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Abstract. Tits buildings ∆Q(G) of linear algebraic groups G defined over the field of
rational numbers Q have played an important role in understanding partial compact-
ifications of symmetric spaces and compactifications of locally symmetric spaces, co-
homological properties of arithmetic subgroups and S-arithmetic subgroups of G(Q).
Curve complexes C(Sg,n) of surfaces Sg,n were introduced to parametrize boundary
components of partial compactifications of Teichmüller spaces and were later applied
to understand properties of mapping class groups of surfaces and the geometry and
topology of 3-dimensional manifolds. Tits buildings are spherical building. Another
important class of buildings consists of Euclidean buildings, for example, the Bruhat-
Tits buildings of linear algebraic groups defined over local fields. In this chapter, we
summarize and compare some properties and applications of buildings and curve
complexes. We try to emphasize their similarities but also point out differences. In
some sense, curve complexes are combinations of spherical, Euclidean and hyperbolