie group G. A natural generalization of the class of
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arithmetic subgroups is the class of lattice subgroups of Lie groups, where a
discrete subgroup Γ of a Lie group G is called a lattice subgroup (or a lattice)
if the volume of Γ\G is finite with respect to an invariant measure. Then most
of the above properties for arithmetic subgroups also hold for lattice subgroups
of Lie groups with finitely many connected components.

Arithmetic subgroups of semisimple Lie groups are lattice subgroups. Con-
versely, by the famous theorem of Margulis on arithmeticity of lattices [278],
if Γ is an irreducible lattice of a semisimple Lie group G and if the rank of G
(or X = G/K) is at least 2, then Γ is an arithmetic subgroup of G. For more
details, see §4.2.

Remark 2.2. Another important and natural generalization of arithmetic
subgroups consists of the class of S-arithmetic subgroups. Many of the above
properties hold for them as well. See §4.3 for definitions and details.

Though the above list is long, it is sketchy and it is only a list of properties
of arithmetic groups known to the author. It is almost surely incomplete.
Besides the references for the above properties that were already given, we
mention below some books on arithmetic subgroups, discrete subgroups of
Lie groups, and related locally symmetric spaces in the order they were first
published. We hope that such a list will also give a historical perspective on
subjects related to arithmetic subgroups and discrete subgroups.

(1) R. Fricke, F. Klein, Vorlesungen über die Theorie der automorphen Funk-
tionen. Band 1: Die gruppentheoretischen Grundlagen, 1897 [140].

(2) J. Lehner, Discontinuous groups and automorphic functions, 1964 [255].

(3) J. Wolf, Spaces of constant curvature, 1967 [422].

(4) A. Borel, Introduction aux groupes arithmétiques, 1969 [57].

(5) I. M. Gel’fand, M. Graev, I. Pyatetskii-Shapiro, Representation theory
and automorphic functions, 1969 [146].

(6) G. Shimura, Introduction to the arithmetic theory of automorphic func-
tions, 1971 [387].

(7) M. Raghunathan, Discrete subgroups of Lie groups, 1972 [360].

(8) G. Mostow, Strong rigidity of locally symmetric spaces, 1973 [322].

(9) W. Magnus, Noneuclidean tesselations and their groups, 1974 [282].

(10) A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth compactification of
locally symmetric varieties, 1975 [15].

(11) H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, H. Zassenhaus,
Crystallographic groups of four-dimensional space, 1978 [78].

(12) J. Humphreys, Arithmetic groups, 1980 [184].
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(13) M. Vignéras, Arithmétique des algèbres de quaternions, 1980 [409].

(14) A. Beardon, The geometry of discrete groups, 1983 [29].

(15) R. Zimmer, Ergodic theory and semisimple groups, 1984 [432].

(16) L. Charlap, Bieberbach groups and flat manifolds, Universitext. Springer-
Verlag, 1986 [94].

(17) S. Krushkal, B. Apanasov, N. Gusevskii, Kleinian groups and uniformiza-
tion in examples and problems, 1986 [249].

(18) V. Nikulin, I. Shafarevich, Geometries and groups, 1987 [331].

(19) B. Maskit, Kleinian groups, 1988 [283].

(20) G. van der Geer, Hilbert modular surfaces, 1988 [408].

(21) G. Margulis, Discrete subgroups of semisimple Lie groups, 1991 [278].

(22) B. Apanasov, Discrete groups in space and uniformization problems, 1991
[10].

(23) R. Benedetti, C. Petronio, Lectures on hyperbolic geometry, 1992 [37].

(24) S. Katok, Fuchsian groups, 1992 [225].

(25) B. Iversen, Hyperbolic geometry, 1992 [194].

(26) É. Vinberg, O. Shvartsman, Discrete groups of motions of spaces of con-
stant curvature, in Geometry, II, pp. 139–248, 1993 [410].

(27) A. Lubotzky, Discrete groups, expanding graphs and invariant measures,
1994 [266].

(28) V. Platonov, A. Rapinchuk, Algebraic groups and number theory, 1994
[348].

(29) J. Ratcliffe, Foundations of hyperbolic manifolds, 1994 [363].

(30) W. Thurston, Three-dimensional geometry and topology. Vol. 1, 1997
[406].

(31) J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic
space. Harmonic analysis and number theory, 1998 [118].

(32) K. Matsuzaki, M. Taniguchi, Hyperbolic manifolds and Kleinian groups,
1998 [294].

(33) W. Goldman, Complex hyperbolic geometry, 1999 [148].

(34) E. Vinberg, V. Gorbatsevich, O. Shvartsman, Discrete subgroups of Lie
groups, in Lie groups and Lie algebras, II, pp. 1–123, 2000 [411].

(35) B. Apanasov, Conformal geometry of discrete groups and manifolds, 2000
[11].

(36) M. Kapovich, Hyperbolic manifolds and discrete groups, 2001 [223].

(37) K. Ohshika, Discrete groups, 2002 [332].
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(38) W. Fenchel, J. Nielsen, Discontinuous groups of isometries in the hyper-
bolic plane, 2003 [135].

(39) C. Maclachlan, A. Reid, The arithmetic of hyperbolic 3-manifolds. 2003
[274].

(40) B. Sury, The congruence subgroup problem: an elementary approach
aimed at applications, 2003 [398].

(41) L. Keen, N. Lakic, Hyperbolic geometry from a local viewpoint, 2007 [231].

(42) A. Marden, Outer circles. An introduction to hyperbolic 3-manifolds,
2007 [277].

(43) F. Bonahon, Low-dimensional geometry. From Euclidean surfaces to
hyperbolic knots, 2009 [56].

The book [197] contains a lot of references for other topics related to arith-
metic groups.

We will define and discuss a portion of these properties in §4 below, showing
how actions on symmetric spaces, reduction theories for arithmetic groups, and
compactifications of symmetric and locally symmetric spaces are used to prove
some of the above properties, hence emphasizing the importance of interaction
between groups and spaces.

2.2 Properties of actions of arithmetic groups Γ on
symmetric spaces X

Let Γ ⊂ G be an arithmetic subgroup as above, and X = G/K be a symmetric
space of noncompact type with an invariant metric.

(a) Orbits and fixed point sets.

(1) Γ acts properly and isometrically on X, and Γ\X is an orbifold with
finitely many singular loci. The orbifold Γ\X admits finite smooth cov-
ers. This follows from the existence of torsion-free finite index subgroups
of Γ.

(2) For any finite subgroup F ⊂ Γ, the fixed point set XF is nonempty and
contractible. Hence X is a model of an EΓ-space.

(3) When Γ is cocompact, Γ with a word metric is clearly quasi-isometric to
any Γ-orbit inX with the induced subspace metric. When Γ is irreducible
and the rank of X is at least 2, Γ with a word metric is quasi-isometric
to any Γ-orbit in X with the induced subspace metric. (See [267].)

(4) Distributions and growths of Γ-orbits in X can be described. (See [150]
and references therein.)
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(b) Boundaries of compactifications of symmetric spaces and Γ-actions.

(5) As a simply connected nonpositively curved Riemannian manifold, X
admits a natural geodesic compactification X ∪X(∞) by adding the set
of equivalence classes of directed geodesics X(∞) at infinity, where two
directed unit speed geodesics γ(t), γ′(t) are equivalent if the distance
between them near +∞ is bounded, i.e., lim supt→+∞ d(γ(t), γ′(t)) <
+∞. The Γ-action on X extends continuously to X ∪ X(∞), and the
stabilizers of the boundary points in G are exactly the proper parabolic
subgroups of G. X also admits several other compactifications such as
the Satake compactifications on which the Γ-action extends continuously,
and the stabilizers of the boundary points in G are smaller than the
parabolic subgroups of G in general. (See §4.16.)

(6) Compactifications of X such as the geodesic and Satake comapactifi-
cations contain distinguished boundary subsets, called the Furstenberg
boundaries, that are stable under Γ. Note that the Γ-action on the
Furstenberg boundaries is not proper. The Γ-action on the maximal
Furstenberg boundary is amenable with respect to the Haar measure
and also with respect to any Γ-quasi-invariant measure. (See [432] [329,
Theorem 3.1].) The Furstenberg boundaries and Γ-actions on them have
played a foundational role in the rigidity of arithmetic subgroups and
more general lattices of G. (See [432] [278].)

(c) Volumes of the quotient space and fundamental sets.

(7) With respect to the invariant Riemannian metric on X, Γ\X has finite
volume. (See §4.9.)

(8) Γ\X is compact if and only if the Q-rank of Γ\X, i.e., of G, is equal to 0,
or equivariantly, if Γ does not contain any nontrivial unipotent element.
(See §4.9).

(9) If Γ\X is compact, then its simplicial volume is positive. (See [251]
and [83] for the definition and the precise statement of the result). On
the other hand, if the Q-rank of Γ\X is at least 3, then the simplicial
volume of Γ\X is zero. (See [263, Theorem 1.1].) When the Q-rank of G
is equal to 1 or 2, it is not known whether the simplicial volume of Γ\X
is positive or not. For some Q-rank 1 locally symmetric spaces including
the Hilbert modular varieties, it is known that the simplicial volume is
positive [262], and for the Hilbert modular surfaces, the simplicial volume
can be computed explicitly using the result in [84].

(10) In the special case where Γ = SL(n,Z) and X = SL(n,R)/SO(n), there
is a Mahler compactness criterion for subsets of Γ\X. This is a founda-
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tional result in the geometry of numbers and in the reduction theory of
arithmetic groups. (See [92].)

(11) Fundamental sets (or rough fundamental domains) of the Γ-action on X
can be described in terms of Siegel sets associated with representatives
of Γ-conjugacy classes of Q-parabolic subgroups of G. In some special
cases, fundamental domains can be described explicitly, for example, in
the theory of Minkowski reduction for GL(n,Z). (See §4.8 and §4.9.)

(12) The volume of Γ\X can be computed and can be expressed in terms
of special values of the Riemann zeta function or more generally L-
functions. (See [352].)

(13) The Gauss-Bonnet formula holds for Γ\X and can be used to compute
the Euler characteristic of arithmetic groups. (See [168] [385, §3].)

(d) Rigidity properties.

(14) Suppose that Γ is irreducible and X is not isometric to the Poincaré up-
per half plane. For any locally symmetric space Γ1\X1 of finite volume,
if Γ\X and Γ1\X1 are homotopy equivalent, then they are isometric up
to a suitable scaling of the metrics (Mostow strong rigidity). (See [322].)

(15) There are many generalizations of Mostow strong rigidity. In [23], one
locally symmetric space is replaced by a nonpositively curved Rieman-
nian manifold without changing the conclusion that the two spaces must
be isometric up to scaling. In [254], one locally symmetric space is fur-
ther replaced by a geodesically complete CAT(0)-space.8 In [43], for
a compact locally symmetric space of negative sectional curvature, its
invariant metric is characterized by the property that it has minimal
entropy among all negatively curved metrics of the same volume on it.
For other generalizations of Mostow strong rigidity, see the references in
[198] and [205].

(16) In [89] and [21], rank rigidity says that any finite volume irreducible
nonpositively curved Riemannian manifold of rank at least 2 is a locally
symmetric space.

(17) There is also a characterization of irreducible higher rank locally sym-
metric spaces of finite volume among all irreducible nonpositively curved
manifolds of finite volume in terms of bounded cohomology, i.e., van-
ishing of the vector space of quasi-homomorphisms of the fundamental
group. (See [52] [88].)

(e) Compactifications of locally symmetric spaces and ends.

8A CAT(0)-space is a geodesic space such that every triangle in it is thinner than a
corresponding triangle of the same side lengths in R2.
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(18) Suppose that Γ\X is noncompact. Then it admits a Borel-Serre com-

pactification Γ\X
BS

such that the inclusion Γ\X ↪→ Γ\X
BS

is a ho-

motopy equivalence. Γ\X
BS

is the quotient of a partial Borel-Serre

compactification X
BS

which is a real analytical manifold with corners,
and Γ acts real-analytically and properly on it. If Γ is torsion-free, then

Γ\X
BS

is a real analytic manifold with corners. (See [62] and [61].)

If Γ contains torsion elements, then Γ\X
BS

is a real analytic compact
orbifold.

(19) The locally symmetric space Γ\X has one end when the Q-rank of Γ\X,
i.e., of G, is at least 2. When the Q-rank of Γ\X is equal to 1, there
are only finitely many ends, and the ends are in one-to-one correspon-
dence with the Γ-conjugacy classes of Q-parabolic subgroups of G. (See
§4.9.) By passing to subgroups of large finite index, we can get locally
symmetric spaces of Q-rank 1 with as many ends as desired.

(20) The partial Borel-Serre compactification X
BS

is a cofinite model of EΓ.
(See [206].)

(21) Γ\X also admits other compactifications such as the reductive Borel-

Serre compactificationX
RBS

, and the Baily-Borel compactification Γ\X
BB

when Γ\X is Hermitian. (See §4.17 and [61] for references.)

(22) Γ\X admits deformation retracts that are compact submanifolds with
corners, i.e., the thick part where the injectivity radius is bounded uni-
formly from below. This gives a realization of the partial Borel-Serre
compactification of X by a subspace of X, i.e., the inverse image in X
of the thick part of Γ\X. (See [371].)

(23) If the Q-rank rQ of Γ\X is equal to 1 or if X is a linear symmetric space,
then Γ\X admits deformation retracts that are of dimension dimX−rQ,
i.e., the virtual cohomological dimension of Γ. (See §4.19 for more de-
tails and references.) On the other hand, X is a contractible complete
Riemannian manifold of smallest dimension on which Γ can act by isome-
tries, or is a contractible manifold on which Γ acts properly. (See [50].)

(24) When Γ\X is a Hermitian arithmetic symmetric space, the Baily-Borel

compactification Γ\X
BB

is a normal projective variety defined over spe-
cific number fields. Let D be the unit disc of C. The Borel extension
theorem says that every holomorphic map D−{0} → Γ\X extends to a

holomorphic map D → Γ\X
BB

. (See [60].)

(f) Large scale geometry.
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(25) The asymptotic cone (or the tangent space at infinity) of Γ\X is a cone
over a finite simplicial complex, which is the quotient Γ\∆Q(G) of the
Tits building ∆Q(G). (See [177] [215] [256].)

(26) The rays or EDM (eventually distance minimizing) geodesics of Γ\X
can be classified and suitable equivalence classes of such geodesics can
be identified with boundary points of various compactifications. (See
[215].)

(27) The logarithm law for geodesics holds for Γ\X. This says roughly that
from any fixed basepoint, for almost all unit speed geodesics c(t) start-
ing at this point, lim supt→+∞ d(c(t), x0)/ log t exists and is a positive
constant depending only on X (See [239] [396].)

(g) Spectral theory of Γ\X.

(28) When Γ\X is noncompact, the Laplace operator associated with the
invariant metric has a nonempty continuous spectrum that consists of a
union of half lines [a,+∞), and their generalized eigenfunctions are given
by Eisenstein series. This is the famous theory of Eisenstein series that
has played a fundamental role in the celebrated Langlands program. The
square integrable eigenfunctions are Maass forms and their existence is
a subtle problem. (See [252].)

(29) There is a Selberg (or Arthur-Selberg) trace formula relating the spectral
data of Γ\X to the geometric data of Γ\X. When Γ\X is a hyperbolic
surface, the trace formula relates the spectra (both the continuous and
the discrete) of the Laplace operator to the lengths of closed geodesics.
For general locally symmetric spaces, the geometric side is in terms of
orbital integrals. The original motivation of the Selberg trace formula is
to prove existence of Maass forms, and the Arthur-Selberg trace formula
has been used to prove the Langlands functioriality principle. (See [383]
[12].)

(30) A generalized Poisson relation connects sojourn times of scattering geodesics
and the singularities of the Fourier transform of the spectral measure.
(See [218].) This relation was motivated by the Poisson relation for com-
pact Riemann manifolds in [115].

(h) L2-cohomology and intersection cohomology.

(31) When Γ\X is a Hermitian locally symmetric space, the Baily-Borel com-

pactification Γ\X
BB

is usually a singular projective variety. The inter-

section cohomology of Γ\X
BB

with the middle perversity can be canon-
ically identified with the L2-cohomology of Γ\X, which is known as the
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Zucker conjecture and was proved independently in [264] [373]. See the
survey [217] in this volume.

(32) For p� 1, the Lp-cohomology group of Γ\X can be canonically identified
with the cohomology group of the reductive Borel-Serre compactification

Γ\X
RBS

. (See [433].)

We will not discuss in detail most of the above properties, except several
properties related to arithmetic groups in §4.

2.3 Properties of mapping class groups Modg,n

Let Sg be a compact oriented surface of genus g, and Sg,n be a noncompact
surface obtained from Sg by removing n points. For simplicity, Sg,0 is de-
fined to be Sg. Let Modg,n = Diff+(Sg,n)/Diff0(Sg,n) be the mapping class
group of Sg,n, where Diff+(Sg,n) is the group of orientation preserving diffeo-
morphisms of Sg,n, and Diff0(Sg,n) is the identity component of Diff+(Sg,n),
which is also a normal subgroup. Modg,n only depends on the pair g, n.
Let Homeo+(Sg,n) be the group of orientation preserving homeomorphisms
of Sg,n, and Homeo0(Sg,n) the identity component. Then the quotient group
Homeo+(Sg,n)/Homeo0(Sg,n) is isomorphic to Modg,n. (See [313].)

Assume that 2g−2+n > 0. Then Sg,n admits complete hyperbolic metrics
of finite area. Let Tg,n be the Teichmüller space of marked complete hyper-
bolic metrics of finite area (or equivalently complex structures) on Sg,n. Then
Modg,n acts on Tg,n by changing the markings of the hyperbolic metrics, and
the quotient Modg,n\Tg,n is the moduli space Mg,n of complete hyperbolic
metrics of finite area on Sg,n, or equivalently the moduli space of compact
Riemann surfaces of genus g with n punctures, i.e., the moduli space in alge-
braic geometry of projective curves over C with n marked points.

In this subsection, we list some properties of mapping class groups Modg,n.
In the next subsection, we list properties of the action of Modg,n on Tg,n and
its quotient Modg,n\Tg,n ∼=Mg,n.

(a) Nonisomorphism with arithmetic groups.

(1) Modg,n is not isomorphic to any arithmetic subgroup Γ of a semisimple
Lie group G (see [188]) or more generally to any lattice subgroup of a
Lie group with finitely many connected components (see [195] for refer-
ences.) Stronger rigidity results on chatacterization of locally compact
second countable topological groups that contain Modg,n as a lattice was
obtained in [238, Corollary 1.5].

(2) If Γ is an irreducible lattice of a semisimple Lie group of rank at least 2,
then any homomorphism ρ : Γ → Modg,n has a finite image. (See [167]
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for references.) On the other hand, the symmetric statement that any
homomorphism φ : Modg,n → Γ has finite image is not true.9

(b) Combinatorial properties.

(3) Modg,n is finitely generated. In fact, it is generated by finitely many
suitable Dehn twists. (See [188] [127] [54] [67].) But Modg,n is not
boundedly generated. (See [126].)

(4) Modg,n is finitely presented. (See [188] [127].)

(5) Modg,n is automatic and hence the word problem is solvable. The con-
jugacy problem for Modg,n is also solvable (See [320] [179] [123].)

(c) Group theoretical properties.

(6) Modg,n admits torsion-free subgroups of finite index. (See [188].)

(7) Modg,n is residually finite. (See [188].)

(8) Modg,n has only finitely many conjugacy classes of finite subgroups. (See
[216].)

(9) Every finite subgroup of Modg,n can be realized as a subgroup of the
automorphism group of a Riemann surface (the Nielsen realization prob-
lem). (See [233] [424].)

(10) Modg,n satisfies a strong version of the Tits alternative: every subgroup
of Modg,n is either virtually abelian or contains a subgroup isomorphic to
the free group F2 on two generators. (See [295] [55] [190] and references.)
For more results on subgroups of Modg,n and similarities with results for
finitely generated linear groups, see [190] and also [232] [340] [321].

(11) Modg,n is irreducible, i.e., it is not isomorphic to a product of two infinite
groups up to finite index. (See [188].)

(12) The rank of Modg,n as an abstract group is equal to 1 [188], but its
geometric rank is equal to 3g − 3 + n [33].

(13) Modg,n contains infinite normal subgroups that are of infinite index, i.e.,
the analogue of the Margulis normal subgroup theorem does not hold. In
the case of Modg, there is a surjective homomorphism Modg → Sp(2g,Z)
with an infinite kernel, the Torelli group, which is an infinite normal
subgroup. (See [123] for more discussion.)

9For example, there is a natural surjective homomorphism Modg → Sp(2g,Z). For n > 0,
there is also a surjective homomorphism Modg,n → Modg,n−1. (See [169, p. 144].) Given
the super-rigidity of higher rank arithmetic irreducible subgroups, it may be natural to
conjecture that the first example mentioned is essentially the only case of a homomorphism
of Modg,n into a semisimple algebraic group with a Zariski dense image.
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(14) The congruence subgroup problem for Modg,n is solved for some cases
when g ≤ 2 and is still open for higher values of g. (See [191] for a
precise definition of the congruence subgroup problem and applications,
and [364] and references for known results on that problem.)

(d) Cohomological properties.

(15) The virtual cohomological dimension of Modg,n is finite and can be writ-
ten down explicitly. For example, the virtual cohomological dimension
of Modg is equal to 4g − 5. (See [169].)

(16) The cohomology and homology groups of Modg,n are finitely generated in
every degree. (See [169] [216].) A lot of work has been done about these
groups. See [169] for a good summary and [124] for some motivation and
applications.

(17) The cohomology ring H∗(Modg,n,Z) is finitely generated, which is an
analogue of the Evens-Venkov theorem for finite groups. (See [357] [213].)

(18) The Euler characteristic of Modg,n can be computed in terms of Bernoulli
numbers, or special values of the Riemann zeta function. (See [169, §8]
[171].)

(19) Modg,n is a virtual duality group, but not a virtual Poincaré duality
group. Its dualizing module is the only nonzero reduced homology group
of the curve complex C(Sg,n) of Sg,n, which is an infinite simplicial com-
plex with vertices corresponding to homotopy classes of essential simple
closed curves of Sg,n and is an analogue of the Tits building of a linear
semisimple algebraic group. (See [169] [188] [192].)

(20) The cohomology groups of families of Modg,n stabilize as g, n → +∞.
(See [169, Theorem 6.1].) The stable rational cohomology ring of Modg,n
is a polynomial ring as conjectured by Mumford. (See [276] [275].)

(21) There exist cofinite universal spaces for proper actions of Modg,n. (See
[216].)

(e) Large scale properties.

(22) Modg,n grows exponentially. The fact that Modg,n is not virtually
abelian and the Tits alternative imply that it grows at least exponen-
tially. By general results [106, p. 181, Remark 53 (iii)], it grows expo-
nentially.

(23) The asymptotic dimension of Modg,n is finite. (See [47].)

(24) The maximal topological dimension of locally compact subsets of any
asymptotic cone of Modg,n and the geometric rank of Modg,n are deter-
mined in [33]. Every point of any asymptotic cone of Modg,n is a global
cut-point and the cone is tree-graded.
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(f) Rigidity properties.

(25) Modg,n is quasi-isometry rigid in the sense that any group quasi-isometric
to Modg,n is isomorphic to Modg,n up to finite index. (See [166] [32].)
It also satisfies the measure equivalence rigidity. (See [236] [237] for
detailed statements.)

(26) The analogue of Mostow strong rigidity holds: For any two subgroups
of finite index, Γi ⊂ Modgi,ni

, i = 1, 2, any isomorphism ϕ : Γ1 → Γ2

extends to an isomorphism ϕ : Modg1,n1
→ Modg2,n2

. (See [195] for
references.) This gives a solution to a conjecture in [191, §14]. There are
also analogues of superrigidity results. (See [124] [188] and references
there.)

(27) Modg,n satisfies the Hopfian and co-Hopfian properties. (See [193].)

(28) Modg,n does not have Property T. (See [9] for the general case and [399]
for the genus 2 case.)

(29) Modg,n satisfies Serre’s Property FA and hence does not split. (Recall
that a group has Serre’s Property FA if every action of this group on a
tree has a fixed point.) (see [103].)

(30) Modg,n and its subgroups of finite index have one end, using the fact
that a group having Property FA does not split and hence has one end,
which follows from a characterization of groups with infinitely many ends
by Stallings [394].

(31) The integral Novikov conjecture in both K- and L-theories, i.e., on the
injectivity of the assembly map, holds for Modg,n. This follows from a
general result stating that finite asymptotic dimension implies the valid-
ity of integral Novikov conjectures in K-, L-theories, which also implies
the stable Borel conjecture. (See [200] [201] for explanations and the
definition of the stable Borel conjecture.)

(32) Modg,n is C∗-simple, i.e., the reduced C∗-algebra C∗r (Modg,n) is simple.
(See [72].)

Since Modg,n and its finite index subgroups are not virtual Poincaré duality
groups and hence cannot be realized as fundamental groups of closed aspher-
ical manifolds, the usual Borel conjecture stating that two closed aspherical
manifolds with the same fundamental group are homeomorphic automatically
holds for them. (See [136] for an explanation of the Borel conjecture.)

In the above list, we have tried to follow the order of corresponding proper-
ties of arithmetic groups. Since the emphasis here is more on global properties
of the group Modg,n, there are many results on properties of individual el-
ements of Modg,n that we have not listed here. See [188] [403] [3] and the
references there.

Some of the properties related to structures of Teichmüller spaces will be
explained in §5, but they will be even less detailed than for arithmetic groups.
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2.4 Properties of actions of mapping class groups Modg,n

on Teichmüller spaces

Let Tg,n be the Teichmüller space of surfaces of genus g with n punctures, and
Modg,n the associated mapping class group defined as above.

(a) Orbits and quotients by the mapping class groups.

(1) The Teichmüller space Tg,n is a contractible complex manifold of dimen-
sion 3g − 3 + n, and Modg,n acts holomorphically and properly on Tg,n.
(See [327], [187].)

(2) The quotient Modg,n\Tg,n is the moduli space Mg,n of hyperbolic met-
rics on Sg,n, or equivalently the moduli space of projective curves over
C with n marked points. Mg,n is an orbifold and admits finite smooth
covers. The first statement follows from the fact that Modg,n acts tran-
sitively on the markings of complex structures on Sg,n, and the second
from the existence of torsion-free finite index subgroups of Modg,n.

(3) For any finite subgroup F ⊂ Modg,n, the fixed point set T Fg,n is nonempty
and contractible. Hence, Tg,n is a model of EModg,n.

(4) Modg,n is not quasi-isometric to any of its orbits in Tg,n with respect to
the Teichmüller metric [126, Theorem 2.1].

(5) Distributions of Modg,n-orbits and their asymptotic behavior can be de-
scribed. (See [120] and references therein.)

(b) Volumes of quotients.

(6) Tg,n admits several different metrics that are invariant under Modg,n: the
incomplete Weil-Petersson metric, and the complete Teichmüller metric,
the Bergman metric, the Kobayashi metric, the Carathéodory metric,
the Kähler-Einstein metric, the McMullen metric, the Ricci metric, the
perturbed Ricci metric (or Liu-Sun-Yau metric). All these complete
metrics are quasi-isometric to each other. (See [260] [425]-[427] [299]
and references.) There is also the Thurston (or Lipschitz) asymmetric
metric. (See [338] for an exposition and references.) The introduction
[336] gives brief definitions of most of these metrics.

(7) There are many different properties of metrics on Tg,n. The Weil-Petersson
is an incomplete Kähler metric which is also geodesically convex in the
sense that every two distinct points are connected by a unique geodesic.
For a comprehensive study of the Weil-Petersson metric of Teichmüller
space, see [427]. The Teichmüller metric is a Finsler metric and is not
a CAT(0)-space or Gromov hyperbolic space but it has some properties
that resemble a CAT(0)-space, for example, every two points can be con-
nected by a unique Teichmüller geodesic. See [306] [114] [359] [16] [292]
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and the surveys [290] [338] for references. For the Thurston Lipschitz
metric, see the survey [338] and [404]. For the McMullen metric, the
bottom of the spectrum of the Teichmüller space is positive [299]. For
the Ricci and other related metrics, see [260] [261]. See also [336] for an
overview of these metrics.

(8) With respect to any of the above metrics, the volume of Mg,n is finite.
This follows from the asymptotics (or rather quasi-isometry class) of
the metrics near the boundary of Mg,n. In fact, the complete metrics
mentioned above are quasi-isometric to a Poincaré type metric near the

boundary divisors of the Deligne-Mumford Mg,n
DM

. (See [260].) The
asymptotic behavior of the Weil-Petersson metric is also known. (See
[425] [426].)

(9) For any finite index torsion-free subgroup Γ of Modg,n, the simplicial
volume of Γ\Tg,n is zero when g ≥ 2, or g = 1 and n ≥ 3, and g = 0 and
n ≥ 6. (See [209] [210].)

(c) Symmetries and compactifications of Teichmüller spaces.

(10) The isometry group of Tg,n with respect to any of the metrics in (6)
is discrete and contains Modg,n as a subgroup of finite index when
3g−3+n ≥ 2. More generally, for any complete, finite covolume Modg,n-
invariant Finsler (or Riemannian) metric on Tg,n, when 3g − 3 + n ≥ 2,
its isometry group contains Modg,n as a subgroup of finite index. (See
[131, Theorem 1.2].) Except for a few exceptions, the isometry group of
the Teichmüller metric and the Weil-Petersson metric of Tg,n is equal to
Mod∗g,n, which is the degree-two extension of Modg,n obtained by includ-
ing the diffeomorphisms that do not necessarily preserve the orientation
of the surface Sg,n. This is related to the fact that the automorphism
group of the curve complex C(Sg,n) is equal to Mod∗g,n except for a low
genus few cases. (See [188] [271] [425] and the references there.)

(11) Tg,n admits several compactifications: (a) the Thurston compactification,
(b) the Bers compactification, (c) the Teichmüller ray compactification
[234], (d) the harmonic map compactification, (e) the Weil-Petersson vi-
sual compactification with respect to the Weil-Petersson metric, (f) the
compactification via extremal lengths of essential simple closed curves
[144], (g) the horofunction (or Gromov) compactification with respect to
the asymmetric Thurston metric [415], (h) the real spectrum compactifi-
cation of Tg as a semi-algebraic set [82], and there are other compactifica-
tions, for example, the compactification in [316] associated with Λ-trees.
(a) The Thurston compactification is defined intrinsically by lengths of
simple closed geodesics of the marked hyperbolic Riemann surfaces and
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the Modg,n-action on Tg,n extends continuously to the Thurston com-
pactification (see [403], [405]). (b) The Bers compactification is the clo-
sure of Tg,n under the Bers embedding which realizes Tg,n as a bounded
domain in C3g−3+n (see [235]). It depends on the choice of a basepoint
and the action of Modg,n on Tg,n does not extend continuously to this
compactification. (c) The Teichmüller ray compactification is obtained
by adding a point to each ray in the Teichmüller metric from a fixed
basepoint in Tg,n. It depends on the basepoint and the action of Modg,n
on Tg,n does not extend continuously to this compactification either (see
[234]). It is important to point out that the boundary of the Teichmüller
ray compactification is not equal to the visual sphere (i.e., the space of
equivalence classes of Teichmüller rays, where two rays are said to be
equlvalent if they stay at a bounded distance), since the latter is non-
Hausdorff [296]. (d) There is also a compactification of Tg,n by harmonic
maps, which is equivariantly homeomorphic to the Thurston compact-
ifcation (see [423] for the definition and the proof of the homeomor-
phism). (e) The Weil-Petersson visual compactification of Tg,n by adding
the visual sphere, i.e., the set of geodesics from a fixed base-point [76] de-
pends on the base-point, and the Modg,n-action on Tg,n does not extend
continuously to the boundary when 3g−3+n ≥ 2. This visual compact-
ification strictly contains the completion of the Weil-Petersson metric of
Tg,n, which turns out to be the augmented Teichmüller space [1], a partial
compactification of Tg,n. (See [291] and [425].) (f) The boundary of the
compactification by extremal lengths in [144] (see also [312]) is contained
in the boundary of the Thurston compactification. (g) The horofunction
(or Gromov) compactification with respect to the Thurston asymmetric
metric is equivariantly homeomorphic to the Thurston compactification
[415]. (h) The real spectrum compactification is only defined for Tg and
dominates the Thurston compactification and has the property that the
action of Modg on Tg extends continuously to the compactification, and
every element in Modg has at least one fixed point in the compactification
[82].

(12) The action of Modg,n on the compact metrizable Hausdorff space of
complete geodesic laminations for Sg,n is topologically amenable and
hence the Novikov conjecture in surgery theory holds for Modg,n. (See
[165] and also [236]).

(d) Fundamental sets.

(13) The quotient Modg,n\Tg,n is noncompact if its dimension is positive. The
reason is that simple closed curves on hyperbolic surfaces can be pinched
and the resulting surfaces have smaller genus and more punctures.
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(14) There is a Mumford compactness criterion for subsets of Mg,n, which
is an analogue of the Mahler compactness criterion for subsets of the
locally symmetric space SL(n,Z)\GL+(n,R)/SO(n). (See [324].)

(15) Fundamental sets (or rough fundamental domains) of the Modg,n-action
on Tg,n can be described by Bers sets associated with representatives of
Modg,n-orbits of pants decompositions of Sg,n. The Minkowski reduction
theory for SL(n,Z) acting on the space of positive definite quadratic
forms can be generalized to give an intrinsic fundamental domain for
Modg,n that is a union of finitely many cells (§5.11.)

(16) Tg,n has one end. For any finite index subgroup Γ of Modg,n, Γ\Tg,n
has also one end if 3g − 3 + n > 0. The former is clear since Tg,n is
diffeomorphic to R6g−6+2n, and the latter follows from the fact that the
curve complex C(Sg,n) is connected. (See §5.6.)

(17) When n > 0, the existence of a Modg,n-equivariant intrinsic simplicial
decomposition of Tg,n and of a Modg,n-equivariant spine of the right
dimension, i.e., equal to the virtual cohomological dimension of Modg,n,
is known [169]. On the other hand, when n = 0, the existence of a Modg-
equivariant intrinsic cell decomposition of Tg and a spine of Tg of the right
dimension is not known in general. When g = 2, it is known [367]. A
Modg-equivariant, cocompact deformation retract of Tg is known [216],
and a Modg-equivariant, cocompact deformation retract of Tg of positive
codimension is also known [203].

(18) Tg admits a Modg-equivariant deformation retract, which is a cocompact
submanifold with corners of Tg and gives a cofinite model of the universal
space EModg for proper actions of Modg. (See [216].)

(e) Large scale geometry.

(19) The asymptotic cone of Modg,n\Tg,n with respect to the Teichmüller
metric exists and is equal to the metric cone over a finite simplicial
complex, which is the quotient of the curve complex C(Sg,n) by Modg,n.
(See [257] [129].)

(20) The eventually distance minimizing (EDM) geodesics of Modg,n\Tg,n in
the Teichmüller metric can be classified and the boundary of the Deligne-
Mumford compactification of Modg,n\Tg,n can be described in terms of
equivalence classes of these geodesics. (See [128].)

(21) The logarithmic law for geodesics holds for Modg,n\Tg,n in the Teichmüller
metric. It corresponds to the logarithmic law for noncompact finite vol-
ume hyperbolic manifolds. (See [289].)

(f) Compactifications of the quotient.
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(22) Modg,n\Tg,n admits a Borel-Serre type compactification Modg,n\Tg,n
BS

such that the inclusion Modg,n\Tg,n ↪→ Modg,n\Tg,n
BS

is a homotopy
equivalence. It can be taken as the quotient of a Borel-Serre type partial

compactification Tg,n
BS

on which Γ acts properly. The boundary of

Tg,n
BS

is homotopy equivalent to the curve complex C(Sg,n). (See [188]
[210] and §5.6).

(23) The curve complex C(Sg,n) is an infinite simplicial complex. It has in-
finite diameter and is a hyperbolic space in the sense of Gromov. (See
[130] [188] [307].)

(24) The Borel extension theorem for holomorphic maps from the punctured
disk to Mg,n, f : D − {0} → Mg,n, holds for the Deligne-Mumford

compactificationMg,n
DM

, i.e., f extends to a holomorphic map f̂ : D →
Mg,n

DM
. (See [186].) If the map f is algebraic, then the extension of

f after passing to a finite covering of D − {0} is the stable reduction of
curves in algebraic geometry. (See [109].)

(g) Cohomological properties.

(25) The L2-cohomology group of Mg,n = Modg,n\Tg,n with respect to any
of the canonical complete metrics in (6) is isomorphic to the cohomology
group of the Deligne-Mumford compactification ofMg,n. In fact, for all
p < +∞, the Lp-cohomology group of Mg,n with respect to any of the
above canonical complete metrics is also isomorphic to the cohomology
group of the Deligne-Mumford compactification of Mg,n. (They all de-
fine the same Lp-cohomology groups since they are quasi-isometric.)(See
[372] [217].) With respect to the incomplete Weil-Petersson metric, when
p ≥ 4/3, the Lp-cohomology group ofMg,n is also isomorphic to the co-
homology group of the Deligne-Mumford compactification of Mg,n, but
for p < 4

3 , it is isomorphic to the cohomology group of Mg,n.

(26) The Gauss-Bonnet formula holds for Mg,n in all the canonical metrics
defined in (6) above. (See [214].)

(27) The stable rational cohomology ring of Mg,n is a polynomial ring gen-
erated by the Miller-Morita-Mumford κi-classes of dimension 2i as con-
jectured by Mumford. (See [276] [275].)

There are many results on dynamics and properties of elements of Modg,n
acting on Teichmüller spaces and their boundaries which are not mentioned
here. See the papers [188] [32] [166] and the books [334] [335] [124] [403] [3] and
the extensive references there for problems and results related to Teichmüller
spaces and mapping class groups.
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2.5 Properties of outer automorphism groups Out(Fn)

Besides the above two classes of groups, there is a closely related class of
groups, Out(Fn) = Aut(Fn)/Inn(Fn), where Fn is the free group on n gen-
erators, n ≥ 2. A lot of recent work on Out(Fn) has been motivated by
results on arithmetic groups and Modg,n. When n = 2, it is known that
Out(Fn) ∼= GL(2,Z), and Modg = SL(2,Z). This explains the common roots
of these three important classes of groups.

We will also mention some properties of other two classes of groups: Coxeter
groups and hyperbolic groups. Since these three classes of groups are not our
main objects of study, the lists of their properties will not be as exhaustive as
the previous two, due to the limit of knowledge of the author.

The following is a partial list of properties of Out(Fn).

(a) Nonisomorphism with arithmetic groups and mapping class groups.

(1) When n ≥ 3, Out(Fn) is not isomorphic to any arithmetic subgroup of
a linear algebraic group (more generally of a lattice subgroup of a Lie
group with finitely many connected components) or to a mapping class
group Modg,n. (See [195] for references.)

(2) When n ≥ 4, Out(Fn) is not linear. (See [137].)

(b) Combinatorial properties.

(3) Out(Fn) is finitely generated, and explicit generators are known. (See
[412].)

(4) Out(Fn) is not boundedly generated. (See [126, Theorem 3.5].)

(5) Out(Fn) is finitely presented, and explicit relations are known. (See
[413].)

(6) Out(Fn) is not an automatic group but the word problem for it is solv-
able. (See [73].)

(c) Group theoretical properties.

(7) Out(Fn) has only finitely many conjugacy classes of finite subgroups.
(See [412].)

(8) Out(Fn) admits torsion-free subgroups of finite index. (See [272, p. 25-
27].)

(9) Out(Fn) is residually finite. (See [27] [26].)

(10) A strong version of the Tits alternative holds for Out(Fn): every sub-
group of Out(Fn) is either virtually abelian or contains a free subgroup
isomorphic to F2. (See [51].)
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(11) Out(Fn) is irreducible, i.e., it is not a product of two infinite groups up
to finite index. (See [195] for references).

(d) Cohomological properties.

(12) The virtual cohomological dimension of Out(Fn) is equal to 2n−3. (See
[102].)

(13) The cohomology and homology groups of Out(Fn) are finitely generated
in every degree. (See [414].)

(14) The cohomology ring H∗(Out(Fn),Z) is finitely generated, which is an
analogue of the Evens-Venkov theorem for finite groups. (See [357] [213].)

(15) The Euler characteristic of Out(Fn) is known for small n. On the other
hand, there is no simple formula for general n. (See [412, §2.2.6] [245,
§7.2])

(16) The cohomology group of the family Out(Fn) stabilizes as n → +∞:
Hi(Out(Fn)) is independent of n when n ≥ 2i+ 4. (See [175], and [143]
for stability of Hi(Aut(Fn)).)

(17) Out(Fn) is a virtual duality group, but not a virtual Poincaré duality
group. (See [49] [196].) The dualizing module of Out(Fn) is not known
yet as in the cases of arithmetic groups and mapping class groups. There
are several candidates for the analogue of the curve complex and spherical
Tits buildings for Out(Fn). These simplicial complexes have the homo-
topy type of a bouquet of spheres, i.e., the analogue of the Solomon-Tits
theorem for Tits buildings holds [176], but the problem whether their ho-
mology group can realize the dualizing module of Out(Fn) is not clear.
(See also [221] [204]).

(18) There exist cofinite universal spaces of proper actions of Out(Fn) of di-
mension equal to the virtual cohomological dimension of Out(Fn), which
is equal to 2n − 3. (See [102] for the contractibility of outer space and
its equivariant deformation retraction to its spine, and [420] [248] for the
contractibility of fixed point sets of finite subgroups of Out(Fn).)

(d) Rigidity properties.

(19) For any two finite index subgroups Γi ⊂ Out(Fni), i = 1, 2, every iso-
morphism ϕ : Γ1 → Γ2 extends to an isomorphism ϕ : Out(Fn1) →
Out(Fn2

). (See [125] and also [195] for references).

(20) Out(Fn) has Property FA of Serre when n ≥ 3. (See [103].)

(21) Out(Fn) and its finite index subgroups are co-Hopfian. (See [74] [125].)
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(22) Out(Fn) is C∗-simple, i.e., the reduced C∗-algebra C∗r (Out(Fn)) is sim-
ple. (See [72].)

(e) Large scale properties.

(23) Out(Fn) has exponential growth. Since Out(Fn) is not virtually abelian,
the Tits alternative implies that it contains non-abelian free groups and
hence it grows at least exponentially. By the general results [106, p. 181,
Remark 53 (iii)], it grows exponentially.

(24) Out(Fn) and its subgroups of finite index have one end when n ≥ 3. See
[413, Theorem 3.9]. This also follows from the fact that Out(Fn) has
Property FA as for arithmetic groups and Modg,n.

There are many results on the dynamics of elements of Out(Fn) and their
actions on the outer spaces and their boundaries which are not listed here. See
the survey articles [45] [412] [414] and the paper [220].

Comparing with the lists of properties for arithmetic groups and mapping
class groups Modg,n, it is clear that the following conjectures are reasonable:

(1) The rank of Out(Fn) as an abstract group is equal to 1.

(2) The asymptotic dimension of Out(Fn) is finite and hence the integral
Novikov conjectures in various theories hold for Out(Fn).

Since Out(Fn) and its finite index subgroups are not virtual Poincaré du-
ality groups and hence cannot be realized as fundamental groups of closed
aspherical manifolds, the Borel conjecture stating that two closed aspherical
manifolds with isomorphic fundamental groups are homeomorphic is automat-
ically satisfied by them.

2.6 Properties of the outer space Xn and the action of
Out(Fn) on Xn

The analogue of symmetric spaces and Teichmüller spaces for Out(Fn) is the
outer space Xn of marked metric graphs with fundamental group isomorphic
to Fn, which was introduced in [102]. It is an infinite simplicial complex with
some vertices and simplicial faces missing, and Out(Fn) acts on it simplicially
by changing markings of the metric graphs.

Though Out(Fn) had been studied extensively in combinatorial group the-
ory earlier, the introduction of the outer space Xn and the action of Out(Fn)
on it has changed the perspective on Out(Fn). This is an instance which shows
the importance of transformation group theory in understanding properties of
groups.

The following is a partial list of properties of the outer space Xn.
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(a) Orbits of action

(1) Xn is a contractible infinite simplicial complex of dimension 3n−4. When
n = 2, the underlying space of Xn can be identified with the upper-half
plane H2. (See [102].)

(2) Out(Fn) acts simplicially and properly on Xn.

(3) There are only finitely many Out(Fn)-orbits of simplices in Xn. (See
[102].)

(b) Classifying spaces.

(4) For every finite subgroup of Out(Fn), its fixed point set inXn is nonempty
and contractible. Hence Xn is a model of the universal space EOut(Fn)
for proper actions of Out(Fn). (See [420] [248].)

(5) Xn admits an Out(Fn)-equivariant deformation retraction onto its spine,
which is of dimension 2n−3, equal to the virtual cohomological dimension
of Out(Fn), and gives a cofinite model of the universal space EOut(Fn)
for proper actions of Out(Fn) of the smallest possible dimension.

(c) Compactifications.

(6) Xn admits a compactification on which the Out(Fn)-action on Xn ex-
tends continuously. This is an analogue of the Thurston compactification
of the Teichmüller space Tg,n. (See [101] [102, p. 93] [412] [220].)

(7) Xn admits an analogue of the Borel-Serre partial compactification on
which Out(Fn) acts properly and which is (2n−5)-connected at infinity.
This was used to prove that Out(Fn) is a virtual duality group. (See
[49].) In [204], there is also a realization of this partial compactification
of Xn by a truncated subspace Xn(ε) as in the case of the realization
of the partial Borel-Serre compactification of a symmetric space by its
thick part.

Since the outer space Xn is not a manifold, many differential geometric
and functional theoretical results for symmetric spaces and Teichmüller spaces
have no analogues for Xn. So far, there is no natural complete metric on Xn

yet.
There are many other results about Out(Fn) and outer spaces that we have

not mentioned here. See the survey articles [412] [414] [45] and the paper [220].
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2.7 Properties of Coxeter groups

Coxeter groups form a large class of groups that often provide interesting
examples or counter-examples for various facts. They are also test groups
for important properties. Though other groups discussed in this chapter are
also special and serve a similar purpose, many properties of Coxeter groups
can be determined explicitly from their generators and relations, i.e., their
presentations. In this subsection, we list some of the properties of Coxeter
groups related to those discussed earlier for arithmetic groups and Modg,n.

Briefly, a Coxeter matrix is a symmetric matrix (mij), i, j = 1, · · · , n, with
entries in N ∪ {∞} satisfying the conditions: mii = 1, and mij ≥ 2 if i 6= j.
The associated Coxeter group is the group defined by the presentation

〈r1, · · · , rn | (rirj)mij = 1, i, j = 1, · · · , n〉.

In this presentation, when mij = ∞, no relation of the form (rirj)
mij is

imposed. See [105] for precise definitions and detailed discussions. See also
[339] for discussions on related braid groups and Artin groups.

Let W be a Coxeter group. Then it satisfies the following properties.

(a) Combinatorial properties.

(1) W is finitely generated, by definition.

(2) W is finitely presented, by definition.

(3) The word problem is solvable for W . (See [105, Theorem 3.4.2] [71,
Theorem 1.4, p. 441] [105, p. 5, and Theorem 12.3.3].)

(4) The conjugacy problem is solvable for W . (See [246] [18].)

(b) Group theoretical properties.

(5) W is virtually torsion-free. (See [105, Corollary D.1.4].)

(6) W is residually finite. (See [105, Proposition 14.1.11].)

(7) A strong version of the Tits alternative holds for W : any subgroup of
W either contains a subgroup isomorphic to the free group F2 on two
generators or is virtually abelian. (See [105, Proposition 17.2.1].)

(8) W is a CAT(0)-group, i.e., it acts properly, isometrically and co-compactly
on a CAT(0)-space. This procedure provides many CAT(0)-groups. (See
[105, Chap. 12].)

(c) Cohomological properties.

(9) The cohomology and homology groups of W are finitely generated in
every degree.
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(10) The cohomology ringH∗(W,Z) is finitely generated, which is an analogue
of Evens-Venkov theorem for finite groups. (See [357] [213].)

(11) The Euler characteristic of W can be computed explicitly in terms of the
presentation. (See [105, Chapter 16].)

(12) Whether W is a virtual Poincaré duality group or not can be determined
explicitly. (See [105, Theorem 10.9.2].)

(13) There exist cofinite spaces EW for proper actions of W . (See [105, p.
5].)

(d) Large scale properties.

(14) W has either polynomial growth or exponential growth. (See [105,
Proposition 17.2.1].)

(15) The growth series of W is a rational function. (See [105, §17.1].)

(e) Rigidity properties.

(16) For torsion free subgroups of W , the Borel conjecture stating that assem-
bly maps are isomorphisms holds, since they can be realized as discrete
subgroups of GL(n,R) for some n. (See [133].) A more refined version
of the Borel conjecture is the relative Borel conjecture for groups con-
taining torsion elements, and the relative Borel conjecture holds for the
whole group W . (See [355] [323].)

(17) Infinite Coxeter groups do not have Property T. (See [66].)

(18) Every Coxeter group acts amenably on a compact space. (See [111].)

The natural spaces associated with W are CW complexes and buildings
[105]. They give rise to models of the universal spaces EW of proper actions
of W .

2.8 Properties of hyperbolic groups

Another important class of groups consists of hyperbolic groups, which were
introduced by Gromov [155] to characterize combinatorially phenomena (or
properties) of negative curvature, i.e., fundamental groups of compact nega-
tively curved Riemannian manifolds.

Hyperbolic groups are generic groups among all finitely generated groups
in some sense and enjoy many good properties. Arithmetic subgroups of real
Lie groups of rank at least 2 belong to the opposite ends of the spectrum of
finitely generated groups. Another important related class of groups is the
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class of CAT (0)-groups. See [71]. See [68] [69] for a discussion on various
important classes of groups and relations between them.

Assume that Γ is a finitely generated hyperbolic group.

(a) Combinatorial properties.

(1) Γ is finitely generated by assumption.

(2) Any non-elementary hyperbolic group, i.e., not containing a cyclic sub-
group of finite index, is not boundedly generated. (See [126, Proposition
3.6].)

(3) Γ is finitely presented.

(4) The word problem is solvable for Γ.

(5) The conjugacy problem is solvable for Γ. (See [71] for details and refer-
ences.)

(6) The isomorphism problem is solvable for torsion-free hyperbolic groups.
(See [382].)

(b) Group theoretical properties.

(7) A strong version of the Tits alternative holds for Γ: every subgroup
of a hyperbolic group is either virtually cyclic or contains a subgroup
isomorphic to F2. (See [71].)

(8) Γ admits only finitely many conjugacy classes of finite subgroups.

(9) The cohomology and homology groups Hi(Γ,Z), Hi(Γ,Z) are finitely
generated in every degree. Furthermore, Γ is of type FP∞.

(10) If Γ contains a torsion free subgroup of finite index, then the cohomology
ring H∗(Γ,Z) is finitely generated, which is an analogue of Evens-Venkov
theorem for finite groups. (See [357] [213].)

(11) The geometric rank of Γ is equal to 1. (See [77] for the definition of the
geometric rank.) The algebraic rank of Γ as an abstract group is also
equal to 1. (See [22] for the definition of the algebraic rank).

(c) Large scale properties.

(12) The group Γ with a word metric, or, equivalently, its associated Cay-
ley graph, admits a compactification by adding a boundary consisting
of equivalence classes of geodesics, called the Gromov boundary. The
Γ-action on Γ by multiplication extends continuously to the Gromov
compactification. See [222] for an extensive summary on structures of
the boundary and actions of Γ on this boundary.
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(13) The Martin boundary of Γ, which describes the cone of positive harmonic
functions, is known to be equal to the Gromov boundary. The asymptotic
behavior of random walks on Γ is known. (See [8] [421].)

(14) Except for the trivial case of finite and virtually cyclic groups, Γ has
exponential growth. (See [13].)

(15) The growth series of Γ is a rational function. (See [72, Theorem 3.1, p.
459].)

(16) The asymptotic dimension of Γ is finite. (See [368].)

(d) Cohomological properties.

(17) If Γ is virtual torsion-free, then the virtual cohomological dimension of
Γ is finite, and it is equal to the dimension of the Gromov boundary of
Γ.

(18) There exist cofinite models of universal spaces EΓ for proper actions of
Γ. (See [302].)

(19) If Γ is torsion-free, then Γ is a Poincaré duality group of dimension n if
and only if its Gromov boundary has the integral Cech cohomology of
Sn−1, and Γ is a duality group of dimension n if its Gromov boundary
has the integral Cech cohomology of a bouquet of spheres of dimension
n− 1. (See [53].)

(e) Rigidity properties.

(20) The Borel conjecture and the Farrell-Jones conjecture hold for Γ. (See
[25] [24].)

(21) If Γ is torsion-free, then Γ is Hopfian, i.e., every epimorphism ϕ : Γ→ Γ
is an isomorphism. (See [381] [85].)

(22) Γ satisfies the Kadison-Kaplansky conjecture. (See [356].)

(23) Γ satisfies the Baum-Connes conjecture. (See [304].)

(24) Γ is weakly amenable. (See [333] and also [99].)

There are detailed lists of properties of hyperbolic groups and closely re-
lated CAT(0) groups in [269].

The natural spaces associated with hyperbolic groups Γ, which are ana-
logues of symmetric spaces for arithmetic groups and Teichmüller spaces for
mapping class groups, are the Rips complexes (or Vietoris-Rips complexes).
The Rips complexes have played an important role in studying hyperbolic
groups.

In the above discussion, we have emphasized similarities between the five
classes of groups. On the other hand, there is an important difference between
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them: the first two classes of groups (i.e., arithmetic groups and mapping
class groups Modg,n) act properly on manifolds naturally associated with them
while the latter three classes of groups do not have natural proper actions on
manifolds.

The orbit spaces in the previous two cases are some of the most important
manifolds (or rather orbifolds) in mathematics: arithmetic locally symmetric
spaces and moduli spaces of Riemann surfaces (or algebraic curves), and we
can study analysis, topology and geometry of these spaces. The interaction
between geometry, topology and analysis on these spaces makes them very spe-
cial and interesting. We hope that the above lists of properties have conveyed
some similarities, differences and interaction between these spaces as well.

3 How discrete groups and proper transformation groups
arise

In this section, we discuss briefly several sources from which discrete groups
arise, either as discrete subgroups of topological groups or as discrete trans-
formation groups (i.e., groups acting properly discontinuously on topological
spaces).

In some sense, the notion of discrete transformation group is more impor-
tant than that of discrete group. It is the existence of interesting actions which
makes the groups interesting. Group actions also make the spaces interesting.
Of course, group actions can also be studied for their own sake.

3.1 Finitely generated groups, Cayley graphs and Rips
complexes

Probably the most direct way to get discrete groups is to start with a group Γ
and endow it with the discrete topology. In general, this does not lead to an
interesting discrete group since there are no natural topological spaces with
reasonable properties10 on which such a group acts properly. As emphasized
at the beginning of this chapter, group actions are needed to understand the
groups and also to make the groups interesting.

But there are exceptions, and these exceptions often give rise to interesting
examples.

The first important general case is when Γ is a finitely generated group.
Let S ⊂ Γ be a finite set of generators that is symmetric in the sense that
γ ∈ S if and only if γ−1 ∈ S. We assume that S does not contain the

10Some natural properties we expect from these spaces include the fact that they are
CW-complexes, locally compact topological spaces, or manifolds.
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identity element. Associated with S, there is a word metric dS on Γ defined
by dS(x, y) = |x−1y|S , where x, y ∈ Γ, and |x−1y|S is the word length of
the shortest expression of x−1y in terms of the generating set S. Clearly left
multiplication of Γ on Γ leaves this metric dS invariant, and Γ acts isometrically
and properly on (Γ, dS).

On the other hand, (Γ, dS) is a totally disconnected topological space. A
closely related connected space is the Cayley graph G(Γ, S). The vertices of
G(Γ, S) are the elements of Γ, and two elements x, y ∈ Γ are connected by
an edge if and only if x−1y ∈ S. Then G(Γ, S) is an 1-dimensional Γ-CW
complex. Assume that each edge is given length 1. Then G(Γ, S) becomes a
locally compact geodesic length space, and the natural inclusion Γ ↪→ G(Γ, S)
gives an isometric embedding of (Γ, dS) into G(Γ, S). The left multiplication
of Γ on Γ extends to an isometric and proper action on G(Γ, S).

If Γ is a free nonabelian group Fn and S is a minimal symmetric set of
generators, then G(Γ, S) is a tree and hence contractible. Otherwise, G(Γ, S)
is in general non-contractible.

There is a fattened version of the Cayley graph, called the Rips complex,
a finite dimensional Γ-CW complex,11 which gives rise to cofinite models of
EΓ. (See [71, pp. 468-470].) It is constructed as follows. For any positive
integer d, define a simplicial complex Rd(Γ, S) whose k-simplexes consist of
(k + 1)-tuples (γ0, γ1, · · · , γk) of pairwise distinct elements of Γ such that for
all 0 ≤ i ≤ j ≤ k, dS(γi, γj) ≤ d. The 1-skeleton of R1(Γ, S) is equal to the
Cayley graph G(Γ, S). It is clear that the action of Γ on G(Γ, S) extends to an
action on Rd(Γ, S) with a compact quotient.

It is easy to see that when Γ is finitely presented and d � 1, Rd(Γ, S) is
simply connected. In some cases, for example, when Γ is a hyperbolic group in
the sense of Gromov, it was proved in [155] (see [332, Proposition 2.68]) that
Rd(Γ, S) is contractible for d � 1. It was proved in [302] that for any finite
subgroup F ⊂ Γ, the fixed point set (Rd(Γ, S))F is nonempty and contractible.
Therefore, Rd(Γ, S) is a cofinite model of the universal space EΓ for proper
actions of Γ.

From the point of view of large scale geometry, there is no difference be-
tween finitely generated discrete groups and their Cayley graphs. For a sys-
tematic study of large scale geometry (or asymptotic geometry) of infinite
groups, see [156].

11The Rips complex is also called the Vietoris-Rips complex, or the Vietoris complex. It
was first introduced by Vietoris in 1927. After Rips applied the same complex to the study
of hyperbolic groups in the sense of Gromov, it was called the Rips complex and popularized
by Gromov in 1987.
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3.2 Rational numbers and p-adic norms

Let Q be the field of rational numbers. Under the standard embedding Q ↪→ R,
the subspace topology on Q induced from the usual topology of R is not
discrete. With respect to addition, Q is not a discrete topological group.

On the other hand, there is a natural topological group A which is locally
compact and contains Q as a discrete subgroup.

Briefly, for every prime number p, there is a p-adic metric dp on Q. The
completion of Q with respect to dp is called the field of p-adic numbers and
denoted by Qp. Let

A = R×
∏
p

Qp.

As a ring, A is called the ring of adeles. Then under the diagonal embedding,
Q ↪→ A, Q becomes a discrete subgroup.

Similarly, the multiplicative group of nonzero rational numbers Q∗ can be
embedded into a locally compact, totally disconnected group I, called the ring
of ideles, as a discrete subgroup. Both embeddings are important in number
theory. See [146].

The rings A of adeles and I of ideles are also related to groups that we
are discussing here. For example, given a linear semisimple algebraic group G
defined over Q, we can define G(A), a locally compact group. Then G(Q) ⊂
G(A) is a discrete subgroup. For a compact open subgroup C of G(A), the
quotient G(Q)\G(A)/C is a finite union of locally symmetric spaces Γ\X =
Γ\G(R)/K discussed in this chapter.

3.3 Discrete subgroups of topological groups

A natural way to produce discrete groups is to take subgroups Γ of topological
groups G such that the induced subspace topology on Γ is discrete. As already
said, such subgroups are called discrete subgroups.

An important example is Zn ⊂ Rn. Another important and related example
is SL(n,Z) ⊂ SL(n,R). These are examples of arithmetic subgroups of linear
algebraic groups.

The action of Γ on G is proper. More generally, for any compact subgroup
K ⊂ G, the natural left action of Γ on the homogeneous space G/K is also
proper. If G/K admits a left G-invariant metric or distance function, then the
action is also isometric. A particularly important example is when G is a real
Lie group and G/K admits a left G-invariant Riemannian metric. Then Γ\G
and Γ\G/K provide many important examples of manifolds and orbifolds.
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3.4 Fundamental groups and universal covering spaces

Another important source of proper transformation groups comes from fun-
damental groups of topological spaces. Let M be a connected topological
manifold or more generally a connected and locally path connected topologi-
cal space. Assume that its fundamental group π1(M) is nontrivial. Let M̃ be
the universal covering space of M . Then the group Γ = π1(M) acts properly

on M̃ , and the quotient Γ\M̃ is equal to M .
If M is a finite connected graph, then π1(M) is a free group. If M is

a surface of negative Euler characteristic, then π1(M) is an infinite surface
group.

If M is a complex algebraic variety, then π1(M) provides a large natural
class of groups. Though algebraic varieties can be constructed easily, proper-
ties of their fundamental groups are not easy to describe. It is not easy either
to decide whether a group can be realized as such a fundamental group. See
the book [7] and the paper [224] for details and references.

Instead of smooth manifolds, we can also consider orbifolds and their fun-
damental groups in the category of orbifolds.

For algebraic varieties (or rather schemes), we can also take their algebraic
(or étale) fundamental groups. See [303].

The monodromy group of some differential equations with regular singu-
larities also gives rise to interesting discrete subgroups [181] [182] [429] [430]
[108].

Some standard operations on topological spaces such as direct products,
smashed products, connected sums also produce direct products of groups,
free products of groups, and amalgamated products of groups.

3.5 Moduli spaces and Mapping class groups

Let S be a topological space. A natural topological space associated with
S is the space of self-homeomorphisms of S, Homeo(S).12 It is a topological
group and is often not discrete. Its identity component Homeo0(S) is a normal
subgroup, and the quotient Homeo(S)/Homeo0(S) is called the mapping class
group of S and denoted by Mod(S). Since each element of Mod(S) represents
a connected component, it seems natural to give Mod(S) the discrete topology.

In general, it is not easy to find a good space on which Mod(S) acts prop-
erly. But some special cases provide important examples.

(a) Let S = S1 × · · · × S1, a torus of dimension n. Consider the moduli
space of all marked flat Riemannian metrics on S with total volume 1, where
a marking is a choice of a basis of π1(S). Any such marked flat manifold

12Other spaces that can be derived from S are products and quotients of S and various
combinations, for example, the symmetric product.
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corresponds to a marked lattice Λ of Rn of covolume 1, where a marking on a
lattice Λ is a choice of a basis. It can easily be seen that this moduli space can
be identified with the symmetric space SL(n,R)/SO(n). Then Mod(S) corre-
sponds to SL(n,Z) and acts properly on this moduli space, and the quotient
is the moduli space of flat Riemannian metrics on S with total volume 1.

(b) Let Sg be a compact orientable surface of genus g. Assume that g ≥ 2.
Let Tg be the moduli space of marked hyperbolic metrics on Σ, where a marking
is also a choice of a basis of π1(Sg). Then Modg = Mod(Sg) acts properly on
Tg and the quotient is the moduli space Mg of hyperbolic metrics on Sg.

3.6 Outer automorphism groups

In group theory, a natural question is this: starting from a group Γ, how to
produce new groups from it?

There are several natural groups associated with Γ besides taking products.
The first group is the group of automorphisms of Γ, Aut(Γ). Similarly, we can
consider the group of inner automorphisms Inn(Γ) and the group of outer
automorphisms Out(Γ) = Aut(Γ)/Inn(Γ).

For a countable group Γ, Aut(Γ) and Out(Γ) are countable groups and
hence can be reasonably considered as discrete groups.

Let Sg be a compact orientable surface of genus g ≥ 2, and Γ = π1(Sg).
Then by the Dehn-Nielsen theorem, Out(Γ) = Modg, the mapping class group.
(See [188] [127].)

Let Fn be the free group on n generators. Then Out(Fn) was mentioned
before, and the group Aut(Fn) is also important. The automorphism groups
of right-angled Artin groups are closely related to the groups discussed in this
chapter. See [95] and references therein.

If Γ = Zn, then Out(Zn) = Aut(Zn) = GL(n,Z). This point of view
provides one link between the classes of groups discussed in this chapter.13

On the other hand, it is not obvious how to find a space on which Out(Γ)
acts properly besides its Cayley graphs.

There are some special cases. One particularly interesting case is when
Γ = Fn. Then Out(Fn) acts properly on the outer space of marked metric
graphs whose fundamental group is isomorphic to Fn. Another important
case is that of Out(π1(Sg)) acting properly on the Teichmüller space Tg, the
space of marked hyperbolic metrics on the surface Sg.

13Unlike the Dehn-Nielsen theorem for compact surfaces, it we take a connected graph
whose fundamental group is equal to Fn, for example, the rose Rn with n petals, and
apply the construction of mapping class groups in the previous subsection, we will not
get Mod(Rn) ∼= Out(Fn). It seems natural to consider the following generalization. Let
Homtp(Rn) be the group of all homotopy self-equivalences of Rn, and the Homtp0(Rn) its
identify component. Then Homtp(Rn)/Homtp0(Rn) is a group and should be isomorphic
to Out(Fn).
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3.7 Combinatorial group theory

Another natural way to construct a discrete group is to specify generators and
relations between them.

Any group Γ defined by finitely many generators and finitely many relations
is countable and hence giving it the discrete topology is natural.

On the other hand, given a finitely presented group, it cannot be decided
whether the group is finite or not, nor can it be decided whether it is trivial
or not.

Besides Cayley graphs and Rips complexes, it is not easy to construct
spaces on which finitely generated groups act.

For most arithmetic groups, it is difficult to find explicit generators and
relations. This brings up a natural question: how to effectively describe a
group.

Probably the most important class of groups constructed by generators
and relations is the class of Coxeter groups. It is probably a miracle that
many properties can be deduced from the generators and relations of these
groups. Furthermore, there are natural spaces with desirable properties on
which Coxeter groups act. See [105] for details. See also [100].

There are other important groups whose properties are understood due
to their actions on suitable spaces, for example the Thompson group in [81]
and the important right angled Artin groups constructed in [46]. See also the
paper [80] and the book [147] for a more systematic study on how topological
methods, in particular, actions on CW-complexes, are used to study groups.

3.8 Symmetries of spaces and structures on these spaces

Since symmetries in various contexts are described by groups, one reasonable
way to construct groups is to consider symmetry group of spaces. The above
discussion about Aut(Γ) and Out(Γ) fits well this idea.

Different groups arise when different conditions are imposed, i.e., when
different kind of symmetries are considered.

Considering the vector space Rn and all linear transformations on Rn, we
get the general linear group GL(n,R). If we consider only those linear trans-
formations that preserve the lattice Zn, then we get the discrete subgroup
GL(n,Z).

Clearly GL(n,R) acts on Rn. On the other hand, this action is not proper.
To obtain a natural space on which GL(n,R) acts properly, we note that
linear transformations in GL(n,R) map Zn to other lattices of Rn, and for
any lattice Λ in Rn, its stabilizer in GL(n,R) is infinite (in fact, it is an
arithmetic subgroup with respect to a suitable Q-structure on the algebraic
group GL(n,C)) and permutes bases of Λ. Therefore, the space of lattices
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with distinguished bases is a natural space on which GL(n,R) acts properly
and transitively, and GL(n,Z) also acts properly on this space.

If we consider the group of all isometries of Rn, which is generated by trans-
lations and rotations, then it acts properly on Rn. The subgroup stabilizing
the lattice Zn is a discrete subgroup, and it acts properly discontinuously on
Rn.

More generally, given a metric space (X, d), its group of isometries I(X) is
a topological group, and I(X) acts properly on X.

There are two special cases. The first case is when I(X) acts transitively
on X, and X is a homogeneous space. Symmetric spaces considered above are
special examples of homogeneous Riemannian manifolds.

The second case is that of a generic metric space X, where I(X) is a trivial
or at most a discrete group. For example, suppose that M is a manifold and Γ
is a discrete group acting properly discontinuously on it by diffeomorphisms.
Assume that it acts without fixed points. Take a generic metric on the quotient
manifold Γ\M and lift it up to M . Clearly, this metric on M is invariant under
Γ and its isometry group is in general equal to Γ.

It is not easy to find explicit and natural examples of metric spaces for
which I(X) is an infinite discrete group. In this sense, it is an interesting
fact that the isometry group of the Teichmüller space Tg with respect to the
Teichmüller metric or Weil-Petersson metric is equal to the mapping class
group Modg when g ≥ 3.

4 Arithmetic groups

In this section, we give a formal definition of arithmetic groups or rather
arithmetic subgroups, explain concepts related to the properties of arithmetic
groups introduced in §2.1, and indicate briefly how their actions on symmetric
spaces can be used to prove some of these properties.

4.1 Definitions and examples

The most basic example of an arithmetic group is the subgroup Z of integers in
R. However, R is not a semisimple Lie group. Groups we study in this chapter
are natural generalizations of the arithmetic subgroup SL(2,Z) ⊂ SL(2,R).

Recall that a subgroup G of GL(n,C) is called a linear algebraic group if
it is an algebraic variety and if its group operations, i.e., the multiplication
G ×G → G, (x, y) 7→ xy, and the inverse G → G, x 7→ x−1, are morphisms
between algebraic varieties. If the variety G and the group operations are
defined over Q, then G is said to be defined over Q, and G is also called a
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Q-linear algebraic group. The notion of being defined over R can be defined
similarly. We note that linear algebraic groups are always defined over C.

Important examples of linear algebraic groups include SL(n,C), the orthog-
onal group O(Q) associated with a quadratic form Q in n variables,

O(Q) = {g ∈ GL(n,C) | Q(gx, gx) = Q(x, x), x ∈ Cn},

and the symplectic group Sp(2n,C) associated with a skew-symmetric bilinear
form.

The usual special linear group SL(n,C) is defined over Q. If the quadratic
form Q is defined over Q, then O(Q) is defined over Q. The same thing is true
for the symplectic group.

These examples indicate that algebraic groups often arise from linear trans-
formations that preserve a certain algebraic structure, i.e., the symmetry group
of the algebraic structure. This also supports the basic point of transformation
group theory in this chapter. If the algebraic structure is defined over Q, then
the algebraic group that preserves it is defined over Q.

Given a Q-linear algebraic group G, its Q-locus G(Q) is well-defined. Since
it is also defined over R, its real locus G(R) is a real Lie group with finitely
many connected components and is denoted by G, i.e., G = G(R). For every
embedding G ⊂ GL(n,C) defined over Q, we can define G(Z) = G(Q) ∩
GL(n,Z). We emphasize that G(Z) depends on the embedding of G.

Let K ⊂ G be a maximal compact subgroup. Then the homogeneous
space X = G/K is diffeomorphic to Rn, where n = dimX. If G is a reductive
algebraic group, for example, G = GL(n,C), then G = GL(n,R), and X =
GL(n,R)/O(n) with any invariant Riemannian metric is a symmetric space
of nonpositive curvature. If G is a semisimple algebraic group, then X is a
symmetric space of noncompact type.

Clearly any discrete subgroup Γ ⊂ G acts properly on G. However, for
some applications, it is more convenient to consider the proper action of Γ on
X. For example, it is known that X is a model of the universal space EΓ-space
for proper actions of Γ whether G is semisimple or not, but G is not simply
connected and hence not contractible and cannot serve as a universal space
for Γ. See [269] for detail.

Definition 4.1. A subgroup Γ ⊂ G = G(R) is called an arithmetic subgroup
if it is contained in G(Q) and commensurable with G(Z), i.e., the intersection
Γ ∩G(Z) is of finite index in both Γ and G(Z).

Natural examples of arithmetic subgroups include G(Z) and its subgroups
of finite index.

We note that given any linear algebraic group G ⊂ GL(n,C) defined over
Q, for any g ∈ GL(n,Q), gGg−1 gives another Q-linear algebraic group iso-
morphic to G, and their Q- and R-loci are isomorphic. On the other hand,
gGg−1(Z) and G(Z) are not isomorphic in general.
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Remark 4.2. A more general definition of arithmetic subgroups of the real
Lie group G = G(R) is as follows. A subgroup Γ ⊂ G, which is not necessarily
contained in G(Q), is called an arithmetic subgroup if it is commensurable
with G(Z).

The following fact is clear from the definition.

Proposition 4.3. Let G = G(R) be the real locus of a linear algebraic group
G as above. If Γ is an arithmetic subgroup of G according to Definition 4.1 (or
according to the more general one in the above remark), then it is a discrete
subgroup of G.

If G is a reductive Lie group, then Γ\X is usually called an arithmetic
locally symmetric space.

It should be emphasized that for a Lie group G, its arithmetic subgroups
depend on the Q-structure of G, i.e., on the existence of a Q-linear algebraic
group G whose real locus is equal to G. Different Q-structures usually give rise
to non-commensurable arithmetic subgroups. For example, SL(2,R) admits
arithmetic subgroups Γ, for example, SL(2,Z), such that Γ\SL(2,R) is non-
compact, and other arithmetic subgroups Γ′ such that Γ′\SL(2,R) is compact.

Remark 4.4. One good example to illustrate the notion of Q-structure is to
consider lattices Λ of Rn and Q-structures on Rn. Each lattice Λ defines a
Q-structure on Rn, i.e., a Q-linear subspace of dimension n. Let v1, · · · , vn be
a basis of Λ. Then Qv1 + · · ·+ Qvn defines a Q-linear subspace V of Rn such
that V ⊗QR = Rn. Two lattices Λ1 and Λ2 define the same Q-structure if and
only if Λ1 ∩ Λ2 is also a lattice.

Remark 4.5. Another definition of arithmetic groups is as follows. It looks
more general at first sight, but turns out to be the same by using the functor
of restriction of scalars (see [348] for example). Let k be a number field, i.e., a
field that is a finite extension of Q. Let Ok be its ring of integers. Suppose that
G ⊂ GL(n,C) is a linear algebraic group defined over k. Then any subgroup
Γ of G(k) commensurable with G(Ok) is called an arithmetic subgroup of
G. To realize Γ as a discrete subgroup of a real Lie group, we need to use
the product of G(kν), where ν runs over all real and complex embeddings, or
Archimedean places of k. Embedding into any one of the factors will not give
a discrete subgroup in general. The arithmetic subgroups defined in this more
general case are also commensurable with “integral” elements.

Remark 4.6. Given any Lie group H with finitely many connected compo-
nents, it is in general not true that H is the real locus of a Q-linear algebraic
group G. For example, any Lie group that is not linear, i.e., that cannot be
embedded into GL(n,R) will provide such an example. Alternatively, suppose
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that G is a Q-simple linear algebraic group such that its real locus G can be
written as a product G = G1 × G2 such that G1 is noncompact and G2 is
compact and has positive dimension. Take H = G1. Then H is often not the
real locus of a Q-linear algebraic group. We can also take H to be the product
of G with a compact Lie group that is not linear. For such a Lie group H
that differs from the real locus G = G(R) of a linear algebraic group G by
compact Lie groups, arithmetic subgroups are defined as follows. A discrete
subgroup ΓH of H is called an arithmetic subgroup if there exists a Q-linear
algebraic group G and a Lie group homomorphism ϕ : G→ H with compact
kernel and compact cokernel and an arithmetic subgroup ΓG ⊂ G such that
ϕ(ΓG) is commensurable with ΓH . For convenience, we call such a Q-linear
algebraic group G and a Lie group homomorphism ϕ : G → H a Q-structure
on H. In general, different Q-structures on H give rise to non-commensurable
classes of arithmetic groups. For example, the discussions in Remark 4.4 about
Q-structures and lattices in Rn illustrate this point.

A natural question concerns the size of arithmetic subgroups Γ relative to
the ambient Lie groups G. For this purpose, we introduce some definitions.

Definition 4.7. A discrete subgroup Γ of a Lie group G with finitely many
connected components is called a lattice (or a lattice subgroup) if with respect
to any left invariant Haar measure on G, the volume of Γ\G is finite.

If Γ is a lattice of G, then the locally homogeneous space Γ\X with respect
to any invariant metric has finite area, where X = G/K as above.

Definition 4.8. A discrete subgroup or lattice Γ of a Lie group G is called a
cocompact (or uniform) lattice if the quotient Γ\G is compact.

The arithmetic subgroup Z is a cocompact lattice of R. We note that in
order to view C as a linear algebraic group, we identify it with the unipotent
linear algebraic group of upper triangular 2 × 2 matrices with 1s along the
diagonal. Then its real locus is R and Z is an arithmetic subgroup. More
generally, every lattice of Rn is cocompact.

The arithmetic subgroup {±1} of GL(1,R) = R−{0} is not a lattice. The
arithmetic subgroup GL(2,Z) is not a lattice of GL(2,R) either.

The following results hold (see [360]).

Proposition 4.9. If G is a nilpotent Lie group, then every arithmetic subgroup
Γ of G is a uniform lattice.

For the semisimple case, the situation is more complicated and hence more
interesting.
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Proposition 4.10. If G is a semisimple Lie group, then every arithmetic
subgroup Γ of G is a lattice.

This is an important consequence of the reduction theory for arithmetic
groups discussed below. We note that GL(n,Z) is not a lattice of GL(n,R),
but SL(n,Z) is a lattice in SL(n,R).

The basic question of when an arithmetic subgroup of a semisimple Lie
group is a uniform lattice is answered by the following result (see [57] [197] for
references).

Proposition 4.11. Assume that G is a semisimiple linear algebraic group.
Then an arithmetic subgroup Γ of the real locus G = G(R) is a uniform lattice
of G if and only if Γ does not contain any nontrivial unipotent element, which
is equivalent to the condition that the Q-rank of G is equal to 0.

For example, SL(2,Z) contains many unipotent elements such as

(
1 b
0 1

)
,

where b ∈ Z, and hence SL(2,Z) is a non-uniform arithmetic subgroup of
SL(2,R). Similarly, SL(n,Z) is a non-uniform arithmetic subgroup of SL(n,R).
Though it is not easy to see it explicitly, SL(n,R) admits uniform arithmetic
subgroups with respect to different Q-structures on SL(n,R) (or SL(n,C)).

In fact, we have the following result of Borel [58].

Proposition 4.12. Every connected semisimple Lie group G contains uniform
arithmetic subgroups with respect to suitable Q-structures on G.

The basic idea of Proposition 4.12 is to make use of Q-bases of the Lie alge-
bra g of G, i.e., bases such that the structure constants are rational numbers,
to construct a form of g over a totally real number field E of degree strictly
greater than 1 such that under any non-identity embedding of E into R, g is a
compact form of the complex Lie algebra g⊗ C. Then the compactness crite-
rion in Corollary 4.36 below shows that the arithmetic subgroups defined with
respect to the number field E are uniform. See [58, p. 116 and Proposition
3.8] for more detail.

It is perhaps worthwhile to point out that G also admits different Q-
structures which admit non-uniform arithmetic subgroups. They are easier
to see for classical groups such as SL(n,C) and Sp(2n,C) etc. In general,
they can be constructed by the Chevalley basis of the Lie algebra g, or rather
from the arithmetic subgroups of the Chevalley group associated with the Lie
algebra g.

For example, consider the two quadratic forms Q1(x1, · · · , xn) = x2
1 + · · ·+

x2
n−1 − x2

n and Q2(x1, · · · , xn) = x2
1 + · · ·+ x2

n−1 − ax2
n, where a is a positive

integer such that Q2(x1, · · · , xn) = 0 has no nontrivial integral solution. They
define two Q-linear algebraic groups G1 = O(Q1) and G2 = O(Q2). The
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quadratic forms are not isomorphic over Q, but G1(R) ∼= G2(R). Let G =
G1(R) ∼= G2(R). Arithmetic subgroups of G with respect to the Q-structure
from G1 are not uniform discrete subgroups, but arithmetic subgroups of G
with respect to the Q-structure from G2 are uniform discrete subgroups.

4.2 Generalizations of arithmetic groups: non-arithmetic
lattices

Arithmetic subgroups of Lie groups are natural and provide a large class of
lattice subgroups. On the other hand, the class of lattices is strictly larger
than the class of arithmetic subgroups of semisimple Lie groups.

Recall that a Fuchsian group is said to be of the first kind if its limit set
is equal to the whole boundary H2(∞). Otherwise it is said to be of the
second kind. A lattice of SL(2,R) or PSL(2,R) is a Fuchsian group of the
first kind. For a finitely generated Fuchsian group, the converse is also true.
On the other hand, most Fuchsian groups of the first kind are not arithmetic
subgroups for the reason that there are uncountably many Fuchsian groups
of the first kind, but only countably many arithmetic subgroups of SL(2,R).
In some sense, Teichmüller theory was created to study these non-arithmetic
Fuchsian groups. This adds another link between the two classes of groups in
the title of this chapter.

Though there is abundant supply of non-arithmetic Fuchsian groups, it is
not obvious how to construct them explicitly. One important class consists
of Hecke triangle groups. In fact, most of the Hecke triangle groups are not
arithmetic groups.

Recall that for every integer q ≥ 3, there is a Hecke triangle subgroup Γq

of SL(2,R) generated by Sq =

(
1 2 cosπ/q
0 1

)
and T =

(
0 −1
1 0

)
. Except

for q = 3, 4, 6, Γ is not an arithmetic subgroup, i.e., not commensurable with
SL(2,Z). (See for example, [400] [178] [241]). For relations between Hecke
triangle subgroups and Teichmüller theory, see [174].

The isometry group SO(n, 1) of the real hyperbolic space Hn of dimension
n also contains many non-arithmetic lattices [157].

Non-arithmetic lattices only occur in rank 1 semisimple Lie groups. More
precisely, the famous arithmeticity theorem of Margulis (see [278], and [198]
and the references there) says that if G is a semisimple Lie group of rank at
least two and Γ is an irreducible lattice of G, then Γ is an arithmetic subgroup
with respect to a suitable Q-structure on G. Among rank 1 semisimple Lie
groups, the question of arithmeticity of lattices is open only for SU(n, 1) when
n is at least 4. For a survey of some geometric constructions of lattices in
SU(3, 1), see [341], and for some constructions of lattices, in SO(n, 1), for
example by reflections, see [410].
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Lattices of semisimple Lie groups share many properties of arithmetic
groups listed in §2.1. In fact, all the properties listed there hold for them.
The basic reason is that an analogue of the reduction theory for arithmetic
groups holds for lattices of rank 1 semisimple Lie groups [145] and hence the
structure at infinity of associated locally symmetric spaces can be understood.

Remark 4.13. Let G be a semisimple Lie group, X = G/K be the associated
symmetric space with an invariant Riemannian metric, and Γ ⊂ G be a lattice.
Then Γ\X is a locally symmetric space of finite volume. The spectral theory
of the Laplace operator of Γ\X, in particular the question of existence of
square integrable eigenfunctions, depends on whether Γ is arithmetic or not.
This is an instance where whether a lattice Γ is arithmetic or not makes a
big difference. See [178] [241] and the references there for the Phillips-Sarnak
conjecture on existence of square integrable eigenfunctions. Unlike the case of
arithmetic locally symmetric spaces Γ\X whose volumes can be computed in
terms of special values of the Riemann zeta function or L-functions, there is
no such formula for non-arithmetic locally symmetric spaces.

4.3 Generalizations of arithmetic groups: S-arithmetic
subgroups

Another generalization of arithmetic subgroups consists of S-arithmetic sub-
groups. The reason why it is a natural generalization is the following consider-
ation. Take any set of finitely many elements γ1, · · · , γm ∈ GL(n,Q) and let Γ
be the subgroup 〈γ1, · · · , γm〉. If some of the matrix entries of γ1, · · · , γm are
not integral, then Γ is not a discrete subgroup of GL(n,R) in general. (Note
that Γ might be a discrete subgroup of GL(n,R). For example, any hyperbolic
element γ of SL(2,R) generates a discrete cyclic subgroup of SL(2,R), and this
fact is independent of whether γ is integral or not.)

As emphasized in the introduction and Section 3, it is important and fruitful
to realize such natural groups Γ as discrete subgroups of some locally compact
topological groups which are similar to Lie groups in some sense. Let p1, · · · , pk
be the set of primes that occur in the denominators of the matrix entries of
γ1, · · · , γm. Each prime pi gives a completion Qpi of Q. Note that R is the
completion of Q corresponding to ∞. Let S = {∞, p1, · · · , pk} be a finite set
of places of Q. (Note that a place of a field is an equivalence class of valuations
of the field.)

Define the ring ZS of S-integers to consist of rational numbers whose
denominators contain only primes from p1, · · · , pk. It is also denoted by
Z[ 1

p1
, · · · , 1

pk
].

It is clear that Γ = 〈γ1, · · · , γm〉 is contained in GL(n,Z[ 1
p1
, · · · , 1

pk
]). It

is also clear that under the diagonal embedding, GL(n,Z[ 1
p1
, · · · , 1

pk
]) is a
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discrete subgroup of GL(n,R) × GL(n,Qp1) × · · · × GL(n,Qpk). Therefore,
we have realized Γ as a discrete subgroup of the locally compact topological
group GL(n,R)×GL(n,Qp1)× · · · ×GL(n,Qpk).

Given any linear algebraic group G ⊂ GL(n,C) defined over Q, there is a
subgroup G(Z[ 1

p1
, · · · , 1

pk
]) = G(Q)∩GL(n,Z[ 1

p1
, · · · , 1

pk
]) of G(Q) and G(R).

Definition 4.14. A subgroup of G(Q) is called an S-arithmetic subgroup if it
is commensurable with G(Z[ 1

p1
, · · · , 1

pk
]).

Proposition 4.15. Under the diagonal embedding, every S-arithmetic sub-
group of G is a discrete subgroup of the locally compact topological group
G(R)×G(Qp1)× · · · ×G(Qpk).

Remark 4.16. The set S of places of Q is exactly of the right size so that
the product G(R)×G(Qp1)× · · · ×G(Qpk) contains S-arithmetic subgroups
Γ as discrete subgroups. Clearly adding more places will still preserve the
discreteness of the image of the diagonal embedding of Γ. Note that if G is
a semisimple linear algebraic group, then any S-arithmetic subgroup Γ is a
lattice of G(R) ×G(Qp1) × · · · ×G(Qpk) with respect to the Haar measure
on the product, and hence adding more places will produce an ambient group
which is too big in some sense.

Since Z[ 1
p1
, · · · , 1

pk
] is not a finitely generated abelian group, it is not true

that for any Q-linear algebraic group G, its S-arithmetic subgroups, in par-
ticular, G(Z[ 1

p1
, · · · , 1

pk
]), are finitely generated. Many other properties of

arithmetic subgroups listed in §2.1 do not hold for them.
If G is semisimple, then S-arithmetic subgroups are finitely generated and

finitely presented, and all other finiteness properties, duality and many other
properties listed in §2.1 also hold for them.

As emphasized before, the action of arithmetic subgroups on symmetric
spaces has played an important role in understanding arithemetic subgroups.
For S-arithmetic subgroups, symmetric spaces are replaced by products of
symmetric spaces and Bruhat-Tits buildings.

Since the natural models of EΓ of S-arithmetic subgroups Γ are products of
symmetric spaces and Bruhat-Tits buildings and hence are not manifolds, there
are no natural Riemannian manifolds associated with S-arithmetic subgroups
as locally symmetric spaces associated with arithmetic subgroups. There is no
analogue of spectral theory of locally symmetric spaces either, though the no-
tion of automorphic representations still makes sense or one can try to combine
the usual Laplacian operator for symmetric spaces and the discrete Laplacian
for Bruhat-Tits buildings.

Remark 4.17. Qp is an important example of a local compact field arising
from the completion of a global field Q. Another important example of global
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field is the function field of an algebraic curve over a finite field, for example
Fp(t), where Fp is a finite field with p elements, and t is a variable. We can
also define linear algebraic groups G over Fp(t) and S-arithmetic subgroups
for any finite set of places S of the global field Fp(t). Unlike the case of S-
arithmetic subgroups of linear algebraic groups over Q, S-arithmetic subgroups
of G(Fp(t)) usually do not have many finiteness properties. For example, if
the rank of G over Fp(t) is positive, then S-arithmetic subgroups of G(Fp(t))
are not virtually torsion-free and do not admit a cofinite EΓ-spaces. In fact, S-
arithmetic subgroups of G(Fp(t)) are not even FP∞. On the other hand, if the
rank of G over Fp(t) is zero, S-arithmetic subgroups of G(Fp(t)) are virtually
torsion-free and admit cofinite model of EΓ-spaces. Many other properties
listed in §2.1 hold for them too. See [199] for references.

4.4 Generalizations of arithmetic groups: Non-lattice
discrete subgroups and Patterson-Sullivan theory

As discussed before, arithmetic subgroups of linear algebraic groups provide
natural examples of discrete subgroups of Lie groups that are lattices. On
the other hand, there are many examples of discrete subgroups of Lie groups
that are not lattices. For example, the subgroup Γ of SL(2,R) generated by(

1 1
0 1

)
is a discrete subgroup but the volume of Γ\SL(2,R) is not finite (or

rather the area of the hyperbolic surface Γ\H2 is not finite). Recall that a
Fuchsian group is a discrete subgroup of SL(2,R), and it is said to be of the
first kind if its limit set Λ(Γ) in H2(∞) is equal to the whole boundary H2(∞).
Otherwise it is said to be of the second kind. For a finitely generated Fuchsian
group, it is of the first kind if and only if it is a lattice subgroup of SL(2,R).
The Fuchsian group Γ constructed above is an elementary subgroup since its
limit set Λ(Γ) contains only one point. There are also many non-elementary
Fuchsian groups Γ of the second kind, i.e., Γ\H2 has infinite area.

Recall that a Kleinian group is a discrete subgroup that acts isometrically
on the real hyperbolic space H3 of dimension 3, i.e., a discrete subgroup of
PSL(2,C) (or SL(2,C) for convenience). A Kleinian group is called elementary
if its limit set in H3(∞) contains at most 2 points. One interesting way to
obtain a non-elementary Kleinian group is to take a cocompact Fuchsian group
Γ ⊂ SL(2,R). Then the inclusion Γ ⊂ SL(2,C) gives a discrete subgroup of
SL(2,C) that it not a lattice, and hence the hyperbolic space Γ\H3 has infinite
volume. Its limit set in ∂H3 is a circle and hence it is not an elementary group.
On the other hand, Γ\H3 has finite topology.

In general, for the hyperbolic spaces Hn, there is a large class of Kleinian
groups that are geometrically finite, for example through combination theo-
rems (see [283]). For a general simple Lie group of rank 1, we can also define
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geometrically finite discrete subgroups (see [86]). For these geometrically finite
Kleinian groups, all the finiteness properties and cohomological properties for
arithmetic groups listed in §2.1 hold.

There are also important features that are more interesting for discrete
subgroups that are not lattices. One particularly interesting example is the
Patterson-Sullivan theory concerning measures supported on the limit sets of
Kleinian groups Γ.

Briefly, the theory says that for any discrete group Γ acting on Hn, there
is a class of measures on the limit set of Γ in the boundary at infinity of Hn

which is determined by the distribution of points in each Γ-orbit, and these
measures reflect the spectral properties and the ergodic theory of the geodesic
flow of the quotient manifold Γ\Hn. The Hausdorff dimension of the limit
set is related to the bottom of the spectrum of Γ\Hn. The bottom of the
spectrum also has a positive eigenfunction. See the original papers [343] [397],
and the book [330]. There are some generalizations to higher rank Lie groups
and their discrete subgroups. See [5] [358] [259]. At one point, it seemed that
one difficulty with the higher rank case was the lack of abundant examples of
discrete subgroups that are not lattices and hence not too large, but not too
small either. By the recent results in [250] and [87], the Hitchin representations
of surface groups and maximal representations of surface groups for semisimple
Lie groups of Hermitian type give classes of Zariski dense discrete subgroups
of reductive Lie groups of higher rank that are not lattices.

4.5 Symmetric spaces and actions of arithmetic groups

Let G be any Lie group with finitely many connected components, and K ⊂ G
be a maximal compact subgroup. Then the homogeneous space X = G/K is
diffeomorphic to Rn, where n = dimX. Any arithmetic subgroup Γ of G acts
properly discontinuously on X.

If G is a reductive Lie group, for example, G = GL(n,R), then X with
any invariant Riemannian metric is a symmetric space of nonpositive sectional
curvature. If G is semisimple, then X is a symmetric space of noncompact
type.

Recall that a Riemannian manifold M is called a locally symmetric space
if for every point x ∈ M , the locally defined geodesic symmetry that reverses
every geodesic passing though x is a local isometry. A Riemannian manifold
X is called a symmetric space if it is locally symmetric, and for every point
x ∈ X, the local geodesic symmetry extends to a global isometry.

We note that a symmetric space is automatically complete. On the other
hand, locally symmetric spaces are not necessarily complete. For example, if
X is a symmetric space, then for any point p ∈ X, the complement X − {p}
is a locally symmetric space.
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It is known that if X is a symmetric space, then the identity component of
its isometry group Isom0(X), denoted by G, acts transitively on X, hence X
can be identified with G/K, where K is the stabilizer of any point in X. It is
also known that we can always replace G by a reductive Lie group. (Note the
isometry group of Rn is not reductive and this is the only exception among
symmetric spaces.)

It is known that the universal covering of a complete locally symmetric
space is a symmetric space. This implies that any complete locally symmetric
space can be written in the form Γ\G/K, where G is a reductive Lie group, K
is a proper maximal compact subgroup of G, and Γ ⊂ G is a discrete subgroup.

According to the definition, a locally symmetric space should be a smooth
manifold. Since many natural arithmetic groups contain torsion elements, the
quotient spaces Γ\X are often not smooth manifolds, but rather orbifolds. In
view of this, whenever G is reductive, for any discrete subgroup Γ ⊂ G, Γ\X is
usually called a locally symmetric space as well. Of course, the most interesting
class of locally symmetric spaces consists of locally symmetric spaces of finite
volume.

It is also known that locally symmetric spaces are characterized by the con-
dition that the curvature tensor is parallel, i.e., the covariant derivative of the
curvature tensor is zero. This immediately implies that if M is a Riemannian
manifold of constant sectional curvature, then it is a locally symmetric space.
In particular, hyperbolic manifolds are locally symmetric spaces.

It is also known that a simply connected symmetric spaceX can be uniquely
written as a product Rn × X1 × · · · × Xm, where each Xi is irreducible in
the sense whenever Xi is not a product of two Riemannian manifolds, or
equivalently if Xi is written as Gi/Ki, where Gi is the identity component of
the isometry group of Xi, then the associated involutive Lie algebra or the
pair (gi, ki) is irreducible. The factor Rn is called the flat factor of X.

We note that in the above decomposition, the assumption that X is simply
connected is important. For example, for any lattice Λ ⊂ Rn, the quotient
Λ\Rn is a symmetric space. If Λ is irreducible, i.e., there is no isometric
splitting Rn = Rn1 × Rn2 such that Λ = (Λ ∩ Rn1 × {0}) × (Λ ∩ {0} × Rn2),
then Λ\Rn is not isometric to a product, though Rn is reducible.

The Euclidean space Rn is a flat symmetric space. A nonflat irreducible
symmetric space X has either nonpositive sectional curvature or nonnegative
sectional curvature. If the sectional curvature ofX is nonpositive, X is called of
noncompact type, and otherwise it is called of compact type. The two important
examples are the real hyperbolic space Hn and the unit sphere Sn in Rn+1.

A symmetric space is called of compact type if it is simply connected, does
not contain a nontrivial flat factor Rn, and if its irreducible factors are of
compact type. Symmetric spaces of noncompact type can be defined similarly.

A very important notion concerning the geometry of symmetric spaces is
the notion of rank. A flat subspace of dimension r of a symmetric space X is
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an isometric immersion Rr → X. When X is of compact type, the image is
compact, isometric to a flat torus. If X is of noncompact type, then Rr → X
is an isometric embedding. The maximal dimension of flat subspaces of X
is called the rank of X. The real hyperbolic space Hn is of rank 1, and the
symmetric space SL(n,R)/SO(n) is of rank n− 1. The rank is additive in the
sense that the rank of the product X1×X2 is the sum of the ranks of X1 and
X2.

If G = G(R) is the real locus of a linear algebraic group G defined over R,
then the rank of X is equal to the R-rank of G, i.e., the maximal dimension
of R-split tori contained in G. In fact, maximal flats in X are orbits of the
real locus of such maximal split tori in G.

The volume of a ball of radius R in a symmetric space X of noncompact
type grows exponentially in R. In fact, let g = k + p be the Cartan decompo-
sition of the Lie algebra g of G, and a ⊂ p be a maximal abelian subalgebra.
Then we have a root space decomposition of g:

g = g0 +
∑

α∈Σ(g,a)

gα.

Choose a positive chamber of a and hence a set of positive roots Σ+(g, a). Let
ρ be the half sum of positive roots with multiplicity given by dim gα. The
Killing form of g induces an invariant Riemannian metric on the symmetric
space X = G/K. Let x0 be the basepoint of X corresponding to the identity
coset K ⊂ G. Let B(x0, R) be the ball of radius R with center at x0. Then it
is well-known that

lim
R→+∞

log vol(B(x0, R))

R
= 2||ρ||.

More precise information is known [240, Theorem A, and §6]: as R→ +∞,

vol(B(x0, R)) ∼ R
r−1
2 e2||ρ||R,

where r is the rank of X.
For studying topological properties of arithmetic groups, the following re-

sult is important.

Proposition 4.18 (Cartan fixed point theorem). Assume that G is semisim-
ple, and X is a symmetric space of noncompact type. Then for any compact
subgroup C of G, the set of fixed points of C in X is a nonempty totally
geodesic submanifold.

Proof. Since X is a simply connected and nonpositively curved Rieman-
nian manifold, every compact subgroup C of G has at least one fixed point in
X. In fact, for any point x ∈ X, the center of gravity of the orbit C · x exists
and is fixed by C. Since C acts by isometries on X, its set of fixed points is a
totally geodesic submanifold.
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4.6 Fundamental domains and generalizations

Suppose that a discrete group Γ acts properly discontinuously on a topological
space X. An effective way to understand the quotient Γ\X and properties of
Γ is to find good fundamental domains for the Γ-action on X. For example,
suppose that X is a measure space and the Γ-action preserves the measure. It
is naturally expected that the measure descends to a measure on the quotient.
It turns out that it can be defined using a measurable fundamental set (see
the discussion after Proposition 4.20).

Since there have been many different notions of fundamental sets, funda-
mental domains and fundamental regions, we will recall several definitions in
order to clarify their meanings.

Probably the most obvious definition of a fundamental set for a Γ-action
on X is a subset of X that meets every Γ-orbit once. Its existence follows
from the axiom of choice. In general, we impose some additional structures
on fundamental sets so that they can be used to understand the quotient
Γ\X as a topological space or with another more refined structure. Due to the
conventional meaning of fundamental sets in the reduction theory of arithmetic
groups, we reserve the name fundamental set for something else in dealing with
actions of arithmetic groups.

Since X is a topological space and Γ acts by homeomorphisms, a natural
notion is that of fundamental domains. Recall that an open subset of X is
called a fundamental domain of the Γ-action on X if the following conditions
are satisfied:

(1) The Γ-translates of the closure Ω cover X, X = ∪γ∈ΓγΩ,

(2) The Γ-translates of Ω are disjoint, and hence the map Ω → Γ\X is
injective.

(3) The boundary ∂Ω is small in a certain sense, for example, the interior
of Ω is equal to Ω. If X is a measure space, it is natural to impose that
the boundary ∂Ω has measure 0, so that we expect that Ω, Ω and Γ\X
have the same total measure.

Since it is sometimes more convenient to describe the closure Ω, we will
also call Ω, or even some subsets between Ω and Ω, a fundamental domain for
the Γ-action.

Remark 4.19. If X is a smooth manifold, and Ω is the interior of a subman-
ifold with corners, then the conditions in (3) are certainly satisfied. But for
general spaces X and Γ-actions, fundamental domains have more complicated
structures. Usually we require the boundary of Ω to be not too complicated
and small in some sense.
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But in general, the existence of such a fundamental domain inX is not clear.
As shown below, if X is a Riemannian manifold and Γ acts isometrically on
X, then there always exist such fundamental domains (Proposition 4.22).

If X is a measure space and the Γ-action is measure preserving, then it
is more natural to require that fundamental sets be measurable subsets, for
example, Borel sets.

Proposition 4.20. Let X be a second countable topological space, and let µ
be a measure on X which is preserved by the Γ-action. Then there exists a
Borel subset F of X that meets every Γ-orbit exactly once.

When X is taken to be a topological group G, in [390], if a subset F of G
satisfies the conditions:

(1) ΓF = G,

(2) F meets every Γ-orbit exactly once, i.e., for two different elements γ1, γ2 ∈
Γ, γ1F ∩ γ2F = ∅,

(3) F is a Borel set,

then F is called a fundamental set of the subgroup Γ. If G is second countable,
then such fundamental sets were constructed in [390, Lemma 2]. The same
proof works in the above more general situation.

Once we have constructed such a measurable fundamental set F , we can
define a measure on Γ\X as follows. Let π : X → Γ\X be the projection. Then
a subset S ⊂ Γ\X is defined to be measurable if π−1(S) ∩ F is measurable,
and we define

µ(S) = µ(π−1(S) ∩ F ).

It can be shown that this definition of the measure on Γ\X is independent of
the choice of F .

It is often convenient and important to impose some finiteness conditions on
fundamental domains. One such condition is local finiteness: for any compact
subset C ⊂ X, the set {γ ∈ Γ | γΩ ∩C 6= ∅} is finite, i.e., any compact subset
C is covered by only finitely many translates of Ω. In [390], fundamental sets
satisfying this local finiteness are called normal fundamental sets.

The Γ-action on X induces an equivalence relation on X, and it induces an
equivalence relation on the closure Ω. Denote the quotient by Ω/ ∼. Denote
the projection map X −→ Γ\X by π. Its restriction to Ω defines a map
Ω/ ∼ −→ Γ\X, also denoted by π.

Proposition 4.21. Assume that Ω is a locally finite fundamental domain for
the Γ-action on X. Then the map π : Ω/ ∼ −→ Γ\X is a homeomorphism.

See [29, Theorem 9.2.4] for a proof. This proposition says that up to home-
omorphism, Γ\X can be obtained from the closure Ω by identifying suitable
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points on the boundary. This is one instance where a fundamental domain can
be used to understand the quotient Γ\X as a topological space, i.e., by iden-
tifying some points on the boundary of Ω. The best example to illustrate this
result is to consider the action Γ = Z2 on R2 by translation. Then the open
unit square is a fundamental domain, and the quotient Z2\R2 is obtained by
identifying points on the boundary intervals of the unit square to get a torus.
Another good example is to take the standard fundamental domain for the
SL(2,Z)-action on the upper half plane H2. Identifying the sides, we can
show that SL(2,Z)\H2 is homeomorphic to C.

Another important finiteness condition is the global finiteness condition:
{γ ∈ Γ | γΩ ∩ Ω 6= ∅} is finite, i.e, each translate of Ω meets only finitely
many other translates by elements of Γ, and the overlap on the boundary of
these Γ-translates is uniformly bounded. The importance of a fundamental
domain satisfying the global finiteness condition is that its existence implies
Γ is finitely generated (see Proposition 4.39 below, and [390] [29, Theorem
9.2.7] or [348]). This probably explains why it is not obvious that fundamental
domains satisfying global or local finiteness conditions should exist for a general
proper action of a discrete group.

Rough (or coarse) fundamental domains.

It is often difficult to find or construct fundamental domains. A subset R
of X is called a rough (or coarse) fundamental domain for the Γ-action on X
if the following conditions are satisfied:

(1) The Γ-translates of R cover X, i.e., R meets every Γ-orbit.

(2) R meets every Γ-orbit at most finitely many times.

In this case, we usually do not impose conditions on the boundary of R,
though many examples in applications do have small boundaries in some sense,
for example, we often take R to be an open subset, and the interior of the
closure R is equal to R.

It is often easier to construct and describe rough fundamental domains than
fundamental domains, and their structures at infinity are simpler in general.
Picking out a fundamental domain inside a rough fundamental domain might
be complicated. When a symmetric space X = G/K is not a hyperbolic space,
the action of arithmetic subgroups of G on X provides such examples. But for
some applications, rough fundamental domains satisfying suitable conditions
are sufficient.

From the above definitions, it is clear that a fundamental domain is a rough
fundamental domain.

Usually there are some finiteness conditions imposed on rough fundamental
domains as well. The local finiteness is satisfied by many known fundamental
domains. But we often impose the stronger global finiteness condition requiring
that the subset {γ ∈ Γ | γR∩R 6= ∅} is finite, i.e., each translate of R meets
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only finitely many other translates, which implies that the map R → Γ\X is
uniformly finite-to-one. This condition is important in combinatorial proper-
ties of Γ and its existence implies that Γ is finitely generated (See Proposition
4.39).

Rough fundamental domains constructed in the reduction theory of arith-
metic groups acting on symmetric spaces satisfy such a global finiteness con-
dition. The global finiteness condition is usually called the Siegel finiteness
condition, and the rough fundamental domains are usually called fundamental
sets in [57] and in literature on arithmetic groups and automorphic forms. We
should emphasize that this is not the fundamental set defined at the beginning
of this subsection and in other places such as [29] and [390].

Dirichlet fundamental domains.

If X is a proper and complete metric space and Γ acts isometrically and
properly discontinuously, then a convenient way to obtain a fundamental do-
main is to take the Dirichlet fundamental domain.

Suppose that there exist points in X that are not fixed by any nontrivial
element of Γ. For any basepoint x0 ∈ X not fixed by any nontrivial element
of Γ, define

D(x0,Γ) = {x ∈ X | d(x, x0) ≤ d(γx, x0) for all γ ∈ Γ}.

Assume that X is locally compact. Then every Γ-orbit meets D(x0,Γ) at
least once. One way to see this is as follows: in each Γ-orbit, pick the set of
points of minimal distance from x0. Since Γ acts properly discontinuously on
X and X is a proper metric space, such points exist. The union of such points
of minimal distance to x0 is equal to D(x0,Γ).

Replacing the non-strict inequalities by strict inequalities, we obtain a do-
main

D(x0,Γ) = {x ∈ X | d(x, x0) < d(γx, x0) for all γ ∈ Γ}.

This is usually called the Dirichlet domain of Γ with center at x0.
It is natural to guess that the closure of D(x0,Γ) is equal to D(x0,Γ) (or the

interior of D(x0,Γ) is equal to D(x0,Γ)) and is a fundamental domain for the
Γ-action. But this is not true for general metric spaces. The counterexample
in [328] explores the following non-intuitive fact: there exists a metric space
(X, d) such that for two different points p1, p2, the bisector {x ∈ X | d(x, p1) =
d(x, p2)} contains open subsets of X. For example, take X = R2 with the L1-
metric,

d((x, y), (x′, y′)) = |x− x′|+ |y − y′|,

and the points p1 = (−1,−1), p2 = (1, 1). Then the bisector contains both the
second and fourth quadrants of the plane R2.
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Proposition 4.22. Assume that X is a complete Riemannian manifold or
a Euclidean simplicial complex (i.e., its metric restricts to the standard Eu-
clidean metric on each simplex) and is complete. Then the following results
hold:

(1) The bisector of every pair of different points is a subset of X of codimen-
sion 1.

(2) The closure of D(x0,Γ) is equal to D(x0,Γ).

(3) D(x0,Γ) is a locally finite fundamental domain for the Γ-action on X.

In particular, the Γ-action admits a fundamental domain in the sense defined
above.

(1) can be proved by contradiction and the fact that any minimizing geodesic
segment connecting two points is smooth, and (2) follows from (1). (3) follows
from the proof of a similar result in [29].

Under the above condition, D(x0,Γ) is called the Dirichlet fundamental
domain of the Γ-action with center x0. Sometimes, we also call its closure
D(x0,Γ) a Dirichlet fundamental domain for the Γ-action as well.

Recall that the property that a simply connected complete Riemannian
manifold X has no conjugate point means that every pair of distinct points
of X are joined by a unique geodesic segment up to parametrization. This
condition is satisfied if X is a Hadamard manifold, i.e., a simply connected
complete Riemannian manifold of nonpositive sectional curvature. If X is
a simply connected complete Riemannian manifold without conjugate points,
more structure of the boundary of the Dirichlet fundamental domain is known.
See [117].

4.7 Fundamental domains for Fuchsian groups and
applications to compactification

Though the Dirichlet fundamental domain for any Γ-action on X is canonically
defined once the center x0 is fixed, it is usually useful only for special spaces
X. For example, when X is the Euclidean space Rn, Dirichlet introduced this
notion for lattices Λ ⊂ Rn in 1850. It is closely related to the more general
Voronoi cells. Later Poincaré generalized the notion of Dirichlet fundamental
domains to discrete isometric actions on hyperbolic spaces.

When X is the hyperbolic plane H2 and Γ is finitely generated, every
Dirichlet fundamental domain D(x0,Γ) is bounded by finitely many geodesics.
In particular, D(x0,Γ) satisfies both the local and global finiteness properties
mentioned in the previous subsection.

Dirichlet fundamental domains have played an important role in the study
of Fuchsian groups Γ. For example, assume that Γ is a lattice. Then it is known
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that any Dirichlet fundamental domain D(x0,Γ) is bounded by finitely many
geodesic sides and hence Γ is finitely generated [391]. The Poincaré upper half
plane H2 admits a natural compactification by adding the boundary circle
H2(∞) = R ∪ {∞}. The limit points of D(x0,Γ) in the boundary circle are
called cusp points of D(x0,Γ). If Γ is a non-uniform lattice, or a Fuchsian
group of the first kind, then D(x0,Γ) has finitely many cusp points at infinity
and they correspond to parabolic subgroups of Γ defined below (or Γ-rational
parabolic subgroups of SL(2,R)). (Note that the cusps of the quotient Γ\H2

correspond to Γ-conjugacy classes of parabolic subgroups of Γ, but some cusp
points of D(x0,Γ) may be projected to the same cusp of Γ\H2.)

We note that the Γ-action on H2 extends to the compactification H2 ∪
H2(∞). We call a point in H2(∞) a Γ-rational boundary (or cusp) point if it
is Γ-equivalent to a cusp of D(x0,Γ).

Define a subgroup of Γ to be a parabolic subgroup if it is the stabilizer of
a Γ-cusp point. Then it can be shown that each parabolic subgroup consists
of only parabolic elements, and every parabolic element is contained in some
parabolic subgroup of Γ. Since D(x0,Γ) has only finitely many cusp points, it
follows that Γ contains finitely many conjugacy classes of parabolic subgroups,
and parabolic elements of Γ are conjugate to elements that fix some cusps of
D(x0,Γ).

The above notion of parabolic subgroups of Γ is from the theory of Fuchsian
groups. According to the general definition from the theory of Lie groups and
algebraic groups, a closed subgroup P of SL(2,R) is called a parabolic subgroup
if and only if the quotient P\SL(2,R) is compact. It can be proved that a
subgroup of SL(2,R) is a parabolic subgroup if and only if it fixes a boundary
point in H2(∞). We call a parabolic subgroup of SL(2,R) Γ-rational if it
fixes a Γ-cusp point. Then the following result holds and clarifies the relation
between two definitions of parabolic subgroups.

Proposition 4.23. For any Γ-rational parabolic subgroup P of SL(2,R), the
intersection P ∩ Γ is a parabolic subgroup of Γ, and every parabolic subgroup
of Γ is of this form.

Another characterizaion of Γ-parabolic subgroups is the following one.

Proposition 4.24. A parabolic subgroup P of SL(2,R) is Γ-rational if and
only if the intersection P∩Γ is a lattice of the unipotent radical NP of P , which
is equivalent in this case to the condition that P ∩ Γ is an infinite subgroup.

When P is the parabolic subgroup consisting of upper triangular matrices,
then NP is the subgroup consisting of upper triangular matrices with 1s on
the diagonal. One consequence of this result is the following.

Proposition 4.25. There is a one-to-one correspondence between the set of
conjugacy classes of Γ-rational parabolic subgroups of SL(2,R) (or equivalently
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the set of conjugacy classes of parabolic subgroups of Γ) and the set of ends of
Γ\H2.

These results on relations between Γ-parabolic subgroups and Γ-cusp points
can be used to construct compactifications of Γ\H2. For example, by adding all
Γ-cusps to H2, we get an enlarged space that lies between H2 and H2∪H2(∞).
Naturally, it has the subspace topology induced from the compactification of
H2. By strengthening this induced subset topology so that for every cusp
point, it has a neighborhood basis, each of which is stabilized by the corre-

sponding parabolic subgroup of Γ, we obtain a partial compactification H2
S

.
The strengthened topology is called the Satake topology.

It is perhaps helpful to point out that the induced subspace topology does
not contain any neighborhood basis of a cusp point that is stable under the
stabilizer of the cusp. In fact, if we start with any neighborhood U of the cusp
in the compactification H2 ∪H2(∞), then for γ in the stabilizer of the cusp,
the translates γU cover the compactification H2 ∪H2(∞), and the translates
γU ∩H2 cover the whole space H2.

Using the Satake topology, it can be proved that Γ acts continuously on

the partial compactification H2
S

with a compact, Hausdorff quotient Γ\H2
S

.

The compactification Γ\H2
S

is obtained from Γ\H2 by adding one point
to every end (or cusp neighborhood). This is the simplest example of Satake
compactifications of locally symmetric spaces and also of the Baily-Borel com-
pactification of Hermitian locally symmetric spaces. See §4.17 for the general
case.

The same procedure can be applied to construct the Borel-Serre compact-

ification of Γ\H2. In the partial compactification H2
S

, blow up every cusp
point to R, which is equal to NP , where P is the corresponding Γ-rational
parabolic subgroup and NP is the unipotent radical of P . The resulting space

is the Borel-Serre partial compactification H2
BS

. It is a real analytic manifold
with boundary and Γ acts on it real analytically and properly. The quotient

Γ\H2
BS

is a compact manifold with boundary. It is mapped surjectively to

the Satake compactification Γ\H2
S

, and the inverse image of every boundary

point of Γ\H2
S

is equal to a circle. See §4.18 for the general case.

The difference between these two compactifications is that Γ\H2
S

admits a

complex structure as a compact Riemann surface, while Γ\H2
BS

is a manifold

with boundary. Furthermore, the inclusion Γ\H2 → Γ\H2
S

is not a homo-
topy equivalence since the loops around the cusps are homotopically trivial in

Γ\H2
S

, but the inclusion Γ\H2 → Γ\H2
BS

is a homotopy equivalence.
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When Γ is torsion-free, Γ\H2
BS

is a finite model of BΓ-space. If Γ con-

tains torsion elements, then the Borel-Serre partial compactification H2
BS

is
a cofinite model of EΓ.

For other spaces, for example, symmetric spaces X = G/K that are not
real hyperbolic spaces and of higher rank, there is no such nice structure of
the Dirichlet fundamental domains as above. For example, D(x0,Γ) is not
bounded by totally geodesic hypersurfaces. If Γ\X is noncompact, the notion
of cusps is not defined to satisfy the above simple and clean relation with
Q-parabolic subgroups of G, and the structure near infinity of D(x0,Γ) is
often complicated and not adapted to parabolic subgroups of G. Therefore,
Dirichlet fundamental domains are not suitable for understanding analysis,
geometry and compactifications of Γ\X.

In some sense, the reduction theory of arithmetic subgroups is about finding
suitable fundamental domains or rough fundamental domains for actions of
arithmetic subgroups Γ on symmetric spaces that reflect structures of Γ and G
as in the case of Dirichlet fundamental domains for actions of Fuchsian groups
on H2. It turns out that fundamental sets (or rough fundamental domains)
defined in terms of Siegel sets of parabolic subgroups serve such purposes well
and hence are used in the reduction theory of arithmetic subgroups [57].

One major application of the reduction theory of arithmetic subgroups is

to construct compactifications of Γ\X similar to Γ\H2
S

and Γ\H2
BS

. For
example, they allow us to pick out “rational boundary points”.

In the above discussion, we started with a Fuchsian group and obtained
Dirichlet fundamental domains and used them to study the quotient space
Γ\H2 and parabolic subgroups of Γ. Dirichlet fundamental domains are also
useful in describing combinatorial properties of Fuchsian groups Γ. In fact,
there are elements of Γ that pair geodesic sides of D(x0,Γ). These elements
generate Γ and relations between them can also be read off from their actions
on the sides of D(x0,Γ).

An important feature of Fuchsian groups is that we can reverse this process
and construct Fuchsian groups from suitable hyperbolic polygons by giving
generators and relations. This is called the Poincaré polygon theorem. There
is also a higher dimensional generalization which replaces polygons by poly-
hedra. Probably the best examples are given by the Hecke triangle groups
[400]. There is also the Klein combination theorem for Klein groups. The
Klein combination theorem also works for groups acting on hyperbolic spaces
in higher dimensions. See [29, Theorem 9.8.4] and [283].

It is perhaps worthwhile to point out that there is no analogue of the
the Poincaré polyhedron theorem or the Klein combination theorem for other
symmetric spaces.
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4.8 Minkowski reduction theory for SL(n,Z)

As discussed in the previous subsection, good fundamental domains for Fuch-
sian groups have played an important role in understanding the structure of
Riemann surfaces and their compactifications, and also algebraic structures of
Fuchsian groups.

For arithmetic groups, the original motivation for reduction theory was
slightly different. It was started by Lagrange and Gauss.

Note that the Poincaré upper half plane H2 = SL(2,R)/SO(2) can be iden-
tified with the space of binary positive definite quadratic forms of determinant
1, since SL(2,R) also acts transitively on the latter, with the stabilizer of
the quadratic form x2 + y2 equal to SO(2). The quotient SL(2,Z)\H2 can
be identified with the equivalence classes of such quadratic forms, where two
quadratic forms Q1(x, y), Q2(x, y) are defined to be equivalent if they become
equal under a change of variables by an element of SL(2,Z). Consequently, two
equivalent quadratic forms represent the same set of values over the integers.

An important problem is to find “good” representatives in each equivalence
class, and the notion of reduced quadratic form was introduced by Lagrange and
Gauss. These representatives correspond to points of the usual fundamental
domain {z ∈ H2 | |z| ≥ 1, |Re(z)| ≤ 1

2} for the SL(2,Z)-action on H2.
After that, the problem of finding fundamental domains (or rough funda-

mental domains) for arithmetic subgroups was called reduction theory.
For n ≥ 3, a reduction theory for Γ = SL(n,Z) acting on SL(n,R)/SO(n)

was developed by Minkowski. Since this motivates directly a generalization
for the action of the mapping class group Modg on the Teichmüller space Tg
which we discuss below in §5.11, we briefly recall its definition. For the original
papers of Minkowski, see [305]. See also the books [392] [402] for more detail.

For various purposes, it will be easier to consider the reduction theory
for the action of SL(n,Z) on GL+(n,R)/SO(n), which can be identified with
the space of positive quadratic forms in n-variables, denoted by Pn. The
subspace SL(n,R)/SO(n) is denoted by SPn. For each positive quadratic
form Q(x1, · · · , xn) =

∑n
i,j=1 qijxixj , denote its associated symmetric matrix

(yij) by Q as well.
Let e1, · · · , en be the standard basis of Zn as above. Define the Minkowski

reduction domain by

DMn ={Q ∈ Pn | qii ≤ Q(v), for all v ∈ Zn − {0}
such that e1, · · · , ei−1, v can be extended to a basis of Zn}.

(1)

For each v ∈ Zn, the condition qii ≤ Q(v) gives a linear equality on the
coefficient matrix (qij). Therefore, DMn is a convex subset of Pn or rather of the
linear space Sn of symmetric n× n-matrices. In particular, it is topologically
a cell. This is one place where the linear and convexity structures of Pn are
crucial, and hence Pn instead of the subspace SL(n,R)/SO(n) is used.
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Proposition 4.26. The Minkowski reduction domain DMn is a fundamen-
tal domain for the action of SL(n,Z) on Pn = GL+(n,R)/SO(n): for γ ∈
SL(n,Z), the translates γDMn cover the whole space Pn, and without overlap
in the interior.

To prove this, we need to show that for any Q ∈ Pn, there exists A ∈
SL(n,Z) such that the symmetric matrix

Q[A] = AtQA

is contained in DMn . The idea for finding this matrix A is to find its column
vectors v1, · · · , vn one by one.

For this purpose, we introduced the notion of reduced basis of Zn. An
ordered basis v1, · · · , vn of Zn is called a reduced basis with respect to the
positive quadratic form Q if the following conditions are satisfied:

(1) The first vector v1 is a nonzero vector v in Zn which minimizes the values
Q(v):

Q(v1) = min
v∈Zn−{0}

Q(v).

Clearly such a vector v1 has co-prime coordinates and can be extended
to a basis of Zn.

(2) For each i ≥ 2, vi is a vector among all vector v such that v1, · · · , vi−1, v
can be extended to a basis of Zn, and Q(vi) takes the minimum value:

Q(vi) = min
v∈Zn, v1,··· ,vi−1,v forms part of a basis of Zn

Q(v).

It is clear that for any positive definite quadratic form Q, there exists an
associated reduced basis of Zn. On the other hand, there may exist more than
one reduced basis.

Given the above definition, a quadratic form Q ∈ Pn is Minkowski reduced,
i.e., Q ∈ DMn , if and only if the standard basis e1, · · · , en of Zn is a reduced
basis.

For any Q ∈ Pn, to construct a matrix A ∈ SL(n,Z) such that Q[A] ∈ DMn ,
we take a reduced basis v1, · · · , vn of Zn with respect to Q. Let A be the matrix
whose column vectors are v1, · · · , vn. By reversing the sign of one vector if
necessary, we can see that A ∈ SL(n,Z). Then the standard basis e1, · · · , en
forms a reduced basis of Q[A]. Therefore, Q[A] is Minkowski reduced and
contained in DMn

In order to generalize this Minkowski reduction to the action of Modg,n on
Tg, we formulate it in terms of lattices Λ ⊂ Rn, or equivalently tori Rn/Λ.
Given a marked lattice Λ ⊂ Rn with an ordered basis v1, · · · , vn, let A =
(v1, · · · , vn) be the matrix formed from the basis. Then AtA is a positive
definite quadratic form. Conversely, any positive definite quadratic form Q
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can be written as AtA, where A is uniquely determined up to multiplication by
elements of O(n). If we require detA = 1, then A is uniquely determined up to
multiplication by elements in SO(n). Let Λ = AZn, v1 = Ae1, · · · , vn = Aen.
Then Λ together with v1, · · · , vn is a marked lattice of Rn. In terms of the
torus (or flat manifold) Rn/Λ, a marked lattice corresponds to a flat manifold
M = Rn/Λ together with the choice of an ordered minimal set of generators
of the fundamental group π1(M).

Given any lattice Λ ⊂ Rn endowed with the standard norm defined by
the quadratic form Q0(x1, · · · , xn) =

∑n
i=1 x

2
i , an ordered basis v1, · · · , vn is

called a reduced basis if the following conditions are satisfied:

(1) v1 is of shortest length among all nonzero vectors of Λ. Clearly, such
a vector v1 is not a nontrivial integral multiple of any vector of Λ and
hence can be extended to a basis of Λ.

(2) For every i ≥ 2, vi is of shortest norm among all vectors v ∈ Λ such that
v1, · · · , vi−1, v can be extended to a basis of Λ.

We note that in defining a reduced basis of Zn with respect to a positive
definite quadratic form Q, we use the standard lattice Zn and a general positive
quadratic form Q. On the other hand, for a reduced basis of a lattice Λ, we use
the standard quadratic form Q0. Of course, the two reduced bases correspond
to each other under the identification between positive definite quadratic forms
and marked lattices defined above.

Naturally, a marked lattice (Λ; v1, · · · , vn) is called Minkowski reduced if
the ordered basis v1, · · · , vn is a reduced basis of Λ.

Summarizing the above discussion, we have the following results:

Proposition 4.27. The Minkowski fundamental domain DMn for the action
of SL(n,Z) on Pn = GL+(n,R)/SO(n) is characterized by the following equiv-
alent conditions:

(1) A positive quadratic form Q ∈ Pn is contained in DMn if and only if the
standard basis e1, · · · , en is a Minkowski reduced basis of Zn with respect
to Q.

(2) A marked lattice (Λ; v1, · · · , vn) is contained in DMn if and only if the
basis v1, · · · , vn is Minkowski reduced.

Proof. (1) follows from the definition of DMn , and (2) follows from the fact
that if (Λ; v1, · · · , vn) is a marked basis, then the standard basis e1, · · · , en of
Zn is reduced with respect to the positive definite quadratic form Q = AtA,
where A = (v1, · · · , vn), if and only if v1, · · · , vn forms a reduced basis.

Proposition 4.26 only gives the most basic properties of the Minkowski fun-
damental domain. By definition, the Minkowski reduction domain is defined
by infinitely many inequalities: for every i, qii ≥ Q(v), where v is any vector
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v ∈ Zn − {0} such that e1, · · · , ei−1, v can be extended to a basis of Zn. Of
course, there are in general infinitely many such vectors v.

A natural question is whether finitely many inequalities are sufficient. The
positive answer is an important result of Minkowski. We list this and other
important results in the following proposition.

Proposition 4.28. The Minkowski reduction domain DMn is defined by finitely
many inequalities and is hence a convex polyhedral cone with finitely many
faces. The tiling of the space Pn of positive definite quadratic forms by the
translates γDMn , γ ∈ SL(n,Z), is locally finite and each translate meets only
finitely many others; hence DMn is a fundamental domain satisfying both the
locally finite and globally finite conditions. The intersection of DMn with the
subspace SPn of Pn consisting of quadratic forms of determinant 1 is a cell,
and the translates γ(DMn ∩ SPn), γ ∈ SL(n,Z), give an equivariant CW -
complex structure of SL(n,R)/SO(n) = SPn with respect to SL(n,Z).

In order to prove this, the fundamental theorems of Minkowski in the ge-
ometry of numbers are needed. See [305], [392], [402] for details.

The (first) fundamental theorem of geometry of numbers is the following
(see [392, p. 12] [158] [305]):

Proposition 4.29. If a bounded convex domain K of Rn that contains the
origin and is symmetric with respect to the origin has volume vol(K) > 2n,
then K contains at least one zero point of Zn.

An immediate corollary is the following:

Proposition 4.30. Let vol(B1) be the volume of the unit ball in Rn with
respect to the standard metric. Then for any lattice Λ of Rn of covolume 1,
there exists a nonzero vector v ∈ Λ such that

||v||n ≤ 2n

vol(B1)
.

In particular, for any reduced basis v1, · · · , vn of Λ,

||v1||n ≤
2n

vol(B1)
.

The question of whether the norms of vectors in a reduced basis can be
uniformly bounded is natural and it has also a positive answer [392, First
Finiteness Theorem, p. 99]:

Proposition 4.31. For any lattice Λ ⊂ Rn of covolume 1 and any reduced
basis v1, · · · , vn, the norms of the basis vectors satisfy the bounds:

2n

vol(B1)

1

n!
≤ ||v1|| · · · ||vn|| ≤

2n

vol(B1)
(
3

2
)n(n−1)/2.
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In some sense, this result says that a reduced basis tends to be as orthogonal
as possible. In Propositions 4.30 and 4.31, we could have stated similar results
for general lattices of Rn instead of covolume 1. The point of these results is
that the bounds on norms of the vectors in a reduced basis are independent of
lattices but only depend on the co-volumes of the lattices.

These results seemed to motivate the existence of pants decompositions of
hyperbolic surfaces such that lengths of geodesics in the pants decompositions
are bounded by the Bers constants in Proposition 5.25 below.

Remark 4.32. The second finiteness theorem of Minkowski in [392, p. 127]
refers to the fact that the Minkowski reduction domain is defined by finitely
many inequalities, which was mentioned in Proposition 4.28. Determining
these inequalities explicitly is very difficult and has been only carried out for
small values of n. See [369] [370] for summaries and references.

4.9 Reduction theory for general arithmetic groups

In the Minkowski reduction theory, an important role was played by the
identification of the space SL(n,R)/SO(n) with the space of positive definite
quadratic forms of determinant 1, and also with the space of marked lattices
of Rn of covolume 1. Such a moduli interpretation of points of the symmetric
space SL(n,R)/SO(n) and the locally symmetric space SL(n,Z)\SL(n,R)/SO(n)
is important in describing points in desired fundamental domains.

For a general symmetric space X = G/K and an arithmetic group Γ acting
on it, there is no such moduli interpretation and hence there is no such notion
of reduced points. As pointed out before, the Dirichlet fundamental domains
are not suitable for various questions about Γ\X.

We recall some general statements on the reduction theory for arithmetic
groups as developed by Siegel, Borel & Harish-Chandra, and Borel [57].

The key notion is that of Langlands decomposition of Q-parabolic sub-
groups and the induced horospherical decomposition of symmetric spaces.

Fix a basepoint x0 = K ∈ X = G/K. For every Q-parabolic subgroup
P of G, its real locus P = P(R) admits a Q-Langlands decomposition with
respect to x0,

P = NPAPMP
∼= NP ×AP ×MP,

where NP is the unipotent radical of P , AP is the Q-split component of P ,
MP is a reductive group, and APMP is the Levi factor of P invariant under
the Cartan involution associated with K. Though NP is canonically defined,
AP and MP depend on the choice of the base point x0.

Define the boundary symmetric space XP associated with P by

XP = MP/(MP ∩K).
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Then the Langlands decomposition of P induces the horospherical decomposi-
tion of X with respect to P :

X ∼= NP ×AP ×XP. (2)

WhenX = SL(2,R)/SO(2) ∼= H2 and P is the subgroup of upper triangular
matrices, the horospherical decomposition corresponds to the x, y coordinates
of the upper half plane H2.

Let nP be the Lie algebra of NP, and aP the Lie algebra of AP. The set of
roots of the action of aP on nP is denoted by Φ(AP, P ). Then the subset

a+
P = {H ∈ aP | α(H) > 0, α ∈ Φ(AP, P )}

is called the positive chamber of aP determined by P . Similarly,

A+
P = exp a+

P

is called the positive chamber of AP. For any t > 0, define

AP,t = {a ∈ AP | eα(log a) > t}. (3)

This is a shift of the positive chamber A+
P.

Definition 4.33. For any bounded subsets U ⊂ NP and V ⊂ XP, the subset
of X corresponding to U ×AP,t × V under the horopsherical decomposition in
Equation (2) is called a Siegel set associated with P and denoted by SP,t.

The basic result in the reduction theory of arithmetic groups is the follow-
ing. See [57] for a proof and more details.

Proposition 4.34. Let G be a linear semisimple algebraic group defined over
Q, and Γ an arithmetic subgroup of G(Q). Then there are only finitely many Γ-
conjugacy classes of Q-parabolic subgroups of G. Let P1, · · · ,Pk be represen-
tatives of these conjugacy classes. Then there are Siegel sets SP1,t1 , · · · ,SPk,tk

such that their union S = SP1,t1 ∪ · · · ∪ SPk,tk is a fundamental set for Γ in
the following sense:

(1) ∪γ∈ΓΓS = X.

(2) For any g ∈ G(Q), the set {γ ∈ Γ | γS∩gS 6= ∅} is finite.

The finiteness condition in (2) is called the Siegel finiteness condition and
is a key result in the reduction theory for arithmetic groups.

This basic result has many consequences and applications, which will be ex-
plained in later sections. We point out some immediate ones in this subsection.
The first is the following.

Corollary 4.35. Under the above assumption, the locally symmetric space
Γ\X has finite volume.
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The basic reason is that a Siegel set SP,t is a product U × AP,t × V , and
the invariant metric of X has a simple expression in horospherical coordinates.
(See [59] or [60] for example.) Hence it it can easily be shown that SP,t has
finite volume.

For example, when Γ = SL(2,Z) and P is the subgroup of upper triangular
matrices in SL(2,R), then P is a Q-parabolic subgroup of SL(2,C), and a
Siegel set associated with P is a vertical strip {x+ iy | a1 ≤ x ≤ a2, y > b} for
some a1, a2 ∈ R, b > 0. Clearly such a region has finite hyperbolic area.

Since any Siegel set corresponding to the improper Q-parabolic subgroup G
is bounded and the existence of proper Q-parabolic subgroups of G is equiva-
lent to the positivity of the Q-rank of G, we obtain the following consequence,
which was a conjecture of Godement and proved independently by Borel &
Harish-Chandra, and Mostow & Tamagama.

Corollary 4.36. The locally symmetric space Γ\X is compact if and only if
the Q-rank of Γ is equal to 0, which is also equivalent to the fact that Γ does
not contain any nontrivial unipotent element.

Recall that the Q-Tits building ∆Q(G) of G is an infinite simplicial com-
plex whose simplices are parametrized by proper Q-parabolic subgroups of G
satisfying the following conditions:

(1) For every Q-parabolic subgroup P, denote its corresponding simplex by
σP. Then σP is of dimension 0 if and only if P is a maximal Q-parabolic
subgroup of G.

(2) For every pair of Q-parabolic subgroups P1,P2, σP1 is a face of σP2 if
and only if P1 contains P2. In particular, the vertices of any simplex σP
correspond to maximal Q-parabolic subgroups that contain P, and the
intersection of these maximal Q-parabolic subgroups is equal to P.

Since G(Q) and hence Γ act on the set of Q-parabolic subgroups by conjuga-
tion, they also act on the Tits building ∆Q(G) by simplicial homeomorphisms.
Another corollary of the reduction theory is the following.

Corollary 4.37. The quotient Γ\∆Q(G) is a finite simplicial complex.

The theory of linear algebraic groups implies that ∆Q(G) satisfies the ax-
ioms for Tits buildings. In particular, any two simplices are contained in an
apartment, which is a finite simplicial complex and whose underlying space is
the unit sphere in aP for a minimal Q-parabolic subgroup P of G. It follows
that the Tits building ∆Q(G) is connected if and only if the Q-rank is at least
2. Combining this with the reduction theory in Proposition 4.34 (or using the
Borel-Serre compactification of Γ\X defined later), we can prove the following
result [204].
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Proposition 4.38. The locally symmetric space Γ\X is connected at infinity,
i.e., has one end, if and only if the Q-rank of Γ\X is at least 2. When the
Q-rank is equal to 1, the ends of Γ\X are in one-to-one correspondence with
the Γ-conjugacy classes of Q-parabolic subgroups.

4.10 Precise reduction theory for arithmetic groups

Though the reduction theory in Proposition 4.34 suffices for many applica-
tions, it is an interesting and important problem to get fundamental domains,
instead of rough fundamental domains (or fundamental sets in the sense of
[57]), that can be conveniently described, for example, in terms of horopsheri-
cal decompositions with respect to Q-parabolic subgroups or as special subsets
of Siegel sets.

Another natural question is whether there is a generalization of Minkowski
reduction for general arithmetic subgroups.

In this subsection, we summarize cases of arithmetic groups for which more
precise descriptions of and results on fundamental sets or fundamental domains
are available and discuss approaches to obtain them.

Linear symmetric spaces

For the symmetric space X = GL+(n,R)/SO(n) and the arithmetic group
SL(n,Z), there is another reduction theory developed by Voronoi using perfect
quadratic forms. (See [298] for a summary and references. See also [14] and
[15, Chapter 1]).

The symmetric space GL+(n,R)/SO(n) is special in that it is the self-
adjoint homogeneous cone of positive definite quadratic forms in the vector
space of all symmetric bilinear forms, and the symmetric space SL(n,R)/SO(n)
is a homothety section of the cone. The collection of perfect quadratic forms
induces an SL(n,Z)-equivariant polyhedral cone decomposition of the cone
GL+(n,R)/SO(n), which is different from the equivariant decomposition aris-
ing from the translates of the Minkowski reduction domains.

In general, a symmetric space X = G/K is called a linear symmetric space
if it is a self-adjoint homogeneous cone or a homethety section of such a cone.
For such a linear symmetric space X and an arithmetic subgroup Γ ⊂ G, X
admits a Γ-equivariant decomposition into simplicial cones such that there are
only finitely many orbits of simplices. This implies that Γ admits a funda-
mental domain that is a finite union of simplicial cones. Such simplicial de-
compositions are essential for toroidal compactifications of Hermitian locally
symmetric spaces. See [15, Chapter 1] and [14].

There are also generalizations of Minkowski reduction theory to other
groups, for example, SL(n,Ok), where k is a number field and Ok is the ring
of integers of k. See [418] [419] [183] [247, Chap I, §4].
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For GL+(n,R)/SO(n), there is also the Venkov reduction. The idea is
similar to the Dirichlet fundamental domain. Pick a positive definite matrix
Q ∈ GL+(n,R)/SO(n). Then the inner product with this matrix Q defines a
positive function on GL+(n,R)/SO(n):

dQ(A) = Tr(AQ), A ∈ GL+(n,R)/SO(n).

For every SL(n,Z)-orbit in GL+(n,R)/SO(n), consider the points where dQ
takes minimum values. Then the union of such points gives the Venkov reduc-
tion domain. It is a convex polyhedron bounded by finitely many faces. See
[369] [370].

A generalization of this reduction theory to general linear symmetric space
is given in [243].

Symplectic groups

The Siegel upper half space

hg = {X + iY | X,Y real g × g symmetric matrices, Y > 0} ∼= Sp(2g,R)/U(g)

is not a linear symmetric space. But for Γ = Sp(2g,Z), a fundamental domain
was explicitly determined by Siegel by making use of the reduction theory for
SL(n,Z). The proof is similar in some sense to that used in identifying the
classical fundamental domain for SL(2,Z). See [273] for details.

For any finite index subgroup Γ of Sp(2g,Z), a finite union of suitable
translates of the fundamental domain for Sp(2g,Z) gives a fundamental domain
for Γ. For any other arithmetic subgroup Γ of Sp(2g,Q), a conjugate of Γ by
an element of Sp(2g,Q) is contained in Sp(2g,Z), and we can also obtain an
explicit fundamental domain for Γ by taking a finite union of suitable translates
of the fundamental domain for Sp(2g,Z).

As in the case of arithmetic subgroups of SL(2,Q), it is desirable to obtain
a connected fundamental domain instead of a finite union of domains.

Fundamental domains in complex hyperbolic spaces

As mentioned before, Dirichlet fundamental domains for Fuchsian groups
acting on the Poincaré half plane have good properties and are useful in study-
ing algebraic structures of Fuchsian groups. For other rank one symmetric
spaces, Dirichlet fundamental domains are more complicated. For example,
see [148] for Dirichlet fundamental domains in complex hyperbolic spaces.
Many results on explicit fundamental domains have been obtained, see the
papers [121], [342], [138], [139] [341].

Equivariant tilings of symmetric spaces

The Minkowski and Voronoi reduction theories induce equivariant cell de-
compositions of the symmetric spaces GL+(n,R)/SO(n) and SL(n,R)/SO(n).
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For general symmetric spaces X = G/K and arithmetic groups acting
on them, coarser equivariant tilings (or decompositions) are known (see [371]
for precise statements of the results and references). Such an equivariant
decomposition is important for the Arthur-Selberg trace formula but does not
give rise to a well-defined fundamental domain. The reason is that each tile
admits an infinite stabilizer in Γ, and finding a fundamental domain of such a
stabilizer in each tile is not obvious but it might be less difficult than finding
a fundamental domain for Γ since it might be reduced to lower dimensional
cases.

On the other hand, by picking a fundamental domain for each tile, we can
get a fundamental domain for Γ which is a union of pieces parametrized by
representatives of Γ-conjugacy classes of Q-parabolic subgroups. The piece
corresponding to the improper Q-parabolic subgroup G is bounded, and each
piece for a proper Q-parabolic subgroup P is contained in a Siegel set of P.
Though not canonically defined, such a fundamental domain for Γ is useful for
many applications. This reduction theory is usually called precise reduction
theory. (See [61] for example.)

In the classical reduction theory described in Proposition 4.34, Siegel sets of
non-minimal Q-parabolic subgroups are not really needed. In fact, the union
of suitable Siegel sets associated with representatives of Γ-conjugacy classes
of minimal Q-parabolic subgroups of G gives a fundamental set of Γ. On the
other hand, in constructing a fundamental domain from the above equivariant
tiling, we do need all Q-parabolic subgroups of G, including the improper
parabolic subgroup G.

When the Q-rank of G is equal to 1, the fundamental domain constructed
in this way is related to the one constructed in the next paragraph, though
the point of view is slightly different and the latter is more intrinsic in some
sense.

Intrinsic fundamental domains for Q-rank 1 arithmetic subgroups

If the Q-rank of G is equal to 1, then we can get a fundamental domain of
Γ by using the height functions on X associated with Q-parabolic subgroups.

To explain the idea, we interpret the Dirichlet fundamental domainD(x0,Γ)
in a slightly different way. By assumption, the base-point x0 is not fixed by
any nontrivial element of Γ. For each point γx0 in the orbit Γx0, define a
function on X:

dγx0
(x) = d(x, γx0).

Using this function, for each point γx0, we define a region

Ω(γx0) = {x ∈ X | dγx0(x) ≤ dy(x), for all y ∈ Γx0}.

Clearly, Ω(γx0) = γΩ(x0). Then these subsets give a Γ-equivariant decompo-
sition of X, and Ω(x0) is the Dirichlet domain D(x0,Γ). Since no nontrivial
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element of Γ fixes x0 or any point of the orbit Γx0, Γ acts simply transitively
on these subsets.

Suppose that there is a family of functions fi, i ∈ I, on X that is stable
under Γ, i.e., for any γ ∈ Γ and fi, fi(γ · x) is equal to fj(x) for some j ∈ I.
There are two cases.

Case 1. Assume that for every x ∈ X, infi∈I fi(x) is realized. For each
function fi, define a region

Ω̃i = {x ∈ X | fi(x) ≤ fj(x), j ∈ I}.

Case 2. Assume that for every x ∈ X, supi∈I fi(x) is realized, then for
each function fi, define a region

Ω̃i = {x ∈ X | fi(x) ≥ fj(x), j ∈ I}.

These subsets Ω̃i, i ∈ I, form a family which is stable under Γ. On the other
hand, unlike the previous case, each of these subsets is not yet a fundamental
domain of Γ.

To find a fundamental domain for Γ, denote the stabilizer of fi in Γ by Γi;
then Γi acts on Ω̃i. Let Ωi be a fundamental domain of Γi in Ω̃i.

Assume that there are only finitely many Γ-orbits in {fi | i ∈ I}. Let
fi1 , · · · , fik be a set of representatives. Then it can be shown that the union
Ωi1 ∪ · · · ∪ Ωik is a fundamental domain for the Γ-action on X.

If we take fi to be the distance function dγx0
above such that x0 is not fixed

by any nontrivial element of Γ, then the stabilizer of each function fi is trivial,
and this construction specializes to the previous case of Dirichlet fundamental
domains. Note that in this case, there is only one Γ-orbit in the collection of
functions dγx0

.
If the Q-rank of G is equal to 1, take P to be the set of proper Q-parabolic

subgroups P of G. For each Q-parabolic subgroup P, let α ∈ Φ(AP, P ) be
the unique short root. Choose a Q-Langlands decomposition P = NPAPMP,
and hence an associated horopherical decomposition of X:

X ∼= NP ×AP ×XP, x 7→ (nP(x), aP(x), zP(x)).

Define a height function on X associated with the parabolic subgroup P by

hP(x) = α(log aP).

Note that the Langlands decomposition and horospherical decomposition of
P depend on the choice of a basepoint inX (See Equation 2). A different choice
of the basepoint will lead to a shift of the height function hP. It turns out that
there are choices such that the family of height functions hP is stable under
Γ. The basic idea is as follows. By the reduction theory (Proposition 4.34),
there are only finitely many Γ-conjugacy classes of Q-parabolic subgroups of
G. Fix some representatives of these conjugacy classes and choose arbitrary
basepoints for them. Then there are choices of basepoints, or equivalently
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height functions, for all other parabolic subgroups such that the family of
height functions hP is stable under Γ (see [428]).

For each height function hP(x), its stabilizer is equal to Γ ∩ P which is a
uniform lattice in NPMP. (Recall that P = NPAPMP is the Q-Langlands
decomposition of P .) Since fundamental domains for the Γ ∩ P -action on
NP×XP and X can be described relatively easily in terms of the horospherical
decomposition of X with respect to P, the above approach can be used to
obtain fundamental domains for Γ when the Q-rank of G is equal to 1.

For each P ∈ P and for every x ∈ X, by the reduction theory, supP∈P hP(x)

is realized. Then we define a domain Ω̃P for each P as in the Q-rank 1 case
above by

Ω̃P = {x ∈ X | hP(x) ≥ hP′(x),P′ ∈ P}.

In the horospherical decomposition X = NP×AP×XP
∼= NP×XP×AP,

the stabilizer of hP in Γ is equal to Γ ∩ P = Γ ∩NPMP. It acts cocompactly
on NP×XP and leaves the component AP fixed. Let ΩΓ∩NPMP

be a compact
fundamental domain in NP ×XP for the stabilizer. Define

ΩP = Ω̃P ∩ (ΩΓ∩NPMP
×AP).

Let P1, · · · ,Pm be a set of representatives of Γ-conjugacy classes of Q-parabolic
subgroups. Then the union ΩP1

∪ · · · ∪ ΩPm
is a fundamental domain for the

Γ-action on X. It can be shown that each of the domains ΩP1
, · · · ,ΩPm

is contractible. Hence the topology of the fundamental domain is relatively
simple.

The Hilbert modular groups are some of the most important examples of
Q-rank 1 arithmetic groups. There has been a lot of work on their fundamental
domains. See [393, Chap. III, §2] [97] [98] [408, p. 8-11].

Intrinsic fundamental domain for higher Q-rank arithmetic subgroups

A natural problem is to obtain a generalization of the Minkowski reduction
theory to a general arithmetic subgroup Γ by picking out points of X that are
minimal (or rather maximal) with respect to a family of height functions.

Given the result discussed above for the Q-rank 1 case, it is natural to
define height functions hP for all maximal Q-parabolic subgroups P of G and
use them to define a reduced domain analogous to the Minkowski reduction
domain. Let Pmax be the set of all maximal Q-parabolic subgroups. For every
P ∈ Pmax, we can also define a domain Ω̃P as above. But the stabilizer of
hP in Γ is Γ ∩ P = Γ ∩NPMP, which does not act cocompactly on NP ×XP

and involves a non-compact locally symmetric space ΓMP
\XP. On the other

hand, if we do this by induction and find ΓMP
-fundamental domains in XP

and hence fundamental domains of Γ ∩ NPMP, then we can follow the steps
for the Q-rank 1 case and define ΩΓ∩NPMP

and ΩP etc.
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Here is another approach that avoids inductive difficulties. In some sense,
it is a generalization of the Minkowski reduction theory. The idea is as fol-
lows. For every x ∈ X, define an ordered set of maximal parabolic subgroups
P1, · · · ,Pr such that P1 ∩ · · · ∩ Pr is a minimal Q-parabolic subgroup of
G, where r is the Q-rank of G. The important point is that the stabilizer
in Γ of the ordered set of height functions hP1

, · · · , hPr
is equal to Γ ∩ P ,

where P = P1 ∩ · · · ∩ Pr. Since P is a minimal Q-parabolic subgroup,
Γ ∩ P = Γ ∩ NPMP acts cocompactly on NP × XP and it is easier to find
its fundamental domains in NP ×XP.

For every point x, choose P1 ∈ Pmax such that

hP1
(x) ≥ hP(x)

for all P ∈ Pmax. Consider all maximal parabolic subgroups P such that
P1 ∩ P is a Q-parabolic subgroup of G and pick one, denoted by P2, such
that hP2(x) has a maximum value. Suppose that P1, · · · ,Pi have been picked
and P1 ∩ · · · ∩Pi is a non-minimal parabolic subgroup. Consider all maximal
Q-parabolic subgroups P such that P1∩· · ·∩Pi∩P is a Q-parabolic subgroup
of G and pick one Pi+1 such that hPi+1

(x) takes a maximum value.
The ordered sequence P1, · · · ,Pr is called a reduced sequence of maximal

Q-parabolic subgroups for the point x. In the above procedure, the choices of
P1, · · · ,Pr are not unique for points x when several height functions take the
maximum value. On the other hand, for a generic point x, there is a unique
maximum height function, and the ordered groups P1, · · · ,Pr are unique for
x.

For every ordered sequence of P1, · · · ,Pr as above such that P1 ∩ · · · ∩Pr

is a minimal Q-parabolic subgroup, we define a region

Ω̃P1,··· ,Pr
= {x ∈ X | P1, · · · ,Pr is the reduced sequence for x}.

Let P = P1 ∩ · · · ∩Pr. Let ΩΓ,P be a fundamental domain for Γ ∩NPMP

acting on NP ×XP. Define

ΩP1,··· ,Pr
= Ω̃P1,··· ,Pr

∩ ΩΓ,P.

By the reduction theory, there are only finitely many conjugacy classes
of such ordered r-tuples P1, · · · ,Pr. Pick and fix representatives of these
classes. Then the union of their domains ΩP1,··· ,Pr

is a fundamental domain
for the Γ-action on X. It can also be shown that each domain ΩP1,··· ,Pr

is
contractible, by deforming along the orbits of the geodesic action of AP on X,
where P = P1 ∩ · · · ∩Pr as above.
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4.11 Combinatorial properties of arithmetic groups:
finite presentation and bounded generation

An immediate application of the reduction theory (Proposition 4.34), in par-
ticular, the Siegel finiteness, is the finite generation of arithmetic groups.

This follows from the following general result.

Lemma 4.39. If X is a connected topological space and a Γ-action on X
admits a rough open (or closed) fundamental domain Ω, then the set S = {γ ∈
γΩ ∩ Ω 6= ∅} generates Γ. If this set S is finite, i.e., if Ω satisfies the global
finiteness condition, then Γ is finitely generated.

The idea of the proof is that if the subgroup Γ′ generated by these elements
in S is not equal to Γ, then the two unions of translates of Ω, ∪γ∈Γ′γΩ and
∪γ∈Γ−Γ′γΩ, give a disjoint decomposition of X into two open subsets. This
contradicts the assumption that X is connected. See [390], [29] and [348,
Lemma 4.9, p. 196].

Since we can take Siegel sets that are open to construct a rough funda-
mental domain for arithmetic groups in Proposition 4.34, the Siegel finiteness
condition implies the following result.

Corollary 4.40. Arithmetic subgroups are finitely generated.

For special arithmetic subgroups such as SL(n,Z), more explicit generators
are also known. See [386] and [395] for references.

To prove finite presentation of arithmetic groups, we need another general
fact.

Proposition 4.41. Assume X is a connected and simply connected locally
path connected topological space (for example a simply connected manifold or
a simply connected locally finite CW-complex), and that some Γ-action on X
admits a rough open fundamental domain Ω that contains only finitely many
connected components. If the set S = {γ ∈ γΩ ∩ Ω 6= ∅} is finite, then Γ is
finitely presented. In fact, relations between generators are given by local ones
in the following sense: given any three elements γ1, γ2, γ3 ∈ S, the relation
γ1γ2 = γ3 holds if and only if γ1γ2 and γ3 induce the same action on Ω, and
these are all the relations needed to present Γ.

See [348, p. 196-198] for a proof. Since the symmetric space X = G/K is
simply connected and we can pick Siegel sets to be open and connected, we
obtain the following result.

Corollary 4.42. Every arithmetic subgroup is finitely presented.
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There is also a related important notion of bounded generation. A group is
called boundedly generated if there is a finite generating set S = {γ1, · · · , γk}
such that every element γ is of the form γm1

1 · · · γmk

k , where m1, · · · ,mk ∈ Z.
The arithmetic group SL(n,Z), n ≥ 3, and more general integral subgroups

of Chevalley groups of higher rank are boundedly generated. See [401].
On the other hand, if the R-rank of G is equal to 1, then Γ is not boundedly

generated. See [141]. We note that under the R-rank 1 assumption, if Γ is a
uniform arithmetic subgroup, then Γ is a hyperbolic group. It is also known
that any non-elementary hyperbolic group is not boundedly generated.

Bounded generation is closely related to the congruence subgroup problem.
For example, a special case of a theorem states that if G ⊂ GL(n,C) is an
absolutely simple simply connected algebraic group over the rational number
field Q and if normal subgroups of G(Q) have the standard description,14 then
bounded generation of G(Z) implies that the congruence subgroup problem
for G(Z) has a positive solution, i.e., the congruence subgroup kernel is finite.
See [354, §6] [265, Theorem D] [349] for the general result. See also [326] for a
survey and more references in [197, p. 76].

4.12 Subgroups and overgroups

Given any group Γ, a natural problem is to understand its subgroups. Two
natural classes of groups are finite subgroups and subgroups of finite index.

Another immediate corollary of the reduction theory for arithmetic groups
is the following finiteness result.

Proposition 4.43. Let Γ be an arithmetic subgroup as in the previous subsec-
tion. Then there are only finitely many conjugacy classes of finite subgroups
of Γ.

Proof. Since every finite subgroup of Γ fixes a point in X, it has a
conjugate that fixes a point in a fundamental set, which is the union of finitely
many Siegel sets (Proposition 4.34). By the Siegel finiteness property, the
fundamental set meets only finitely many translates of itself, and it follows
that there are only finitely many conjugacy classes of finite subgroups.

For comparison, there are infinitely many subgroups of finite index of Γ,
and also infinitely many finite quotient subgroups. A lot of work has been
done on counting of subgroups of finite index. The following result holds.

14For a semisimple simply connected algebraic group G defined over Q, we say that normal
subgroups of G(Q) have the standard description if there exists a finite set S of places of
Q such that any Zariski-dense normal subgroup of G(Q) is open in G(Q) in the S-adic
topology [348, p. 537].
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Proposition 4.44. Every arithmetic subgroup Γ is residually finite, i.e., for
every nontrivial element γ ∈ Γ, there exists a homomorphism to a finite group
F , ϕ : Γ → F , such that ϕ(γ) 6= e. In particular, Γ contains infinitely many
subgroups of infinite index. For every fixed n ∈ N, there are only finitely many
subgroups of index at most n.

To make the notion of residual finitess of Γ quantitive, for every nontrivial
element γ ∈ Γ, consider all finite quotients of Γ such that the image of γ in
them are nontrivial. Then the minimal cardinality of such finite quotients
as a function of the word length of γ with respect to any fixed word metric
on Γ gives an invariant of the residual finiteness property of Γ. See [63] for
the precise definition and some results for arithmetic subgroups of Chevalley
groups.

Congruence subgroups provide a large number of subgroups of finite index.
Specifically, for any positive integer N , the kernel of the homomorphism

GL(n,Z)→ GL(n,Z/NZ)

is clearly an arithmetic subgroup and called a principal congruence subgroup
of level N of GL(n,Z). Any arithmetic subgroup of GL(n,Z) containing a
principal congruence subgroup is called a congruence subgroup. Congruence
subgroups of Q-linear algebraic groups G can also be defined similarly.

It is known that for any finitely generated group, there are only finitely
many subgroups of any fixed index. The growth of the number of subgroups
of index at most n (or equal to n) has been actively studied. See the book
[268] for an introduction and summary. See also [253] [17] for related questions
on growth of finite dimensional representations of arithmetic groups.

Since arithmetic groups are linear, as a consequence of a famous Selberg
Lemma [383], we have the following result.

Proposition 4.45. Every arithmetic subgroup Γ is virtually torsion-free, i.e.,
it admits torsion-free subgroups of finite index.

In [57, §16], a notion of neat arithmetic subgroups was introduced and it
was proved there that every neat arithmetic subgroup is torsion-free and every
arithmetic subgroup admits neat subgroups of finite index. One important
difference is that many groups induced from neat arithmetic groups are also
neat and hence torsion-free.

After discussing subgroups, a natural question is about groups that contain
an arithmetic subgroup Γ, or overgroups of Γ. The following result holds [227].

Proposition 4.46. Assume that G is a semisimple linear algebraic group,
then every arithmetic subgroup Γ is contained in only finitely many discrete
subgroups of G, in particular, in finitely many arithmetic subgroups of G(Q).
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This result is related to uniform lower bounds for the volume of locally
symmetric spaces Γ\X for every fixed symmetric space X. It is also related
to maximal arithmetic subgroups. See [36] and the references there.

It is a fact that if a group Γ contains a proper subgroup of finite index Γ′,
then it also contains a normal subgroup of finite index. In fact, ∩γ∈Γ γΓ′γ−1

is clearly a normal subgroup of Γ and contained in Γ′. To show that it is also
of finite index, consider the action of Γ′ on the finite coset Γ/Γ′. The kernel of
this action, or of the homomorphism Γ′ → Sym(Γ/Γ′), is equal to the above
intersection and hence is of finite index.

The famous normal subgroup theorem of Margulis [278] states.

Proposition 4.47. Assume that Γ is an irreducible arithmetic subgroup of a
semisimple linear algebraic group G of R-rank at least 2. Then every normal
subgroup of Γ is either finite or of finite index.

This result says roughly that such an irreducible higher rank lattice is, as
an abstract group, an almost simple group.

The rank 1 assumption is necessary. See [110].

4.13 Borel density theorem

As mentioned in the introduction, the realization of an arithmetic subgroup
Γ as a discrete subgroup of the Lie group G = G(R) is important for many
questions about Γ. A natural problem is to understand relations between Γ
and G. If G is semisimple, then Γ is a lattice in G, i.e., the quotient Γ\G
has finite volume with respect to any Haar measure of G. If Γ is a cocompact
lattice, then Γ with any word metric is quasi-isometric to G. The former
statement means that in terms of measure theory, Γ is not too small, and the
second means that in terms of large scale geometry, Γ is not too small.

Since G is the real locus of an algebraic group, it also admits the Zariski
topology. Since the Zariski topology is much coarser than the regular topology
of G, it is naturally expected that Γ might not be a discrete subgroup in the
Zariski topology. The Borel density theorem shows that this is indeed true.

Proposition 4.48. Assume that G is a connected semisimple linear algebraic
group over Q, and G = G(R) has no compact factor. Then any arithmetic
subgroup Γ ⊂ G(Q) is Zariski dense in G.

One corollary of this result is the following result, which also shows one
way how the Borel density can be used.

Corollary 4.49. Under the assumption of the above proposition, the normal-
izer of Γ in G is a discrete subgroup and hence contains Γ as a subgroup of
finite index.
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Proof. Let N(Γ) be the normalizer of Γ in G, and M be the closure of N(Γ)
in the regular topology. Then M is the real locus of an algebraic subgroup of
G. The identity component M0 of M centralizes elements of Γ, and the Borel
density theorem imply that it also centralizes G. Since G is semisimple, M0

consists of the identity element. Hence M = N(Γ) is a discrete subgroup.

The Borel density theorem has many applications in rigidity theory of dis-
crete subgroups of Lie groups. One basic reason is that in dealing with ac-
tions that are algebraic, the Borel density theorem allows one to pass from an
arithmetic subgroup to the whole algebraic group, as the proof of the above
corollary shows. See [432] for applications in rigidity properties of lattices.

There are also some results on discrete subgroups of G that are Zariski
dense but not lattices. See [353] [38].

4.14 The Tits alternative and exponential growth

Besides finite subgroups and finite index subgroups, it is also a natural question
to understand other subgroups. The famous Tits alternative is the following
result [407, Corollary 1].

Proposition 4.50. Every finitely generated linear group either contains a
non-abelian free subgroup or a solvable subgroup of finite index.

A special case of another result in [407, p. 250] is the following.

Proposition 4.51. If G is a semisimple linear algebraic group defined over
Q and if a subgroup Γ ⊂ G(Q) is Zariski dense, then Γ contains a free non-
abelian subgroup.

As a corollary of this and the Borel Density Theorem 4.48, we obtain the
exponential growth of arithmetic groups.

Proposition 4.52. Assume that G is a semisimple linear algebraic group
defined over Q, and Γ ⊂ G(Q) is an arithmetic group, then Γ grows exponen-
tially.

We recall that for any finitely generated group Γ, there is a word metric dS
associated with every finite generating set S. For any R, let B(R, e) = {γ ∈
Γ | dS(γ, e) ≤ R} be the ball of radius R with center e, and let |B(R, e)| be the
number of elements in the ball. We say that Γ grows exponentially if |B(R, e)|
grows exponentially in R. Polynomial growth can be defined similarly. Though
the word metric dS and |B(R, e)| depends on the choice of the generating set
S, the growth type of Γ does not depend on the choice of S. The growth



88

type often reflects algebraic properties of the group. For example, a famous
theorem of Gromov says that a finitely generated group is virtually nilpotent
if and only if it has polynomial growth.

For any finitely generated subgroup Γ′ ⊂ Γ, if a generating set S′ is con-
tained in a generating set S of Γ, then it is clear from the definition that
the restriction of the word metric dS to Γ′ is bounded from above by dS′ .
This implies that if Γ′ has exponential growth, then Γ has at least exponential
growth.

Proof of Proposition 4.52.
It can be checked easily that a non-abelian free group has exponential

growth. The Borel density Theorem and Proposition 4.51 implies that the
arithmetic subgroup Γ has at least exponential growth. By some general results
[106, p. 181, Remark 53 (iii)], it grows exponentially.

Remark 4.53. Another way to show that the arithmetic subgroup Γ in Propo-
sition 4.52 has at most exponential growth is to use the growth of the sym-
metric space X. We note that if Γ is torsion-free and identified with an orbit
Γx in X, then the induced distance on Γx from the invariant metric on X is
bounded from above by a multiple of the word metric on Γ. Since the volume
of balls in X grows exponentially, it follows that Γx with the induced metric
grows exponentially and hence Γ also grows exponentially.

4.15 Ends of groups and locally symmetric spaces

If Γ is a cocompact subgroup of G, i.e., if the quotient Γ\G (or equivalently
Γ\X, where X = G/K) is compact, then the number of ends of the group Γ is
the same as the number of ends of X, which is equal to 1. On the other hand,
if Γ is not a cocompact subgroup, then the situation is different.

It is known that every infinite group has either 1, 2 or infinitely many
ends. (See [380].) Since a group has two ends if and only if it is infinite and
virtually cyclic, an arithmetic subgroup of a semisimple Lie group has either
1 or infinitely many ends.

Proposition 4.54. If Γ is an irreducible lattice of a semisimple Lie group G
and the rank of the associated symmetric space X = G/K is at least 2, then
Γ has one end.

Proof. Since Γ is irreducible and the rank of X is at least 2, Γ has
Property T and hence also Serre’s Property FA (see [416], and also [279]). If
Γ has infinitely many ends, then a theorem Stalling [394] implies that Γ is an
amalgam (i.e., a free product with amalgamation over finite groups) and hence
by Bass-Serre theory, Γ acts on a tree without a fixed point. This contradicts
with Property FA.
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It is clear that the symmetric space X has one end. On the other hand, the
number of ends of Γ\X depends on the Q-rank. For example, the following
result is true.

Proposition 4.55. If the Q-rank of G (or rather Γ\X, Γ) is greater than or
equal to 2, then Γ\X has one end, i.e., it is connected at infinity. If the Q-
rank of Γ is equal to one, then the ends of Γ\X are parametrized by the set of
Γ-conjugacy classes of Q-parabolic subgroups. By passing to smaller subgroups
of finite index, there exist Γ such that Γ\X has as many ends as desired.

The basic reason for which this proposition is true is that the Q-Tits build-
ing ∆Q(G) is connected if and only if the Q-rank of G is greater than or equal
to 2. This follows from these two facts: (1) any two simplices in the Tits
building are contained in a common apartment, (2) an apartment is connected
if and only if the Q-rank is greater than or equal to 2. Given this fact, Propo-
sition 4.55 can be proved roughly as follows. By reduction theory (Proposition
4.34), the neighborhoods of infinity of Γ\X are described by Siegel sets. We
can choose Siegel sets to be connected. For two Q-parabolic subgroups P1,P2,
the following facts can be proved: If P1 ⊆ P2, then a Siegel set of P1 contains
a Siegel set of P2. Suppose that P1 ∩P2 is a Q-parabolic subgroup. Then the
intersection of Siegel sets of P1 and P2 is contained in a Siegel set of P1 ∩P2.
The above intersection pattern of the Siegel sets and the connectedness of the
Q-Tits building ∆Q(G) imply that Γ\X is connected at infinity. On the other
hand, if the Q-rank of G is equal to 1, it can be shown that if P1 6= P2, then
sufficiently small Siegel sets of P1 and P2 are disjoint. If P1 and P2 are not
conjugate under Γ, then the image of suitable small Siegel sets of P1 and P2

in Γ\X are disjoint but are neighborhoods of the ends of Γ\X.
The above argument is basically clear and convincing. To make it rigorous,

it is easier to use the Borel-Serre compactification of Γ\X defined in §4.18.
See [204] for a complete proof of Proposition 4.55.

4.16 Compactifications and boundaries of symmetric
spaces

As mentioned earlier, if G is semisimple, then X = G/K is a symmetric space
of noncompact type and consequently is noncompact. For many applications,
it is important to compactify X such that the G-action on X extends contin-
uously to the compactification.

There are many different compactifications with different boundary struc-
tures that are suitable for various applications. See the books [162] and [61]
for a detailed discussion about compactifications of symmetric spaces and ref-
erences.

We recall several basic facts and use them to motivate the following facts:
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(1) Points at infinity of the symmetric space X are naturally described by
parabolic subgroups P of G. For example, the Furstenberg boundaries
G/P appear in several different compactifications of X.

(2) Structures at infinity of X are related to an infinite simplicial complex,
the Tits building ∆(G) of G.

We hope that this discussion will help explain similarities between Tits
buildings and the curve complex C(Sg,n) of surfaces Sg,n introduced later,
which has played a foundational role in the study of mapping class groups and
Teichmüller spaces (see [307] [210] summaries of recent results on applications
of the curve complexes and references). For applications of Tits buildings in
geometry and topology, see [208] and the extensive references there.

It is known that the symmetric space X is simply connected and non-
positively curved, i.e., it is a Hadamard manifold. Therefore, X admits the
geodesic compactification X ∪ X(∞), where X(∞) is the set of equivalence
classes of directed geodesics of X and is called the sphere at infinity. Since
any parametrization of a geodesic is of constant speed and can be scaled to
have unit speed, we assume that geodesics are directed and of unit speed.
Recall that two unit speed directed geodesics γ1(t), γ2(t) are called equivalent
if15

lim sup
t→+∞

d(γ1(t), γ2(t)) < +∞.

For any basepoint x0 ∈ X, let Tx0
X be the tangent space of X at x0.

Then X(∞) can be canonically identified with the unit speed sphere in Tx0
X,

since each equivalence class of geodesics contains exactly one unit directed
geodesic through x0. For each unit vector v ∈ Tx0X, denote the corresponding
geodesic passing through x0 with direction v by γv. Then the topology of the
compactification X∪X(∞) is described as follows: a sequence of points xj ∈ X
going to infinity converges to the equivalence of γv if and only if the direction
of the geodesic segment x0xj converges to v.

It can be shown that this topology does not depend on the choice of the
basepoint x0 and the natural action of G on geodesics of X and hence on X(∞)
induces a continuous action on the geodesic compactification X ∪X(∞).

Proposition 4.56. For every boundary point z ∈ X(∞), its stabilizer Gz =
{g ∈ G | gz = z} is a proper parabolic subgroup of G. Furthermore, every
proper parabolic subgroup of G fixes some boundary point in X(∞); in fact,
the subgroup is equal to the stabilizer of some boundary point.

15The assumption of the unit speed of geodesics is convenient in defining this equivalence
relation. Otherwise, we need to use d(γ1(t), γ2) = inf d(γ1(t), γ2(s) | s ∈ R}, since for
two equivalent geodesics γ1(t), γ2(t) of different constant speeds, d(γ1(t), γ2(t)) → +∞ as
t→ +∞.



91

When X = SL(2,R)/SO(2) is identified with the Poincaré upper half plane
H2, then the standard parabolic subgroup P∞ of upper triangular matrices in
SL(2,R) is the stabilizer of the boundary point i∞, and the parabolic subgroup
P0 of lower triangular matrices in SL(2,R) is the stabilizer of the boundary
point 0 ∈ R.

In this example, X(∞) = H2(∞) = R ∪ {i∞} = S1, and SL(2,R) acts
transitively on X(∞), which can be written as G/P∞.

Proposition 4.57. The group G acts transitively on the sphere at infinity
X(∞) if and only if the rank of X is equal to one. If the rank of X is at least
2, then there are infinitely many G-orbits in the boundary X(∞), and each
orbit is of the form G/P , where P is a proper parabolic subgroup of G.

Probably the simplest example of higher rank symmetric spaces is the prod-
uct H2×H2. A maximal flat subspace of X = H2×H2 can be identified with
R2, and the decomposition into four coordinate quadrants corresponds to the
Weyl chamber decomposition. The set of unit vectors in a positive closed Weyl
chamber, say, the first quadrant, is a 1-simplex, and it parametrizes the set of
G = SL(2,R)× SL(2,R)-orbits in X(∞).

Proposition 4.58. For a general symmetric space X = G/K, the set of G-
orbits in X(∞) is parametrized by the set of unit vectors in a positive closed
Weyl chamber of a maximal flat subspace of X, which is an (r − 1)-simplex,
where r is the rank of X.

The homogeneous spaces G/P in Proposition 4.57 are called Furstenberg
boundaries. When P is a minimal parabolic subgroup, G/P is called the
maximal Furstenberg boundary and it has played a fundamental role in the
rigidity theory of lattices of G. See [432] and [279] for details.

For every parabolic subgroup P of G, let σP be the set of points of X(∞)
that are fixed by P . Let σ0

P be the set of points of X(∞) whose stabilizers are
exactly equal to P .

Proposition 4.59. For every parabolic subgroup P , the closure of σ0
P in X(∞)

is equal to σP , and σP is a simplex. Furthermore, σ0
P is the interior of σP

when all its boundary faces are removed. When P runs over all proper parabolic
subgroups of G, the subsets σ0

P give a disjoint decomposition of X(∞). The
simplices σP give the geodesic sphere X(∞) the structure of an infinite sim-
plicial complex, which is a geometric realization of the Tits building ∆(G).

Recall that the Tits building ∆(G) is an infinite simplicial complex whose
simplices are parametrized by proper parabolic subgroups of G satisfying the
following conditions:
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(1) For every parabolic subgroup P of G, denote its simplex by σP . Then
P1 ⊂ P2 if and only if σP1

contains σP2
as a face.

(2) ΣP is a 0-simplex (i.e., a point) if and only if P is a maximal proper
parabolic subgroup of G.

Since G acts on the set of parabolic subgroups by conjugation, it acts
on ∆(G) simplicially. The quotient G\∆(G) can be identified with σP for a
minimal parabolic subgroup P of G. This result is consistent with Propositions
4.59 and 4.58.

Besides the geodesic compactification X ∪X(∞), another important com-

pactification is the maximal Satake compactification X
S

max.
For every real parabolic subgroup P , there is an R-Langlands decomposi-

tion

P = NPAPMP
∼= NP ×AP ×MP ,

with respect to any basepoint x0. The dependence on the basepoint x0 is that
AP and MP are stable under the Cartan involution of G associated with K.

Remark 4.60. When P is the real locus of a Q-parabolic subgroup P, we
have introduced a Q-Langlands decomposition of P in §4.9. The difference
between these two decompositions is that in the Q-Langlands decomposition,
AP is a maximal Q-split component of P , but in the R-decomposition here,
AP is a maximal R-split component of P . In general AP ⊂ AP .

Define a boundary symmetric space XP associated with the real parabolic
subgroup P by

XP = MP /(MP ∩K).

Unlike the boundary symmetric space XP for a Q-parabolic subgroup P (or
rather its real locus P defined in §4.9), XP is always a symmetric space of
noncompact type. On the other hand, XP is equal to XP times a possible
Euclidean factor.

Proposition 4.61. The maximal Satake compactification X
S

max admits a dis-
joint decomposition

X
S

max = X ∪
∐
P

XP .

It is a compact Hausdorff space on which G acts continuously.

If X = H2 ×H2, then X
S

max = H2 ×H2, where H2 = H2 ∪H2(∞) is the
geodesic compactification. Its boundary symmetric spaces consist of either
points or H2.
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Proposition 4.62. There are finitely many G-orbits in the boundary X
S

max−
X, which are parametrized by G-conjugacy classes of parabolic subgroups, or
standard parabolic subgroups containing a minimal parabolic subgroup P0 of
G. There is a unique closed orbit, which can be identified with the maximal
Furstenberg boundary G/P0 mentioned in the previous subsection.

4.17 Baily-Borel compactification of locally symmetric
spaces

Compactifications of locally symmetric spaces are closely related to compact-
ifications of symmetric spaces.

The basic ideas and steps can be seen in compactifications of Γ\H2 briefly
discussed in §4.7. When Γ is a lattice of SL(2,R), i.e., a Fuchsian group of the
first kind, we picked out Γ-rational points in the boundary H2(∞) and added
them to H2 to form a partial compactification with the Satake topology. Then
the quotient of this partial compactification by Γ gives a compactification of
Γ\H2.

A natural generalization to compactify arithmetic locally symmetric spaces
Γ\X initiated by Satake [374] is as follows:

(1) Start with a compactification X and decompose its boundary X − X
into boundary components, which are usually parametrized by some real
parabolic subgroups of G.

(2) Pick out rational boundary components, which are usually characterized
by nonempty intersection with the closure of suitable fundamental sets
(or Siegel sets of Q-parabolic subgroups) and hence are associated with
Q-parabolic subgroups of G.

(3) Attach the rational boundary components to X to form a partial com-

pactification QX
S

of X with a suitable topology, called the Satake topol-
ogy.

(4) Show that Γ acts continuously on the partial compactification QX
S

with

a compact Hausdorff quotient Γ\QX
S

, which is a desired compactifica-
tion of Γ\X.

For the maximal Satake compactification X
S

max, its boundary components
are boundary symmetric spaces XP . The rational boundary components are
exactly XP when P is the real locus of Q-parabolic subgroups of G. This
procedure leads to the maximal Satake compactification of Γ\X. In this con-
struction, the reduction theory, in particular, the Siegel finiteness property is
used crucially. In other cases, there are complications with Steps 2 and 4. The
reason is that once rational boundary components are chosen, it is not obvious
whether the extended Γ-action is continuous and the quotient is Hausdorff.
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A general arithmetic locally symmetric space Γ\X admits finitely many
non-isomorphic Satake compactifications, and they are partially ordered, where

one compactification Γ\X
1

is greater than or dominates another compact-

ification Γ\X
2

if the identity map on Γ\X extends to a continuous map

Γ\X
1
→ Γ\X

2
, which is automatically surjective. Besides the maximal Sa-

take compactification, some minimal Satake compactifications are important
for applications as well.

In order to motivate a new construction of the Deligne-Mumford compact-
ification of Mg using the Bers compactification of the Teichmüller space Tg
in §5.12, we outline the topological aspect of the Baily-Borel compactification
[20] of Hermitian locally symmetric spaces. The Baily-Borel compactification
is a minimal Satake compactification. See [61] for details and references.

Assume that X = G/K is a Hermitian symmetric space of noncompact
type, i.e., a symmetric space of noncompact type with a G-invariant complex
structure. Then by a theorem of Harish-Chandra, X can be embedded into
Cn as a bounded symmetric domain, where n is the complex dimension of X.
The closure X of X in Cn is called the Baily-Borel (or Baily-Borel-Satake)
compactification.

As a subspace of Cn, we can define analytic arc components of the boundary
∂X. They are Hermitian symmetric spaces of smaller dimension. Unlike the
maximal Satake compactification of X, they are not of the form XP . Instead,
they are the Hermitian part of the boundary symmetric spaces XP for maximal
parabolic subgroups P of G. (Note that the boundary symmetric space XP

splits into a product of a Hermitian symmetric space and a linear symmetric
space.) In the extended action of G on X, the stabilizer in G of such a
boundary component is equal to a maximal parabolic subgroup P .

Then the Baily-Borel compactification of a Hermitian locally symmetric
space Γ\X can be constructed as follows:

(1) Decompose the boundary of the Baily-Borel compactification X ⊂ Cn
into analytic arc components.

(2) A boundary component is called rational if it has nonempty intersection
with the closure of a Siegel set of a minimal Q-parabolic subgroup.

(3) Form a partial compactification QX
BB

of X by adding the rational
boundary components at infinity and impose the Satake topology on
it.

(4) Show that the Γ-action on X extends to a continuous action on QX
BB

with a compact Hausdorff quotient.

(5) Show that the topological compactification Γ\QX
BB

admits the struc-
ture of a normal complex space by constructing a sheaf of holomorphic
functions on it.
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(6) Show that the normal complex space Γ\QX
BB

is a normal projective
space by embedding it into some CPn using Poincaré-Eisenstein series.

An important new feature in this case is that the boundary components
have an intrinsic interpretation in terms of the analytic structure.

4.18 Borel-Serre compactification of locally symmetric
spaces and cohomological properties of arithmetic groups

For applications to understand topological properties of Γ, the Borel-Serre
compactification of Γ\X [62] is sometimes more useful than the Satake com-

pactifications. For example, for any Satake compactification Γ\X
S

, the inclu-

sion Γ\X → Γ\X
S

is not a homotopy equivalence. The fundamental group of

Γ\X
S

is not equal to Γ. For example, when Γ is irreducible and the rank of
X is at least 2, then the fundamental group is finite. It is also trivial in some
cases. (See [211] and references there.)

The importance of the Borel-Serre compactifcation is that it preserves the
homotopy type of the locally symmetric space Γ\X. The basic idea is to avoid
Step 1 in the procedure of Satake compactifications in §4.17 since there may
not exist a compactification of X whose rational boundary components give
rise to the desired partial compactification of X.

The procedure of the Borel-Serre compactification, as slightly reformulated
in [61], is as follows:

(1) For every Q-parabolic subgroup P, define its boundary component to be
e(P) = NP ×XP.

(2) Attach e(P) to the infinity of X using the horospherical decomposition
of X with respect to P to obtain a partial Borel-Serre compactification

QX
BS

. The topology of the partial compactifcation is naturally deter-
mined by such a gluing procedure and the inductive step that if P1 ⊂ P2,
then e(P1) is contained in the closure of e(P2).

(3) Show that the Γ-action on X extends to a continuous and proper action

on QX
BS

with a compact quotient, which is the Borel-Serre compactifi-

cation of Γ\X and denoted by Γ\X
BS

.

In the case of X = SL(2,R)/SO(2), for every Q-parabolic subgroup P,
its boundary component e(P) = NP

∼= R, and the partial compactification

QH2
BS

is obtained by blowing up every rational boundary point (or Γ-rational
point in the sense for Fuchsian groups) into R, and the resulting Borel-Serre
compactification of Γ\H2 has a boundary circle for every cusp end of Γ\H2,
as explained earlier.

We would like to point out that the reduction theory in Proposition 4.34
is used crucially in the above construction. For example, the Siegel finiteness
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condition is used to show that the action of Γ on QX
BS

is proper, and the fact
that a union of finitely many Siegel sets form a fundamental set implies that

the quotient Γ\QX
BS

is compact, since the closure of each Siegel set in QX
BS

is compact.
We now recall several basic facts about the Borel-Serre compactification

and applications.

Proposition 4.63. The partial Borel-Serre compactification QX
BS

is a real
analytic manifold with corners whose interior is equal to X. Consequently, it
is contractible. The extended Γ-action on it is real analytic.

Corollary 4.64. If Γ is torsion-free, then Γ\X
BS

is a compact real analytic
manifold with corners and hence gives a finite model of BΓ, i.e., a model given
by a finite CW-complex.

For the last statement, we use the general fact that a smooth compact
manifold with corners admits a finite triangulation.

For the application to the virtual duality properties of Γ, we need the
following theorem of Solomon-Tits.

Proposition 4.65. Let rQ be the Q-rank of G. Then the Tits building ∆Q(G)
is homotopy equivalent to a bouquet of infinitely many spheres SrQ−1 of dimen-
sion rQ − 1.

Proposition 4.66. The boundary of QX
BS

is homotopy equivalent to the Q-
Tits building ∆Q(G) and hence is homotopy equivalent to a bouquet of infinitely
many spheres SrQ−1.

Recall that a group Γ is called a Poincaré duality group of dimension d if
for every ZΓ-module A, there exists an isomorphism

Hi(Γ, A) ∼= Hd−i(Γ, A),

for all i. This is motivated by the Poincaré duality for closed manifolds. In
fact, if Γ admits a model of BΓ by a closed manifold, which is necessarily an
aspherical manifold, then Γ is a Poincaré duality group.

More generally, a group Γ is called a duality group (or a generalized Poincaré
duality group) of dimension d if there exists a ZΓ-module D such that for every
ZΓ-module A, there exists an isomorphism

Hi(Γ, A) ∼= Hd−i(Γ, D ⊗A),

for all i. In this case, D is called the dualizing module of Γ, and the cohomo-
logical dimension of Γ is equal to d. See [79, Chap IIIV, §10] for the history
and various results on duality groups.
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It follows from the general theory that a duality group is torsion-free. A
group is called a virtual duality group if it admits a finite index torsion-free
subgroup that is a duality group. Virtual Poincaré duality groups can be
defined similarly.

Corollary 4.67. Assume that Γ is a torsion-free arithmetic subgroup of G(Q).
Then Γ is a duality group of dimension dimX − rQ, and the dualizing module
is equal to HrQ−1(∆Q(G),Z). Consequently, Γ is a Poincaré duality group if
and only if rQ is equal to 0, i.e., the quotient Γ\X is compact.

The idea of the proof is as follows. Since QX
BS

is contractible, it is a
model of cofinite EΓ-space. By the general theory of cohomology of groups,

it suffices to show that Hi(Γ,ZΓ) = Hi
c(QX

BS
,Z) is not equal to zero in only

one degree. Then this degree is the cohomological dimension of Γ and this
ZΓ-module is the dualizing module. By the Poincaré-Lefschetz duality for
noncompact manifolds with corners, we have the following equalities:

Hi
c(QX

BS
,Z) ∼= Hn−i(QX

BS
, ∂QX

BS
,Z) = Hn−i−1(∂QX

BS
,Z),

where n = dimX. By the Solomon-Tits Theorem (Proposition 4.65), the last
group is zero if and only if i 6= n− rQ, and furthermore, if rQ is positive, then

HrQ−1(∂QX
BS
,Z) is an infinitely generated abelian group. This implies that

Γ is a duality group of dimension dimX − rQ, and is a Poincaré duality group
if and only if rQ = 0.

4.19 The universal spaces EΓ and EΓ via the
Borel-Serre partial compactification

When Γ is torsion-free, Γ\QX
BS

is a finite model of BΓ and hence QX
BS

is a
cofinite EΓ-space, which is also an EΓ-space.

But most natural arithmetic subgroups such as SL(n,Z) and Sp(n,Z) are
not torsion-free. As explained in the introduction, a natural question is whether
arithmetic groups Γ that contain torsion-elements admit cofinite EΓ-spaces.

First we note the following result.

Proposition 4.68. For any arithmetic subgroup Γ, the symmetric space X is
a model of EΓ.

Proof. Since Γ acts properly on X, we only need to check that for any
finite subgroup F of Γ, the set of fixed points XF is nonempty and con-
tractible. By the Cartan fixed point theorem (Proposition 4.18), XF 6= ∅.
Since F acts by isometries, XF is a totally geodesic submanifold. Since X is
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simply connected and nonpositively curved, XF is also simply connected and
nonpositively curved and hence contractible.

If the quotient Γ\X is compact, then X is a cofinite EΓ-space. On the
other hand, if Γ\X is noncompact, then X is not a cofinite EΓ-space. Since

Γ\QX
BS

is compact, a natural guess is that QX
BS

is a cofinite EΓ-space. It
is indeed true [206].

Proposition 4.69. For any arithmetic subgroup Γ, the partial Borel-Serre

compactification QX
BS

is a cofinite EΓ-space.

Since any finite subgroup F of Γ has some fixed point in X, we only need

to show that the fixed point set (QX
BS

)F is contractible. This can be proved

by using the fact that the stabilizers in Γ of boundary points of QX
BS

are
contained in the corresponding parabolic subgroups.

In the above approach, to get a cofinite EΓ-space, we enlarge the space

X by adding some boundary points to get a partial compactification QX
BS

so that the quotient Γ\QX
BS

becomes compact. One important requirement

on the compactification is that the inclusion X ↪→ QX
BS

is a Γ-equivariant
homotopy equivalence.

Another way to overcome the noncompactness is to take a subspace S of
X such that

(1) S admits the structure of a Γ-CW complex such that Γ\S is compact.

(2) S is a Γ-equivariant deformation retract of X.

Then it can be checked easily that S is also an EΓ-space and hence is a
cofinite model of EΓ. This is the problem of existence of a good equivariant
spine in X.

If X is the upper half plane H2 and Γ is commensurable with SL(2,Z),
by removing small horodisks around the rational boundary points in a Γ-
equivariant way, we obtain a Γ-stable truncated subspace X(ε), which is a
submanifold with boundary, where ε measures the sizes of the horodisks. It
can be shown that the above two conditions are satisfied by X(ε).

It turns out that if we push these horodisks further until they meet and
flatten out, the subspace X(ε) becomes a tree T which is stable under Γ. (See
[384].) What is important is that dimT is equal to the virtual cohomological
dimension of Γ, which is the optimal dimension.

The above truncation procedure of removing horoballs equivariantly from
H2 can be generalized to a general symmetric space X by removing horoballs
in X associated with Q-parabolic subgroups which are equivariant with respect
to an arithmetic subgroup Γ. Then the remaining subspace is a manifold with
corners and is stable under Γ. Denote it by XT . Then the quotient Γ\XT is
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a compact manifold with corners. (It might be worthwhile to point out that
if the rank of X is greater than or equal to 2, then the equivariant horoballs
above intersect each other no matter how small the horoballs are.) This is
related to Γ-equivariant tilings of X mentioned before in §4.10. The central
tile in [371] is a cocompact deformation retract of X and is equal to XT , which
corresponds to X(ε) in the case of the upper half plane H2 above. This gives
another cofinite model of EΓ different from the one in Proposition 4.69.

As in the case of the upper half plane H2, a natural and important question
is whether for a non-uniform arithmetic subgroup Γ, the symmetric space X
admits a Γ-equivariant deformation retraction S such that Γ\S is compact and
dimS is equal to the virtual cohomological dimension of Γ.

This seems to be a difficult problem and the answer is not known in general.
The following is a list of cases where the answer is positive.

(1) When X is a linear symmetric space.

(2) When the Q-rank of Γ\X is equal to 1.

(3) When the R-rank of X is equal to 1.

(4) When Γ = Sp(4,Z) and X is the Siegel upper space of degree 2.

See the papers [14] [281] [428] and references there. In a work in progress,
we are able to find such an equivariant spine when the Q-rank of Γ\X is less
than or equal to 2.

5 Mapping class groups Modg,n

In this section, we introduce some definitions and results about Teichmüller
spaces Tg,n and mapping class groups Modg,n by emphasizing their similarities
to symmetric spaces and arithmetic subgroups. Since some results and proofs
are motivated by and related to results for symmetric and locally symmetric
spaces in the previous section, they will be rather brief. For a systematic
discussion about Teichmüller spaces and mapping class groups, see the first
two volumes of this handbook [334] [335]. See also the book [127] and the
survey papers [188] [124] [169].

5.1 Definitions and examples

Let Sg,n be an oriented surface of genus g with n punctures. When n = 0, we
denote it by Sg.

A natural procedure to construct new topological spaces and groups from
Sg,n is to consider the group Homeo+(Sg,n) of orientation preserving homeo-
morphisms of Sg,n. Denote its identity component by Homeo0(Sg,n). Then this
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identity component Homeo0(Sg,n) is a normal subgroup of Homeo+(Sg,n), and
the quotient Homeo+(Sg,n)/Homeo0(Sg,n) is called the mapping class group
of Sg,n and denoted by Modg,n. Since the set of connected components of a
topological space has a natural discrete topology, it seems reasonable to give
Modg,n the discrete topology.

Equivalently, if Diff+(Sg,n) denotes the group of orientation preserving
diffeomorphisms of Sg,n, its identity component Diff0(Sg,n) is a normal sub-
group of Diff+(Sg,n). Then the quotient Diff+(Sg,n)/Diff0(Sg,n) is also equal
to Modg,n.

When g = 1, n = 0, it can be shown that Modg,n ∼= SL(2,Z). For any
smooth manifold M , we can also define its mapping class group Mod(M) =
Diff+(M)/Diff0(M) in a similar way. It can be shown that when M = Rn/Zn,
the n-dimensional torus, Mod(M) ∼= SL(n,Z).

5.2 Teichmüller spaces

It is known that the surface Sg,n admits complex structures so that each
puncture admits neighborhoods that are biholomorphic to the punctured disc
D× = {z ∈ C | 0 < |z| < 1}.

The moduli space of all such complex structures on Sg,n is denoted by
Mg,n. It was first introduced by Riemann and has been intensively studied
since then.

If 2g − 2 + n > 0, then by the uniformization theorem for Riemann sur-
faces, each complex structure on Sg,n is biholomorphic to Γ\H2, where Γ ⊂
PSL(2,R) is a torsion-free lattice subgroup (or rather a Fuchsian group of the
first kind.) Therefore, for every complex structure on Sg,n as above, there
exists a unique complete hyperbolic metric on Sg,n of finite total area that is
conformal to the complex structure. Then Mg,n is also the moduli space of
all complete hyperbolic metrics of finite total area of Sg,n.

If we identify each complex structure on Sg,n with a projective curve over C
with n marked points, thenMg,n is also the moduli space of projective curves
over C with n marked points. This is one of the most important moduli spaces
in algebraic geometry.

According to a general philosophy, the moduli space of objects with certain
structures (smooth structures, complex structures, algebraic structures etc.)
should inherit structures similar to those of the objects.

Based on this philosophy, we expect to have and should be able to establish:

(1) As the moduli space of complex structures on Sg,n, the moduli space
Mg,n should admit a complex structure, i.e., it should be a complex
space;

(2) as the moduli space of Riemann metrics of constant curvature, Mg,n

should admit (Riemannian) metrics;
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(3) as the moduli space of algebraic curves over C, Mg,n should admit the
structure of an algebraic variety, i.e., it should be an algebraic variety.

It turns out that all these statements are true, and hence the moduli space
Mg,n is the best example to show the above philosophy. In some sense, the
rich structures on Mg,n make it one of the most interesting and important
spaces in mathematics.

Remark 5.1. There is a theorem of Wielandt (see [366] for example) say-
ing that for any finite group G with trivial center, its automorphism tower
G ⊂ Aut(G) ⊂ Aut2(G) = Aut(Aut(G)) ⊂ · · · terminates after finitely many
steps. One way to interpret this is to view Aut(G) as a genuinely new group
constructed from G. The above result says that this process will terminate
after finitely many steps. We can also consider the related outer automor-
phism groups Out(G), Out2(G), · · · . The natural generalization of Wielandt’s
theorem to infinite groups does not hold in general. On the other hand, for
the following three classes of groups related to this chapter: the abelian free
groups Zn, the non-abelian free groups Fn, and the surface groups π1(Sg),
their automorphism towers do terminate after finitely many steps. Indeed,
Aut(Zn) = GL(n,Z), Out(Fn), Out(π1(Sg)) = Modg are rigid. The automor-
phism groups of GL(n,Z) and more generally arithmetic groups, Modg,n and
Out(Fn) are related to Mostow strong rigidity and have been discussed in the
earlier sections.

A natural question is how to construct new spaces starting from some new
spaces. As discussed in the previous subsection, one way to construct new
spaces is to consider the space of homeomorphisms (or diffeomorphisms). An-
other natural way is to consider moduli spaces of certain structures on the
spaces we started with. If we mimic the automorphism tower and construct
the moduli spaces inductively, a natural guess is that this process should ter-
minate after finitely many steps, i.e., the moduli space will eventually become
stationary.

This turns out to be true for Riemann surfaces (hyperbolic surfaces, or
algebraic curves over C), since Mg,n is rigid. If we start with the torus
Zn\Rn = (S1)n and consider the moduli space of flat metrics of total vol-
ume 1, then we get SL(n,Z)\SL(n,R)/SO(n), which is also rigid.

If we consider the moduli spaces of other objects such as K-3 surfaces etc,
their moduli spaces are given by arithmetic locally symmetric spaces and are
often rigid. See the book [185] and [207] for additional references.

In order to study Mg and put a complex structure on it, Teichmüller
initiated the systematic study of the Teichmüller space Tg via quasi-conformal
maps and hence introduced a metric on it. He also considered the question of
complex structures on Tg. On reason why it is easier to study the Teichmüller
space is that in general it is easier to study moduli spaces of more rigid objects,
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i.e., those that do not admit self-automorphisms, and to put structures of
smooth manifolds on the moduli spaces.

Let Sg,n be a compact oriented surface of genus g with n points removed. A
Riemann surface Σg,n of genus g with n punctures together with a homotopy
class of orientation preserving diffeomorphisms ϕ : Σg,n → Sg,n is called a
marked Riemann surface and denoted by (Σg,n, [ϕ]g,n). Two marked Riemann
surfaces (Σg,n, [ϕ]g,n) and (Σ′g,n, [ϕ

′]g,n) are defined to be equivalent if there
exists a biholomorphic map h : Σg,n → Σ′g,n such that ϕ′ ◦ h is homotopy
equivalent to ϕ.

Then the Teichmüller space Tg,n is defined to be the set of equivalence
classes of marked Riemann surfaces (Σg,n, [ϕ]g,n):

Tg,n = {(Σg,n, [ϕ]g,n)}/ ∼ . (1)

Remark 5.2. A marking on a Riemann surface Σg,n above is equivalent to
a choice of a set of generators of the fundamental group π1(Σg,n), but not
equivalent to a choice of a basis of H1(Σg,n), which is more common in Hodge
theory.

In this chapter, we assume (except if we specify the contrary) that 2g−2+
n > 0. Then each Riemann surface Σg,n admits a unique complete hyperbolic
metric of finite area that is conformal to the complex structure. Under this
assumption, the Teichmüller space Tg,n can also be defined to be the moduli
space of marked complete metrics of finite volume on Sg,n.

As defined earlier, Diff+(Sg,n) is the group of orientation preserving diffeo-
morphisms of Sg,n, and Diff0(Sg,n) its identity component. Then the quotient
group Diff+(Sg,n)/Diff0(Sg,n) is the mapping class group Modg,n.

Modg,n acts on Tg,n by changing the markings: for any ψ ∈ Diff+(Sg,n)
and a marked Riemann surface (Σg,n, [ϕ]),

ψ · (Σg,n, [ϕ]) = (Σg,n, [ψ ◦ ϕ]).

Clearly, the quotient Modg,n\Tg,n is equal to the moduli spaces Mg,n of
Riemann surfaces Σg,n of genus g with n punctures.

Remark 5.3. The idea of Teichmüller spaces has also been used for other
spaces and groups. For example, the outer spaces Xn of marked metric graphs
are defined in an almost identical way. As the earlier discussions indicated,
the similarity between the action of Out(Fn) on Xn with the action of Modg,n
on Tg,n has inspired a lot of exciting work. See [412] [414] [45] and references
there.

For general manifolds, the theory of Teichmüller spaces is often different.
See [134].
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5.3 Properties of Teichmüller spaces

In comparison with symmetric spaces of noncompact type, the first basic result
is the following.

Proposition 5.4. The Teichmüller space Tg,n is a real analytic manifold dif-
feomorphic to R6g−6+2n, and Modg,n acts properly on Tg,n.

It was first shown by Fricke that Tg,n has the structure of a real analytic
manifold and is homeomorphic to R6g−6+2n. An explicit homeomorphism (or
rather diffeomorphism) was given by Teichmüller via quasiconformal maps of
smallest distortion. Probably the easiest way to see the diffeomorphism is to
use the Fenchel-Nielsen coordinates. For details, see [327] [40, p. 269]. See
also [365] for a historical summary of Teichmüller spaces.

For the purpose of constructing the Deligne-Mumford compactification of
Mg,n using the Bers compactification of Tg,n in this chapter, the following
result is important as well.

Proposition 5.5. Tg,n is a complex manifold of dimension 3g − 3 + n and
can be realized as a bounded domain in C3g−3−n under the Bers embedding.
Modg,n acts on Tg,n by biholomorphic maps.

One way to view the complex structure of Tg,n is to take a base Riemann
surface (Σg,n, [ϕ]) and consider the complex Banach space B of all Beltrami
differentials on Σg,n, and realize Tg,n as a quotient of B. See [327].

The tangent space of Tg,n at (Σg,n, [ϕ]) can be identified with the space
of harmonic Beltrami differentials on Σg,n, and the cotangent space can be
identified with the space of holomorphic quadratic differential forms on Σg,n.

For the action of Modg,n on Tg,n, the following Nielsen realization result
[233] [424] is important.

Proposition 5.6. For every finite subgroup F ⊂ Modg,n, there exists a Rie-
mann surface Σg,n such that F is contained in Aut(Σg,n) and hence the set of
fixed point T Fg,n is nonempty.

5.4 Metrics on Teichmüller spaces

For the symmetric space X = G/K discussed earlier, there is a G-invariant
Riemannian metric which is unique up to scaling. This invariant metric enjoys
many good properties. It has been used effectively in many contexts and is
suitable for different applications.

On the other hand, the Teichmüller space Tg,n admits many different met-
rics introduced for various applications. They are all natural. In some sense,
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the presence of different metrics on Tg,n makes it a more interesting space. But
the lack of homogeneity of these metrics makes it more difficult to understand
their properties.

We will mention two such metrics: the Teichmüller metric and the Weil-
Petersson metric.

Given any two marked Riemann surfaces p1 = (Σg,n, [ϕ]), p2 = (Σ′g,n, [ϕ
′]),

for any quasi-coformal map f in the homotopy class [(ϕ′)−1 ◦ ϕ] from Σg,n to
Σ′g,n, let K(f) be the dilation of f . Then the Teichmüller distance between
p1, p2 is

dT (p1, p2) = inf
f

logK(f).

It is a complete Finsler metric and has the property that any two distinct
points are connected by a unique geodesic. But it is not a CAT(0)-metric.

Another important metric is the Weil-Petersson metric on Tg,n. At any
point (Σg,n, [ϕ]) ∈ Tg,n, the cotangent bundle of Tg,n is equal to the space
Q(Σg,n) of holomorphic quadratic differential forms on Σg. Let ds2 be the
hyperbolic metric of Σg,n. Then the inner product on the cotangent bundle is
given by: for ϕ1, ϕ2 ∈ Q(Σg,n),

〈ϕ1, ϕ2〉 =

∫
Σg,n

ϕ1ϕ2(ds2)−1.

It is a Kähler metric but is incomplete. On the other hand, it has the
following important property [425] [426].

Proposition 5.7. The Weil-Petersson metric on Tg,n is negatively curved and
geodesically convex in the sense that every two points are connected by a unique
geodesic.

Though the Weil-Petersson metric is not complete, the result in this propo-
sition is a good replacement. For example, the basic Cartan fixed point the-
orem (Proposition 4.18) for actions of compact isometry groups on complete
Riemannian manifolds of nonpositive curvature holds in this case.

5.5 Compacfications and boundaries of Teichmüller
spaces

Since Tg,n is noncompact, a natural problem is to construct and study some
natural compacfitications.

The following are few compactifications among all compactifications of Tg,n:

(1) The Teichmüller ray compactification of Tg,n obtained by identifying Tg,n
with R6g−6+2n using Teichmüller rays from a fixed basepoint and adding
the sphere S6g−6+2n−1 at infinity [235].
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(2) The Bers compactification of Tg,n obtained by taking the closure of the
image of Tg,n under the Bers embedding [327].

(3) The Thurston compactification [403].

(4) The harmonic map compactification [423].

(5) The extremal length compactification [144].

(6) The horofunction compactification with respect to the asymmetric Thurston
metric [415].

(7) The real spectrum compactification of Tg [82].

(8) The compactification via actions on Λ-trees [316].

Among the eight compactifications, the harmonic map compactification,
the horofunction compactification and the compactification via actions on R-
trees (i.e., when λ = R in [316]) are isomorphic to the Thurston compactifica-
tion.

It is also known that the action of Modg,n on Tg,n extends to a continuous
action to the Thurston compactification and hence also to the harmonic map
compactification and the horofunction compactification. It also extends con-
tinuously to the real spectrum compactification of Tg. On the other hand, it
does not extend continuously to the Teichmüller ray compactification or the
Bers compactification [234] [235].

The continuous extension of the action of Modg,n to the Thurston com-
pactification was used crucially in the classification of elements of Modg,n.
The action of Modg,n on the Thurston boundary is also important for various
rigidity results [165] [166] [236] [237].

It seems that the other compactifications have not been used for similar
applications. On the other hand, there is a closely related partial compactifi-
cation of Tg,n, which can be obtained from the Bers compactification. It can
be described in several different ways.

Recall that a Riemann surface Σ is called stable if its group of biholomor-
phic automorphisms is finite. This is equivalent to the condition that each
connected component of Σ has negative Euler characteristic and hence it is
also equivalent to the condition that Σ admits a complete hyperbolic metric
of finite area. (We note that the isometry group of any hyperbolic manifold of
finite volume is finite.) For example, a compact Riemann surface Σg of genus
g is stable if and only if g > 1. More generally, Σg,n is stable if and only if
2g − 2 + n > 0.

In [1], the augmented Teichmüller spaces T̂g,n was introduced. As a set, it
is the union of Tg,n and the set of stable Riemann surfaces which are obtained
from Σg,n by pinching along some simple closed geodesics. These boundary
stable Riemann surfaces are also marked in some sense. More specifically,
they correspond to the so-called regular b-groups in the boundary of the Bers
compactification [42] [284] [1].
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Three equivalent topologies were introduced on T̂g,n in [1]. They basically
correspond to the intuitive idea that a sequence of marked Riemann surfaces
Σg,n converges to a boundary stable curve if and only if a collection of disjoint
simple closed curves are pinched.

Its relation with the induced subspace topology from the Bers compactifi-
cation was not clear or discussed in [1]. We will address this later by using the
method of Satake compactifications of locally symmetric spaces.

One application of the augmented Teichmüller space T̂g,n is the following
result [1].

Proposition 5.8. The action of Modg,n on Tg,n extends to a continuous,

but not proper, action on T̂g,n, and the quotient Modg,n\T̂g,n is a compact

Hausdorff space. The compact quotient Modg,n\T̂g,n is a compactification of
the moduli space Mg,n and equal to the Deligne-Mumford compactification.

As mentioned before, the Weil-Petersson metric is not complete. An im-
portant result is the following [291] [425] [427].

Proposition 5.9. The completion of Tg,n with respect to the Weil-Petersson

metric is canonically homeomorphic to the augmented Teichmüller space T̂g,n.

Furthermore, with the extended distance function, T̂g,n is a CAT(0)-space.

This result is satisfying since it realizes the augmented Teichmüller space
T̂g,n completely in terms of an intrinsic metric of Tg,n.

One consequence is the following realization of the Deligne-Mumford com-

pactification Mg,n
DM

.

Corollary 5.10. The completion of Mg,n with respect to the Weil-Petersson

metric is equal to the Deligne-Mumford compactification Mg,n
DM

.

One consequence of this together with the results on the automorphism
group of the curve complex C(Sg,n) [188] [271] is the following corollary [293]
[425].

Corollary 5.11. With a few exceptions, the isometry group of the Weil-
Petersson metric of Tg,n is equal to Modg,n.

5.6 Curve complexes and boundaries of partial
compactifications

The boundary of the augmented Teichmüller space T̂g,n consists of Teichmüller
spaces of Riemann surfaces of lower genus with more punctures and of the same
Euler characteristic.



107

The inclusion relations between these boundary components of T̂g,n can
be described in terms of the curve complex C(Sg,n) of the surface Sg,n. It is
an infinite simplicial complex and plays an important role for the Teichmüller
space Tg,n as does the spherical Tits building ∆Q(G) for the symmetric space
X.

Specifically, consider the collection of the homtopy classes [c] of all essential
simple closed curves in Sg,n, i.e., simple closed curves that are not trivial or
homotopic to a loop around a puncture. They parametrize the vertices of
C(Sg,n). The vertices [c1], · · · , [ck+1] form the vertices of a k-simplex if and
only if they admit disjoint representatives.

It is known that C(Sg,n) is an infinite simplicial complex of infinite diameter
[188]. It clear that Modg,n acts simplicially on C(Sg,n).

Proposition 5.12. The quotient Modg,n\C(Sg,n) is a finite complex.

Proof. Since a simplex of C(Sg,n) of maximal dimension corresponds to a
maximal collection of disjoint non-homotopic simple closed curves on Sg,n, i.e.,
a pants decomposition, and since there are only finitely many homeomorphism
classes of pants decompositions, the proposition follows.

An important result due to Harer [169] is the following.

Proposition 5.13. The curve complex C(Sg,n) is homotopy equivalent to a
bouquet of spheres.

This is the analogue of the Solomon-Tits theorem for Tits buildings (Propo-
sition 4.65). From the proof, it was not clear if the bouquet contains at least
one sphere, i.e., if C(Sg,n) has trivial topology. This was answered in [192].

Proposition 5.14. The curve complex C(Sg,n) is homotopy equivalent to a
bouquet of infinitely many spheres. The dimension d of the spheres is d = 2g−2
when n = 0 and g ≥ 2, and d = 2g−3+n when g > 0 and n > 0, and d = n−4
when g = 0 and n ≥ 4.

Due to the collar theorem, two (or more) simple closed geodesics on a
hyperbolic surface Σg,n can be pinched simultaneously if and only if they are
disjoint. Then it is easy to imagine that each boundary Teichmüller space of
T̂g,n corresponds to a simplex of C(Sg,n).

Proposition 5.15. For each simplex σ of C(Sg,n), there is a boundary Te-

ichmüller space Tσ of T̂g,n, and for any two simplices σ1, σ2 in C(Sg,n), Tσ1
is

contained in Tσ2 as a face if and only if σ1 contains σ2 as a face.

Since each boundary Teichmüller space Tσ is contractible, we get the fol-
lowing result.
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Corollary 5.16. The boundary of the augmented Teichmüller space T̂g,n is
connected and has the homotopy type of a bouquet of infinitely many spheres.

Remark 5.17. One way to decompose intrinsically the boundary of the aug-
mented Teichmüller space T̂g,n into boundary Teichmüller spaces is to consider

the maximal totally geodesic subspaces when T̂g,n is considered as the com-
pletion of the Weil-Petersson metric and as a CAT(0)-space. For detailed
discussion of the CAT(0)-geometry of the augmented Teichmüller space T̂g,n,
see [425] [427].

See also [426] [427] for a detailed description of geometry of the boundary
Teichmüller spaces in T̂g,n.

5.7 Universal spaces for proper actions

As mentioned before, given any discrete group Γ, a natural problem is to con-
struct good models of universal spaces EΓ for proper actions of Γ, in particular,
cofinite models of EΓ spaces.

Proposition 5.18. The Teichmüller space Tg,n is a model of the universal
spaces EModg,n for proper actions of Modg,n.

Proof. For any finite subgroup F ⊂ Modg,n, by the Nielsen realization
result (Proposition 5.6), the set of fixed points T Fg,n is nonempty. To show that

it is contractible, take any two points p, q ∈ T Fg,n. Consider the Weil-Petersson
geodesic connecting them. Since such a geodesic is unique and p, q are fixed by
F , the geodesic is also fixed by F . This implies that T Fg,n is a totally geodesic
subspace of Tg,n and is hence contractible.

Remark 5.19. We can also use the fact that with respect to the Teichmüller
metric, every two points are connected by a unique geodesic to prove the
second statement in the proof. The negative curvature of the Weil-Petersson
metric can also be used to prove nonemptyness of the fixed point set T Fg,n.

Since Modg,n\Tg,n is noncompact, Tg,n is not a cofinite space of Modg,n.
To overcome this difficulty, a natural method is to construct an analogue of the
Borel-Serre partial compactification of symmetric spaces. Such an construc-
tion was outlined by Harvey [172] and carried out by Ivanov (see [188] and
references). On the other hand, it is not obvious that it satisfies the property
that the fixed point set of any finite subgroup on the partial compactifcation
is contractible.

Another way is to remove suitable neighborhoods of the infinity of Tg,n so
that its quotient by Modg,n is compact.
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For any small constant ε > 0, define the thick part of Tg,n by

Tg,n(ε) = {(Σg,n, [ϕ]) ∈ Tg,n | Σg,n has no closed geodesic of length < ε}.
(2)

Proposition 5.20. For ε sufficiently small, the thick part Tg,n(ε) is a real
analytic manifold with corners and invariant under Modg,n, and the quotient
Modg,n\Tg,n(ε) is a compact real analytic manifold with corners and hence has
the structure of a finite CW-complex.

The key statement that Modg,n\Tg,n(ε) is compact follows from the Mum-
ford compactness criterion for subsets of Mg,n [324].

Remark 5.21. The Mahler compactness criterion for subsets of the locally
symmetric space SL(n,Z)\GL+(n,R)/SO(n), the space of lattices of Rn, is a
foundational result in the reduction theory of arithmetic groups. The Mumford
compactness criterion was motivated by that, and this is another instance of
fruitful interaction between two spaces discussed in this chapter.

The expected fact that Tg,n(ε) is a cofinite model of EModg,n was proved
in [216].

Proposition 5.22. There exists a Modg,n-equivariant deformation retraction
of Tg,n to the thick part Tg,n(ε). In particular, for any finite subgroup F ⊂
Modg,n, the fixed point set Tg,n(ε)F is nonempty and contractible, and hence
Tg,n(ε) is a cofinite model of EModg,n.

It is clear that the thick part Tg,n(ε) is similar to the truncated subspace of
the symmetric space X mentioned in §4.19. Both spaces give cofinite models
for universal spaces of proper actions.

5.8 Cohomological properties of Modg,n

We now discuss some consequences of the existence of a cofinite EModg,n-space
in the previous subsection.

Proposition 5.23. Modg,n is of type WFL, which means that for any torsion-
free subgroup Γ′ of finite index there is a free resolution of Z over ZΓ′ of finite
length, and Modg,n is also of type FP∞. In particular, in every degree i,
Hi(Modg,n,Z) and Hi(Modg,n,Z) are finitely generated.

Determining the cohomology groups Hi(Modg,n,Z) is important and com-
plicated. The stable cohomology groups with rational coefficientsHi(Modg,n,Q)
can be computed (see [169] [188] [276] [275]).
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Another result is the following [169] [192].

Proposition 5.24. Modg,n is a virtual duality group and its dualizing module
is equal to Hi(C(Sg,n),Z), where i is the only positive degree in which the
homology of the curve complex C(Sg,n) is not equal to 0. On the other hand,
Modg,n is not a virtual Poincaré duality group.

The similarities with duality results for arithmetic subgroups in Proposition
4.67 are striking. The proof of these results are also similar, by using the
fact that the boundary of Tg,n(ε) has the same homotopy type as the curve
complex C(Sg,n) and the analogue of the Solomon-Tits theorem. This is one
instance showing similar roles played by the Tits building ∆Q(G) and the
curve complex C(Sg,n). For more results showing similarities between the Tits
building ∆Q(G) and the curve complex C(Sg,n) and references, see [210].

5.9 Pants decompositions and Bers constant

An important technique in studying hyperbolic metrics on surfaces Sg,n is to
understand pants decompositions. The reason is that hyperbolic surfaces can
be built up from the basic pieces, pairs of pants. For example, the Fenchel-
Nielsen coordinates can be defined for every pants decomposition.

Recall that for any hyperbolic surface Σg,n, a pants decomposition consists
of a collection of simple closed geodesics c1, · · · , c3g−3+n such that every con-
nected component of the complement in Sg,n is biholomorphic to the unit disk
with two disjoint smaller disks removed, i.e., a pair of pants.

Pants decompositions are not unique. Since every essential simple closed
curve in Σg,n, i.e., a curve not homotopic to a point or a loop around a punc-
ture, contains a unique simple closed geodesic in its homotopy class, any col-
lection of disjoint essential simple closed curves σ1, · · · , σ3g−3+n in Σg,n that
are pairwise nonhomotopic induces a pants decomposition. Then any element
φ ∈ Diff+(Σg,n), φ(σ1), · · · , φ(σ3g−3+n) also induce a pants decomposition,
which is in general different from the previous one.

By the above argument, we can see that any collection of disjoint essential
simple closed curves σ1, · · · , σ3g−3+n in Sg,n that are pairwise nonhomotopic
induce a pants decomposition for every marked Riemann surface (Σg,n, [ϕ]) in
Tg,n.

A natural question is, for a given hyperbolic surface Σg,n, what kind of
pants decompositions are optimal in some sense.

This is answered by the following basic result (see [90, Chap 5]).

Proposition 5.25. There exists a constant δ = δ(g, n) such that every hyper-
bolic surface Σg,n admits a pants decomposition such that the lengths of the
geodesics in the pants decomposition are bounded from above by δ.
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The constant δ(g, n) in the proposition is called a Bers constant. The
minimal value it can take is not known. It is not clear how many pants
decompositions satisfying the above conditions exist.

5.10 Fundamental domains and rough fundamental
domains

Motivated by the reduction theory for arithmetic groups and its applications
to understanding the structure of arithmetic groups and associated locally
symmetric spaces, a natural and important problem for the action of Modg,n
on Tg,n is to find fundamental domains and rough fundamental domains that
reflect properties of Modg,n and Tg,n. Besides their importance in understand-
ing structures of mapping class groups, finding good fundamental domains is
an interesting problem in itself.

The earlier discussion about the reduction theory of arithmetic subgroups
indicates that it is not easy to construct fundamental domains. For many ap-
plications, rough fundamental domains with properties adapted to structures
at infinity of Teichmüller spaces might be equally or even more useful than
complicated fundamental domains.

In this subsection, we construct rough fundamental domains using the so-
called Bers sets by using the pants decompositions that satisfy the conditions
in Proposition 5.25. In the next section, we generalize Minkowski reduction
to the action of Modg on Tg to obtain an intrinsically defined fundamental
domain. This is closely related to a folklore open problem on constructing
intrinsic Modg-equivariant cell decompositions of Tg (see Problems 5.30 and
5.31 in the next subsection).

Before we define Bers sets, we summarize some earlier results on fundamen-
tal domains, rough fundamental domains for mapping class groups Modg,n and
related Modg,n-equivariant tiling of Tg,n:

(1) A fundamental domain for Modg in Tg was constructed and defined
by finitely many equations involving lengths of (non-seperating) sim-
ple closed geodesics in [285] [286]. In some lower genus cases, defining
equations are worked out in [287] [288] and [151] [152] more explicitly.
The topology of the fundamental domain is not clear; for example, it is
not known whether it is a cell.

(2) The Dirichlet fundamental domain for Modg,n with respect to the Te-
ichmüller metric of Tg,n was studied in [297]. It is star-shaped with
respect to the center. It is intrinsically defined in terms of the geometry
of all Riemann surfaces in Tg,n once the center is chosen, but it is not
defined in terms of the intrinsic geometry of each Riemann surface alone.
It is not clear whether the closure in the augmented Teichmüller space
T̂g,n is a cell.
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(3) A fundamental domain for Modg when g = 2 was given in [229] explicitly
in terms of nonlinear polynomials in some special coordinates of Tg. The
topology of the fundamental domain is not clear. There are also related
results in [230].

(4) Rough (or approximate) fundamental domains for Modg,n were first in-
troduced in [228] to solve a conjecture of Bers. Later in [90] and also
implicitly in [3], different rough fundamental domains for Modg,n were
introduced using Bers sets and Fenchel-Nielsen coordinates. This is anal-
ogous to the reduction theory for arithmetic groups acting on symmetric
spaces of noncompact type (see [57] [61]).

(5) Equivariant cell decompositions of Tg,n for pairs (g, n) with n > 0 for
small values g and n or for some subgroups of Modg,n were given in
[375] [376]. Though equivariant cell decompositions of Tg,n are known in
[169] [170] [65] [345] [346] [347] (see the next subsection for more detail),
the point of the papers [375] [376] is to use systoles (minimal length
of geodesics) to obtain such cell decompositions so that they might be
generalized to the case Tg.

(6) Generalizing the precise reduction theory of arithmetic groups acting on
symmetric spaces of noncompact type [371], an equivariant tiling of Tg
was given in [257]. (A tiling of a symmetric space means here an equiv-
ariant decomposition of the symmetric space. But each piece could have
large stabilizers, and hence it is not an equivariant cell decomposition.
See §4.10 for more detail.) To get an fundamental domain from this
tiling, one needs to get a fundamental domain for each tile with respect
to the stabilizer in Modg of the tile. The central tile is invariant un-
der Modg with a compact quotient, and how to get such a fundamental
domain of Modg for the central tile is not automatic or obvious. Get-
ting a fundamental domain for other tiles depends on the central tile of
Teichmüller spaces of smaller dimensions.

(7) In the case of genus 2, an equivariant cell decomposition of Tg was ob-
tained in [367] using Weierstrass points.

Now we define the rough fundamental domains introduced in [228] [3]
[90]. For every pants decomposition P = {c1, · · · , c3g−3+n} of Sg,n, there
is a Fenchel-Nielsen coordinate system:

FNP : Tg,n → R3g−3+n
+ × R3g−3+n,

(Σg,n, [ϕ]) 7→ (`1, · · · , `3g−3+n, θ1, · · · , θ3g−3+n),

where `i is the length of the simple closed geodesic γi in the homotopy class
ϕ−1(ci), and θi is the twisting angle along the geodesic γi. The twisting angles
are not canonically defined and depend on an additional choice, for example,
some extra combinatorial data.
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For each pants decomposition P, for any positive constants b1, b2, define a
Bers region

BP,b1,b2 = FN−1
P ((0, b1]× · · · × (0, b1]× [−b2, b2]× · · · × [−b2, b2]).

It is known that up to the action of Modg,n, there are only finitely many
equivalence classes of pants decompositions of Sg,n. Let P1, · · · ,Pm be repre-
sentatives of these equivalence classes of pants decompositions.

Let δ = δ(g, n) be the Bers constant in Proposition 5.25. For each Pi, let
Bi be the Bers region BPi,δ,π.

Proposition 5.26. The union B = B1 ∪ · · · ∪ Bm is a rough fundamental
domain for the Modg,n-action on Tg,n. It satisfies both the local finiteness and
the global finiteness conditions.

The fact that the Modg,n-translates of B cover Tg,n follows from Proposition
5.25. For the proof that it is a rough fundamental domain satisfying the
finiteness conditions, see [90, §6.6].

Remark 5.27. As mentioned before, the curve complex C(Sg,n) is similar to
the spherical Tits building ∆Q(G), and hence minimal Q-parabolic subgroups
of G correspond to pants decompositions P of Sg,n. The discussions above give
a concrete example of such a comparison. The Fenchel-Nielsen coordinate sys-
tem of Tg,n associated with P is similar to the horospherical decomposition of
the symmetric space X associated the minimal Q-parabolic subgroup P. Then
the Bers subsets of Tg,n associated with P correspond to the Siegel subsets of
X associated with P in Definition 4.33. The horospherical decomposition of
the symmetric space X associated to non-minimal Q-parabolic subgroups are
important in the reduction theory of arithmetic groups and compactifications
of the locally symmetric space Γ\X. Similarly, there is also a generalization of
the Fenchel-Nielsen coordinate system of Tg,n for any sub-collection of simple
closed curves contained in any pants decomposition P.

Proposition 5.26 is the analogue of the reduction theory for arithmetic
groups in Proposition 4.34. As mentioned in the summary earlier in this
subsection, an analogue of the reduction theory in [371], i.e., the Γ-equivariant
tiling of X recalled in §4.10, also holds for Modg,n [257].

5.11 Generalized Minkowski reduction and fundamental
domains

After obtaining rough fundamental domains for the Modg,n-action on Tg,n
in the previous subsection, a natural problem is to construct a fundamental
domain for Modg,n.
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In the case of arithmetic groups Γ, there are two cases depending on whether
the symmetric space X is linear or not. If X is linear, a fundamental domain
for the Γ-action can be described and is given by the union of finitely many
polyhedral cones in the associated symmetric cone. In the general case, the
situation is more difficult and is not known.

For the action of Modg,n on Tg,n, if n > 0, a stronger result than con-
structing fundamental domains is known. Specifically, there is the following
important result.

Proposition 5.28. Assume n > 0. Then Tg,n admits an intrinsic Modg,n-
equivariant cell decomposition, and there are only finitely many Modg,n-orbits
of cells.

It is due to many people including Mumford, Thurston, Harer [169], Pen-
ner [345], Bowditch-Epstein [65]. This result is similar to the Γ-equivariant
polyhedral cone decompositions of linear symmetric spaces.

An immediate corollary is

Corollary 5.29. The Modg,n-action on Tg,n admits a fundamental domain
consisting of finite cells in the equivariant cell decomposition in Proposition
5.28.

Proposition 5.28 has several important applications.

(1) A proof of the Witten conjecture on the intersection theory of the moduli
space Mg,n by Kontsevich [244]. (See also Chapter 5 of volume II of
this Handbook [314] for a survey of Witten’s conjecture and its various
proofs.)

(2) Evaluation of the Euler characteristic of Modg,n by Harer-Zagier [171].

The method of proof of Proposition 5.28 depends crucially on the pres-
ence of punctures, i.e., n > 0. Partially motivated by the above results, a
longstanding folklore problem is the following.

Problem 5.30. Construct an intrinsic cell decomposition of Tg such that the
following conditions are satisfied:

(1) It is equivariant with respect to Modg and there are only finitely many
Modg-equivalence classes of cells. (Naturally some cells are not closed
since Modg\Tg is noncompact.)

(2) It descends to a finite cell decomposition of Mg.

(3) The closure of each cell in the augmented Teichmüller space T̂g is a closed
cell so that the cell decomposition of Mg extends to a finite cell decom-

position of the Deligne-Mumford compactification Mg
DM ∼= Modg\T̂g.
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It should be emphasized that the key point is that the cell decomposition
should be intrinsic, i.e., depending on the intrinsic hyperbolic geometry or
complex structure of the marked Riemann surfaces in Tg. Otherwise, the
existence of such an equivariant cell decomposition follows easily from general
facts on the existence of triangulations of analytic spaces and the fact that
Mg admits a compactification which is a projective variety (See [202]). The
existence of an equivariant cell decompositions of Tg implies the existence of
fundamental domains for the action of Modg on Tg, which consist of a union of
finitely many representatives of the cells. As one step towards solving Problem
5.30, a weaker problem is to find an intrinsic fundamental domain for Modg
which is the union of finitely many cells such that they have no overlap in the
interior, and the closure of each cell in T̂g is also a cell. Then the Γ-translates
of these cells give an equivariant decomposition of Tg with disjoint interior,

and their closures in T̂g also give an equivariant decomposition of T̂g into cells.
Therefore, a weaker version of Problem 5.30 is the following:

Problem 5.31. Construct a fundamental domain of the Modg-action on Tg
which consists of a finite union of cells such that these cells are defined in-
trinsically and their interiors are disjoint and their closures in the augmented
Teichmüller space T̂g are also cells.

Remark 5.32. For a public statement of Problem 5.30 on equivariant intrinsic
cell decompositions of Tg with an extension to the augmented space T̂g, see
Problems 1 and 2 by D. Sullivan of the CTQM problem list. In these problems,
Sullivan proposed to use Weierstrass points of compact Riemann surfaces to
replace the punctures to solve this problem. This list of open problem was
created in 2006 at the opening symposium of Center for the Topology and
Quantization of Moduli Spaces, University of Aarhus. It is posted as the
website http://www.ctqm.au.dk/PL/ . It was also raised at a workshop on
the moduli space of curves and is posted at
http://www.aimath.org/WWN/modspacecurves/open-problems/index.html

In this section, we discuss a generalization of Minkowski reduction for the
action of SL(n,Z) on the space of positive definite quadratic forms to the
action of Modg on Tg, and hence give a solution to Problem 5.31. For more
details, see [202].

The key concept is the notion of reduced ordered pants decomposition of a
marked hyperbolic Riemann surface.

Let P = {c1, · · · , c3g−3} be an ordered collection of simple closed geodesics
of a hyperbolic surface Σg such that they form an ordered pants decomposition
of Σg. It is called a reduced ordered pants decomposition of Σg if the following
conditions are satisfied:

(1) The geodesic c1 has shortest length among all simple closed geodesics in
Σg.
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(2) The geodesic c2 has shortest length among all simple closed geodesics in
Σg that are disjoint from c1.

(3) More generally, for any i ≥ 2, ci has shortest length among all simple
closed geodesics in Σg that are disjoint from c1, · · · , ci−1.

It is clear that such a reduced ordered pants decomposition always exists,
but is not necessarily unique. It is not unique if and only if there are more
than one simple closed geodesics of minimal length at some stages in the
above definition. On the other hand, if c1 is a unique simple closed geodesic
of shortest length, i.e., a unique systole, and for every i ≥ 2, ci is a unique
simple closed geodesic of shortest length that is disjoint from c1, · · · , ci−1,
then {c1, · · · , c3g−3} is a unique reduced ordered pants decomposition. It is
clear that a generic hyperbolic surface Σg has a unique reduced ordered pants
decomposition.

For any ordered pants decomposition P = {c1, · · · , c3g−3} of Sg, define a

domain Ω̃P of Tg as follows:

Ω̃P = {(Σg, [ϕ]) ∈ Tg | [ϕ−1(P)] is a reduced ordered pants decomposition of Σg},
(3)

where [ϕ−1(P)] represents the ordered pants decomposition of Σg consisting
of the unique geodesics in the homotopy classes [ϕ−1(ci)], i = 1, · · · , 3g − 3.

The domain Ω̃P is invariant under the stabilizer of P in Modg, denoted by
StabP . The reason is that if P is a reduced ordered pants decomposition for
a marked Riemann surface (Σg, [ϕ]), then for any element [ψ] ∈ Modg, ψ(P)
is also a reduced ordered pants decomposition of the new marked Riemann
surface [ψ] · (Σg, [ϕ]).

To construct a fundamental domain for the Modg-action on Tg, we need

to find fundamental domains of StabP in Ω̃P . For this purpose, we need to
identify StabP . It is clear that StabP contains the subgroup generated by
the Dehn twists along curves in P. But it could also contain some half Dehn
twists.

To explain this, we call a curve ci ∈ P hyper-elliptic if ci separates off a
one-holed torus, i.e., one connected component of Σg − ci is biholomorphic to
a Riemann surface of genus 1 with a small disk removed.

Lemma 5.33. For every hyper-elliptic curve ci ∈ P, the half Dehn twist along
ci is contained in Modg and also in the stabilizer StabP .

The idea of the proof is as follows. Each compact Riemann surface of
genus 1 with one distinguished point admits an involution that fixes the dis-
tinguished point. Remove a small disk around this point that is stable under
the involution. Then this involution corresponds to a half Dehn twist along
the boundary circle. Let Σ′,Σ′′ be the two connected components of Σg − ci.
Suppose that Σ′ is a one-holed torus. Then the involution on the pointed
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elliptic curve defines an involution on Σ′. Extend it to Σ′′ such that it is the
identity map outside a small tubular neighborhood of ci, and the extended
map on Σg is a half Dehn twist of ci.

Given an ordered pants decomposition P, let Γ be the subgroup of Modg
generated by the half Dehn twists on all hyper-elliptic curves in P and full
Dehn twists on the other curves in P. Then we have the following result.

Proposition 5.34. The stabilizer StabP is equal to ΓP , and hence the domain
Ω̃P is invariant under ΓP .

We note that in the definition of a reduced ordered pants decomposition,
we have only imposed conditions on the lengths of the geodesics ci in [ϕ−1(P)].
Since the Dehn twists along these geodesics do not change the fact that P is
an ordered reduced pants decomposition and the lengths of these geodesics, it
is natural to find conditions on the twisting parameters θ1, · · · , θ3g−3.

For each curve ci ∈ P, define mi = 1
2 if ci is hyper-elliptic, and mi = 1

otherwise. The choice of the value of mi is determined by the minimal Dehn
twist along ci that is contained in StabP .

Define a subdomain ΩP of Ω̃P by

ΩP ={(`1, θ1; · · · ; `3g−3, θ3g−3) ∈ Ω̃P | θi ∈ [0, 2πmi], i = 1, · · · , 3g − 3}. (4)

From the description of the stabilizer StabP , it is clear that the subdomain
ΩP is a fundamental domain of the StabP -action on Ω̃P .

For any pants decomposition P, the twisting angles θi are not uniquely
defined and depend on various choices. In [48], some particularly nice ones are
chosen so that the length functions associated with simple closed geodesics are
convex functions in the associated Fenchel-Nielsen coordinates.

A crucial property is the following result [202, Proposition 5.3].

Proposition 5.35. With respect to a suitable choice of Fenchel-Nielsen coor-
dinates of Tg for each pants decomposition P in [48], ΩP is contractible.

The basic idea is to deform along the anti-stretch lines in the Thurston
metric of Tg [404] so that in the deformation process, P is kept as a reduced
ordered pants decomposition and the twisting coordinates remain invariant.

Let P1, · · · ,Pn0
be representatives of Modg-equivalence classes of pants

decompositions of Sg as above. Let ΩP1
, · · · ,ΩPn0

be the domains associated
with them as defined in Equation (4). Define

Ω = ΩP1
∪ · · · ∪ ΩPn0

. (5)

Then one of the main results of [202] is the following, which gives a solution
to Problem 5.31.
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Theorem 5.36. The domain Ω is an intrinsically defined fundamental domain
for the Modg-action on Tg satisfying the following properties:

(1) It satisfies both the local finiteness and global finiteness conditions.

(2) Each domain ΩPi
in Tg is a cell and its closure ΩPi

in T̂g is also a cell.

By the same argument, a fundamental domain for the action of Modg,n on
Tg,n can be constructed and enjoys the same properties.

5.12 Compactifications of moduli spaces and a
conjecture of Bers

Suppose that a discrete group Γ acts properly on X with a noncompact quo-
tient Γ\X. A natural and important problem is to understand relations be-
tween compactifications of X and Γ\X. If Γ is infinite, the quotient of a
compactification X of X by Γ is non-Hausdorff in general, since the Γ-action
on the boundary is not proper since any infinite group cannot act properly on
a compact space.

This problem has been discussed earlier in the setup of actions of arith-
metic groups on symmetric spaces of noncompact type and compactifications
of symmetric and locally symmetric spaces. Though this problem was known
for a long time for compactification of the upper half plane and its quotients,
it was Satake [374] who formulated it for general symmetric spaces and their
arithmetic quotients.

In this section, we follow the method of Satake compactifications of locally
symmetric spaces to construct the Deligne-Mumford compactification ofMg,n

from the Bers compactification of Tg,n. We believe that this might be the
motivation for a conjecture of Bers [42, Conjecture IV, p. 599].

Near the end of this subsection, we also explain how to apply the same
procedure to construct a new compactification of Mg,n whose boundary is
equal to Modg,n\C(Sg,n), a finite simplicial complex.

Recall that for every fixed base point (Σg,n, [ϕ]) in Tg,n, there is a Bers
embedding

iB : Tg,n ↪→ C3g−3+n ∼= Q(Σg,n),

where Q(Σg,n) is the space of holomorphic quadratic differentials on Σg,n. It
is a holomorphic embedding and the image is a bounded star-shaped domain.

The closure iB(Tg,n) is the Bers compactification and it is denoted by Tg,n
B

.

The geometry of the Bers boundary ∂Tg,n
B

is complicated. We can also

define analytic arc components in ∂Tg,n
B

as for bounded symmetric domains.
Though we cannot determine all the analytic arc components, it is known that

the boundary ∂Tg,n
B

contains some natural complex submanifolds.
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In fact, it is known [2, §5] (see also [299, Theorem 1.2, Corollay 1,3]) that
every stable Riemann surface of Euler characteristic 2− 2g−n appears in the

boundary ∂Tg,n
B

. By [2, Corollary 1, p. 230], we have the following result.

Proposition 5.37. For every marked stable Riemann surface Σ0 that is con-

tained in the boundary ∂Tg,n
B

, the Teichmüller space of Σ0 is contained in the

boundary ∂Tg,n
B

as well.

In [42, Conjecture IV, p. 599], Bers stated the following conjecture.

Conjecture 5.38. There exists a fundamental domain Ω for the Modg,n-

action on Tg,n such that the intersection of the closure of Ω in Tg,n
B

consists
of cusps.

The notion of cusp is defined as follows. Let Σg,n be the fixed base Riemann
surface that defines the Bers emedding. Write it as a quotient ΓΣ\H2, where
ΓΣ is a discrete subgroup of PSL(2,R). Then there is an embedding

Tg,n → Hom(ΓΣ,PSL(2,C))/conjugation.

The closure of this embedding can be identified with the Bers embedding Tg,n
B

[299, p. 218]. Under this identification, and according to the definition in [42,

p. 571] (see also [42, Theorem 10]), a boundary point in ∂Tg,n
B

given by
a discrete faithful representation ϕ : ΓΣ → PSL(2,C) is called a cusp if a
hyperbolic element in ΓΣ is mapped to a parabolic element.

A coarse fundamental domain for the Modg,n-action on Tg,n was con-
structed in [228] and is was shown that the intersection of the closure of the
rough fundamental domain with the boundary ∂Tg,n consists of cusps.

An immediate corollary of [228] and the above discussion of fundamental
is the following result.

Proposition 5.39. The fundamental domain Ω for the Modg-action on Tg
in Theorem 5.36 satisfies the Bers conjecture. More generally, a similarly
defined fundamental domain for the Modg,n-action on Tg,n also satisfies the
Bers conjecture.

Proof. By construction, the fundamental domain Ω in Theorem 5.36
is contained in the rough fundamental domains of [228], and the proposition
follows immediately. Alternatively, we can see directly that for any unbounded
sequence of marked hyperbolic surfaces in each domain ΩPi in Theorem 5.36,
some geodesics in the pants decomposition Pi are pinched, i.e., their lengths

go to 0. This implies that every boundary point in Ω ∩ ∂Tg
B

is a cusp.
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Denote by Ωg,n the fundamental domain for the action of Modg,n on Tg,n.
When n = 0, it is reduced to Ω in Theorem 5.36.

It is clear that any regular b-group, i.e., a stable Riemann surface that

appears in the boundary of ∂Tg,n
B

, is a cusp. But the converse is not true
in general. For example, assume g ≥ 3. We can pinch one separating simple
closed geodesic in Σg, and deform the connected component of genus at least 2
to a degenerate boundary point in the sense of [42] [1]. Then the corresponding
boundary point of Tg is a cusp but not a b-regular group.

The following slightly stronger result holds and is important for the discus-
sion of this section.

Proposition 5.40. The intersection of Ωg,n ∩ ∂Tg,n
B

consists of stable Rie-
mann surfaces, and every marked stable Riemann surface belongs to a translate
γΩg,n for some γ ∈ Modg,n.

Proof. For simplicity, we discuss the case of Tg. For a pants decom-
position Pi in Theorem 5.36 and its associated domain ΩPi

, if a sequence of
marked Riemann surfaces (Σj , [ϕj ]) ∈ ΩPi converges to a boundary point in

ΩPi
∩∂Tg

B
, then by passing to a subsequence if necessary, we can assume that

a subset of geodesics of (Σj , [ϕj ]) contained in Pi is pinched, i.e., their lengths
go to 0, and for the other geodesics in Pi, their lengths converge to positive
numbers, and their Fenchel-Nielsen twisting parameters also converge. Such a
sequence (Σj , [ϕj ]) determines a marked stable Riemann surface (Σ∞, [ϕ∞]).
By [299, Theorem 1.2, Corollary 1.3], the sequence (Σj , [ϕj ]) also converges

to (Σ∞, [ϕ∞]) in the Bers compactification Tg
B

. (Note that this is a crucial
point. Of course, (Σj , [ϕj ]) converges to (Σ∞, [ϕ∞]) in the augmented Te-

ichmüller space T̂g with respect to the three equivalent topologies in [1]. But

we need the convergence with respect to the Bers compactification Tg
B

.) In
the above proof, we have used the fact that the marked stable Riemann surface

(Σ∞, [ϕ∞]) is contained in the Bers compactification Tg
B

. This proves that

the limit point of the sequence (Σj , [ϕj ]) ∈ ΩPi in Tg
B

is a stable Riemann
surface, and the first statement is proved.

For the second statement, we note that for any marked stable Riemann
surface (Σ∞, [ϕ∞]) of Euler characteristic 2−2g−n, by opening up the nodes,
i.e., pairs of cusps, we obtain marked Riemann surfaces (Σj , [ϕj ]) in Tg. By
passing to a suitable subsequence and under the action of some elements of the
subgroup of Modg generated by the Dehn twists of the opened up geodesics, we
can assume that (Σj , [ϕj ]) is contained in γΩPi

for some pants decomposition
Pi and γ in the stabilizer StabPi

of Pi in Modg. Then the arguments in
the previous paragraph show that (Σ∞, [ϕ∞]) is the limit of a subsequence

of (Σj , [ϕj ]) in the Bers compactification Tg
B

, and hence is contained in the
closure γΩPi

.



121

In constructing Satake compactifications of locally symmetric spaces Γ\X,
a boundary point of a Satake compactification of X is called Siegel rational [61,
p. 289] [374] if it meets the closure of a Siegel set of a Q-parabolic subgroup.

Recall that we defined Bers sets BP,b1,b2 in §5.10. For simplicity, denote it
by BP . Similarly we can introduce the following.

Definition 5.41. A boundary point in ∂Tg,n
B

is called rational if it is in the
closure of a Bers set BP for some pants decomposition P.

Then Proposition 5.40 says that the set of rational boundary points of

Tg,n
B

consists of exactly regular b-groups. The boundary Teichmüller spaces
in Proposition 5.37 consists of rational points and hence can be called rational
boundary components.

Now we can apply the method in defining Satake compactifications of lo-
cally symmetric spaces in [374] [61, §III. 3] to construct the Deligne-Mumford
compactification ofMg,n and also to recover the topologies on the augmented
Teichmüller space in [1].

By the above discussions, we have the following result.

Proposition 5.42. The augmented Teichmüller space T̂g,n mentioned in §5.4

is equal to the union of Tg,n with all rational boundary points of Tg,n
B

.

It is clear that Modg,n acts on T̂g,n. For every Bers set BP , the closure BP
in Tg,n

B
is contained in T̂g,n. Endow BP with the subspace topology induced

from the Bers compactification Tg,n
B

.

Proposition 5.43. There is a natural topology on T̂g,n that is induced from

the topology of the Bers compactification Tg,n
B

such that the action of Modg,n
on T̂g,n satisfies the following properties:

(1) It induces the topology on Tg,n and the closure of every Bers set BP .

(2) The Modg,n-action on T̂g,n is continuous.

(3) For every point p ∈ T̂g,n, there exists a fundamental system of neighbor-
hoods {U} of p such that for γ in Modg,n that fixes p, γU = U , and for
the other γ, γU ∩ U = ∅.

(4) If p, p′ ∈ T̂g,n are not in one Modg,n-orbit, then there exist neighborhoods
U of p and U ′ of p′ such that Modg,nU ∩ U ′ = ∅.

Furthermore, any topology on T̂g,n satisfying the above conditions is equal to
the natural one defined above.
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The basic idea is that for any boundary point p contained in the closure BP
of a Bers set, take a neighborhood V of p in BP . Then the union of translates
of V by elements of the stabilizer of p in Modg,n gives a neighborhood in the

Satake topology of T̂g,n. This can be seen clearly in the context of SL(2,Z)
acting on H2 where horodisk neighborhoods of rational boundary points give
the Satake topology.

The same proof of [374] works by noticing the fact that the induced ac-

tion of Modg,n on each boundary Teichmüller space in Tg,n
B

is the action of
corresponding mapping class groups and hence is proper.

It should be stressed that this Satake topology on T̂g,n is definitely differ-

ent from (i.e., strictly finer than) the subspace topology on T̂g,n when it is

considered as a subspace of Tg,n
B

.

Remark 5.44. The proof of Proposition 5.40 shows that the topology of BP is
the same as the topologies induced from the three equivalent topologies on T̂g,n
defined in [1]. Therefore, the Satake topology on the augmented Teichmüller
space T̂g,n is equivalent to the three topologies in [1]. One important fact
might be that the Satake topology here is defined using the topology of the

Bers compactification Tg,n
B

. Therefore, we have constructed the augmented

Teichmüller space T̂g,n (both the underlying space and the topology) purely
in terms of the Bers compactification. This is in some sense similar to the fact
that the Weil-Petersson completion of Tg,n gives an intrinsic construction of

T̂g,n in Proposition 5.9.

An immediate corollary of Proposition 5.43 is the following.

Proposition 5.45. The quotient Modg,n\T̂g,n of T̂g,n with the Satake topology
is a compact Hausdorff space, which is equal to the Deligne-Mumford compact-

ification Mg,n
DM

.

Proof. The first statement follows from the properties of the Satake
topology. The second statement follows from the construction of the Deligne-

Mumford compactification Mg,n
DM

that it is the moduli space of all stable
Riemann surfaces of Euler characteristic 2− 2g − n.

Remark 5.46. In his papers [40] [41] [42], Bers did not explain his motivations
for making Conjecture IV of [42] (see also [40, p. 296] ), i.e., Conjecture 5.38
above. It seems that the above construction of the Deligne-Mumford compact-

ificationMg,n
DM

from the Bers compactification Tg,n
B

following the method
of compactifications of locally symmetric spaces should be one of the moti-
vations. In some of his earlier works, Siegel had considered compactifications
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of fundamental domains of special arithmetic groups. Bers might have been
motivated by some work of Siegel. The comments in [40, p. 296] might also
justify the claim in this remark. On the other hand, it is important to note
that compactifications of fundamental domains are related to, but different
from, compactifications of locally symmetric spaces.

As discussed earlier in this chapter, besides the Bers compactification, the
Teichmüller space Tg,n admits several compactifications. Among them, the

Thurston compactification Tg,n
Th

is probably the most interesting. A natu-
ral problem is to apply the above procedure to the Thurston compactifica-

tion Tg,n
Th

and to construct the corresponding compactification of Mg,n. It
turns out to be a new compactification of Mg,n whose boundary is equal to
Modg,n\C(Sg,n), a natural finite simplicial complex [205].

As in Definition 5.41, a boundary point of the Thurston compactification

Tg,n
Th

is called rational if it is contained in the closure of a Bers set BP of a
pants decomposition P.

It is known that the curve complex C(Sg,n) can be canonically embedded

into the boundary of Tg,n
Th

. Then the following result can be proved [198].

Proposition 5.47. For any Bers set BP , the intersection of the closure of
BP with the Thurston boundary ∂BP is equal to the simplex corresponding to
the pants decomposition P.

A corollary is the following result.

Corollary 5.48. The set of rational boundary points of Tg,n
Th

is equal to the
curve complex C(Sg,n).

Consequently, the partial compactification of Tg,n corresponding to the

Thurston compactification Tg,n
Th

is equal to Tg,n∪C(Sg,n), and the associated
compactification of Mg,n is Mg,n ∪Modg,n\C(Sg,n).

This compactification is similar to the Tits compactification of an arith-
metic locally symmetric space Γ\X in [215], whose boundary is Γ\∆Q(G), the
quotient by Γ of the Tits building ∆Q(G). Besides this formal similarity, the
construction is also similar.

Remark 5.49. Naturally, we will also get a different compactification ofMg,n

from the Teichmüller compactification of Tg,n by the above procedure. It would
be interesting to identify this compactification.
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5.13 Geometric analysis on moduli spaces

The moduli spaceMg,n has been extensively studied from the points of view of
algebraic topology, complex geometry, algebraic geometry and mathematical
physics etc.

In this section, we would like to raise several questions about Mg,n and
emphasize the point of view of geometric analysis. The basic point is that
Mg,n is also an important Riemannian orbifold and its geometry and analysis
should be studied and better understood. We believe that this is an important
direction to be explored.

The spectral theory of arithmetic locally symmetric spaces Γ\X has played
a fundamental role in the theory of automorphis forms for Γ. A natural prob-
lem is to study the spectral theory of Mg,n.

As mentioned before, Tg,m admits several Modg,n-invariant Riemannian
metrics, for example, the Weil-Petersson metric, the Bergman metric, the Ricci
metric, the McMullen metric etc. They induce Riemannian metrics on Mg,n.
Though Mg,n is an orbifold, many concepts and techniques for Riemannian
manifolds can be generalized to orbifolds and hence to Mg,n. In particular,
each Riemannian metric on Mg,n induces a Laplace operator.

Since the Weil-Petersson metric is incomplete, the first question is whether
the Laplace operator with domain C∞0 (Mg,n) is essentially self-adjoint.

The answer seems to be positive. In a joint work in progress with R.
Mazzeo, W. Müller, and A. Vasy, we expect to prove the following result.

Theorem 5.50. The Laplace operator of Mg,n acting on functions with re-
spect to the Weil-Petersson metric is essentially self-adjoint and hence has a
unique self-adjoint extension. Its spectrum is discrete and its counting func-
tion satisfies the Weyl law for the counting function of eigenvalues of compact
Riemannian manifolds.

For other complete metrics such as the Bergman metric and the Ricci
metric, it is known that the Laplace operator is essentially self-adjoint and
has a unique self-adjoint extension. Using the asymptotic behaviors of these
metrics near the infinity of Mg,n, it can be shown that the spectrum of the
Laplace operator is not discrete. On the other hand, it is not clear whether the
non-discrete part of the spectrum is absolutely continuous, i.e., whether the
spectrum measure is absolutely continuous. It is also desirable to understand
structures of generalized eigenfunctions.

For Hermitian arithmetic locally symmetric spaces Γ\X, an important re-
sult is the validity of the Zucker conjecture, which says that the L2-cohomology
group of Γ\X is canonically isomorphic to the intersection cohomology group
of the Baily-Borel compactification of Γ\X. The Lp-cohomology groups of
Γ\X were also studied in [433]. See [217] in this volume for a more detailed
discussion.
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A natural problem is to relate the L2-cohomology group of Mg,n to some
cohomology groups of compactifications of Mg,n.

Probably the most natural and important compactification of Mg,n is the

Deligne-Mumford compactification Mg,n
DM

. It is a compact orbifold and
hence its intersection cohomology group is equal to the usual cohomology
group.

Of course, the Lp-cohomolgy group of a Riemannian manifold (or an orb-
ifold) depends only on the quasi-isometry class of the metric.

The following two results are proved in [217].

Proposition 5.51. For any p with 4/3 ≤ p < +∞, the Lp-cohomology group
of Mg,n with respect to the Weil-Petersson metric is canonically isomorphic

to the cohomology group of the Deligne-Mumford compactification Mg,n
DM

.
For 1 ≤ p < 4/3, the Lp-cohomology group of Mg,n with respect to the Weil-
Petersson metric is canonically isomorphic to the cohomology group of Mg,n.

The paper [372] proves only the case Mg and p = 2, and the same proof
works for the more general case Mg,n and p = 2.

Proposition 5.52. With respect to any Riemannian metric that is quasi-
isometric to the Teichmüller metric, for any 1 < p < ∞, the Lp-cohomology
group of Mg,n is isomorphic to the cohomology group of the Deligne-Mumford

compactification Mg,n
DM

.

In the case when the metric is the Bergman metric and p = 2, this result
was proved in [431, Theorem 4].

6 Interactions between locally symmetric spaces and
moduli spaces of Riemann surfaces

The most basic example of a symmetric space is the upper half plane H2 =
{x + iy | x ∈ R, y > 0}. It admits three important generalizations depending
on different interpretations. First, H2 is the moduli space of marked elliptic
curves (or Abelian varieties of dimension 1) and the quotient SL(2,Z)\H2 is
the moduli space of elliptic curves. Second, by writing H2 = SL(2,R)/SO(2),
we can identify it with the space of positive definite binary quadratic forms of
determinant 1. Third, H2 is the Teichmüller space Tg when g = 1.

The generalization based on the first interpretation is the Siegel upper half
space hg = {X + iY | X,Y are real g × g matrices, Y > 0}. The symplectic
group Sp(2g,R) acts transitively and holomorphically on hg, and the stabilizer



126

of the point iIg is equal to U(g), and hence we have the identification:

hg = Sp(2g,R)/U(g).

It is a Hermitian symmetric space of noncompact type. The Siegel modular
group Sp(2g,Z) acts properly on hg and the quotient Sp(2g,Z)\hg is called the
Siegel modular variety. It can be identified with the moduli space of principally
polarized abelian varieties of dimension g and usually denoted by Ag. Clearly,
when g = 1, hg is equal to H2.

The generalization based on the second interpretation is the symmetric
space SL(n,R)/SO(n). This space and its quotient SL(n,Z)\SL(n,R)/SO(n)
have been discussed before.

The generalization based on the third interpretation is the Teichmüller
space Tg for g ≥ 2, and Modg corresponds to SL(2,Z). The quotient space
Modg\Tg is the moduli spaceMg. Of course, Tg,n and Modg,n are also natural
generalizations.

6.1 The Jacobian map and the Schottky problem

It turns out that there is an important map between the two generalizations
Mg and Ag of the space SL(2,Z)\H2 in the previous paragraph, i.e., the
Jacobian (or period) map

J :Mg → Ag.

Clearly, Ag = Sp(2g,Z)\hg is an important locally symmetric space. In
the previous sections, we were mainly interested in analogies between locally
symmetric spaces and the moduli spacesMg,n. This Jacobian map establishes
a direct connection between them.

We briefly recall its definition. Let Σg be a compact Riemann surface of
genus g, and let Ai, Bi, i = 1, · · · , g, be a symplectic basis of H1(Σg,Z), i.e.,
a basis satisfying the conditions: for i, j = 1, · · · , g,

Ai ·Aj = 0, Bi ·Bj = 0, Ai ·Bj = δij .

Associated to this basis is a normalized basis {ω1, . . . , ωg} of the complex
vector space H0(Σg,Ω

1) of holomorphic 1-forms on Σg satisfying the condition∫
Ai
ωj = δij . The corresponding period matrix Π = (Πij) of Σg is the complex

g × g matrix with entries defined by

Πij =

∫
Bi

ωj .

Riemann’s bilinear relations [154, p. 232] imply that Π = (Πij) belongs to
the Siegel upper half space hg.

The choice of a different homology basis Ai, Bi of H1(Σg,Z) yields a new
period Π′ = γ ·Π for some γ ∈ Sp(2g,Z). We thus have the well-defined period
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map

J :Mg −→ Ag = Sp(2g,Z)\hg

which associates to (the isomorphism class of) a Riemann surface Σg the
Sp(2g,Z)-orbit through the period Π above. This is the period map.

To explain the name of Jacobian map, we note that L = Zg ⊕ ΠZg is
a lattice in Cg and the Jacobian variety J(Σg) of the Riemann surface Σg
is the torus L\Cg, which turns out to be an abelian variety, i.e., it admits
the structure of a projective variety. Moreover, the intersection pairing on
homology H1(Σg,Z) determines a Hermitian bilinear form on Cg with respect
to which the torus Cg/L is principally polarized [154, p. 359]. Similarly,
different choices of symplectic bases give rise to an isomorphism class of abelian
varieties Zg ⊕ ΠZg, i.e., its Jacobian variety J(Σg). This gives the Jacobian
map

J :Mg −→ Ag.

Intrinsically, without using the period Π, the Jacobian variety J(Σg) is
equal to H1(Σg,Z)\(H0(Σg,Ω

1))∗, and the inclusion of H1(Σg,Z) in the dual
space (H0(Σg,Ω

1))∗ is obtained by integrating 1-forms along cycles inH1(Σg,Z)
[154, p. 307].

Remark 6.1. For another way to define the Jacobian map and an application
of the Jacobian map to construct 2-forms on the moduli space Mg, see [226].

By Torelli’s Theorem (see [154, p. 359]), the Jacobian map J is injective.
When g = 1,Mg = Ag, and J is an isomorphism. For g ≥ 2, dimCMg = 3g−3

and dimC hg = (g+1)g
2 . It can be shown that when g = 2, 3, the image J(Mg) is

a Zariski dense subvariety ofAg, and when g ≥ 4, J(Mg) is a lower dimensional
subvariety of Ag.

The classical Schottky problem is to characterize the Jacobian locus J(Mg)
inside the moduli space Ag of all principally polarized abelian varieties.

A lot of work has been devoted on this important problem since 1882 or
earlier. Basically there are two approaches:

(1) the analytic one is to find polynomials that “cut out” the locus J(Mg)
inside Ag;

(2) the geometric approach is to find geometric properties of principally
polarized abelian varieties that are satisfied only by Jacobians.

It was finally proved in [388] [389] that a Jacobian variety is characterized
by the condition that its Riemann theta function satisfies a nonlinear partial
differential equation. See [325] for a history of the Schottky problem and [28]
and [107] for more recent surveys of the status of the Schottky problem.
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6.2 The coarse Schottky problem

It is difficult to check whether a given abelian variety is a Jacobian variety using
the characterization in [388] [389]. In order to construct explicit examples of
abelian varieties that are not Jacobian varieties, Buser and Sarnak [91] studied
the position of the Jacobian locus J(Mg) in Ag for large genera g from the
point of view of differential geometry. We note that hg has an invariant metric
as a Riemannian symmetric space, and this metric induces a metric on Ag.
Buser and Sarnak consider a certain systolic function m : Ag → R, i.e., the
length of shortest geodesics of the abelian variety with a suitable normalized
flat metric, which can be thought of as giving a “distance” to the boundary of
Ag. Then they prove that

J(Mg) ⊂ Vg := {x ∈ Ag | m(x) ≤ 3

π
log(4g + 3)}.

Moreover, as g → +∞, Vol(Vg)/Vol(Ag) = O(g−νg) for any ν < 1. The
volumes are computed with respect to the volume form on Ag induced from
the invariant metric. This means that for large genus g the entire Jacobian
locus lies in a “very small” neighborhood Vg of the boundary of Ag.

Motivated by this work of Buser and Sarnak, B. Farb proposed in [124,
Problem 4.11] to study the Schottky problem from the point of view of large
scale geometry, called the “Coarse Schottky Problem”: How does J(Mg) look
“from far away”, or how “dense” is J(Mg) inside Ag in the sense of coarse
geometry?

This question can be made precise by using the concept of an asymptotic
cone (or tangent cone at infinity) introduced by Gromov. Recall that a se-
quence (Xn, pn, dn) of unbounded, pointed metric spaces converges in the sense
of Gromov-Hausdorff to a pointed metric space (X, p, d) if for every r > 0, the
Hausdorff-distance between the balls Br(pn) in (Xn, dn) and the ball Br(p) in
(X, d) goes to zero as n→∞.

Let x0 be an (arbitrary) point of Ag. The asymptotic cone of Ag endowed
with the locally symmetric metric dAg

is defined as the Gromov-Hausdorff-
limit of rescaled pointed spaces:

Cone∞(Ag) := GH − limn→∞(Ag, x0,
1

n
dAg ).

Note that Cone∞(Ag) is independent of the choice of the base point x0.
For some spaces asymptotic cones are easy to describe. For example, the

asymptotic cone of the Euclidean space Rn is isometric to Rn. Similarly, if C
is a cone in Rn, then Cone∞(C) is isometric to C. The asymptotic cone of the
Poincaré half place H2 is more complicated and turns out to be an R-tree, i.e., a
tree which branches everywhere. (Note that a usual simplicial tree branches at
points that do not have any accumulation points.) For a hyperbolic Riemann
surface Σg,n with n > 0, its Cone∞(Σg,n) is a “cone” over n points, i.e., n
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rays with a common origin. For Siegel’s modular variety Ag with respect to
the metric induced from the invariant metric of hg, Cone∞(Ag) is known to
be isometric to a g-dimensional metric cone over a simplex, which is equal to
Sp(2g,Z)\∆Q(Sp(2g,C)) (see [215] for example).

Farb’s question can now be stated as follows [124, Problem 4.11]:

Coarse Schottky problem: Describe, as a subset of a g-dimensional Eu-
clidean cone, the subset of Cone∞(Ag) determined by the Jacobian locus Jg(Mg)
in Ag.

One of the results of [212] gives a solution to the coarse Schottky problem.
It asserts that the locus J(Mg) is coarsely dense.

Theorem 6.2. Let Cone∞(Ag) be the asymptotic cone of Siegel’s modular
variety. Then the subset of Cone∞(Ag) determined by the Jacobian locus
J(Mg) ⊂ Ag is equal to the entire Cone∞(Ag). More precisely, J(Mg) is
coarsely dense in Ag, i.e., there exists a constant δg depending only on g such
that Ag is contained in a δg-neighbourhood of J(Mg).

The basic idea of the proof is to degenerate a general compact Riemann
surface Σg to a stable Riemann surface such that each of its component is of
genus 1, and then apply the fact that the Jacobian map J is an isomorphism
when g = 1.

It might be worthwhile to emphasize that in the theorem of [91] mentioned,
the genus g → +∞, while g is fixed here and hence there is no contradiction
between these two seemingly opposite conclusions. The result of [91] implies
that the constant δg in the above theorem goes to infinity as g → +∞. A
natural problem is to estimate how fast δg goes to infinity.

Remark 6.3. The Jacobian map J :Mg → Ag has played an important role
in the study ofMg. For example, it was used in [242] to show that the moduli
space of stable Riemann surfaces, the natural compactification ofMg which is
equal to the later Deligne-Mumford compactification, is a projective variety.

For some related results on maps between locally symmetric spaces and
Mg, see [163].
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Géométries à courbure négative ou nulle, groupes discrets et rigidités, 117–176,
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[167] U. Hamenstädt, Geometric properties of the mapping class group, Problems
on mapping class groups and related topics, pp. 215–232, Proc. Sympos. Pure
Math., 74, Amer. Math. Soc., Providence, RI, 2006.

[168] G. Harder, A Gauss-Bonnet formula for discrete arithmetically defined groups,
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on Teichmüller space, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 3, 437–469.

[251] J. Lafont, B. Schmidt, Simplicial volume of closed locally symmetric spaces of
non-compact type, Acta Math. 197 (2006), no. 1, 129–143.

[252] R. Langlands, On the functional equations satisfied by Eisenstein series, Lec-
ture Notes in Mathematics, Vol. 544. Springer-Verlag, Berlin-New York, 1976.
v+337 pp.

[253] M. Larsen, A. Lubotzky, Representation growth of linear groups. J. Eur. Math.
Soc. (JEMS) 10 (2008), no. 2, 351–390.

[254] B. Leeb, A characterization of irreducible symmetric spaces and Euclidean
buildings of higher rank by their asymptotic geometry. Bonner Mathematische
Schriften, 326. Universität Bonn, Mathematisches Institut, Bonn, 2000. ii+42
pp.

[255] J. Lehner, Discontinuous groups and automorphic functions. Mathematical
Surveys, No. VIII American Mathematical Society, Providence, R.I. 1964 xi+425
pp.

[256] E. Leuzinger, Tits geometry, arithmetic groups, and the proof of a conjecture
of Siegel, J. Lie Theory 14 (2004) 317–338.

[257] E. Leuzinger, Reduction theory for mapping class groups and applications to
moduli spaces, arXiv:0801.1589.

[258] G. Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom.
Dedicata 114 (2005), 49–70.

[259] G. Link, Ergodicity of generalised Patterson-Sullivan measures in higher rank
symmetric spaces, Math. Z. 254 (2006), no. 3, 611–625.

[260] K. Liu, X. Sun, S. T. Yau, Canonical metrics on the moduli space of Riemann
surfaces. I, J. Differential Geom. 68 (2004), no. 3, 571–637.

[261] K. Liu, X. Sun, S. T. Yau, New results on the geometry of the moduli space
of Riemann surfaces, Sci. China Ser. A 51 (2008), no. 4, 632–651.
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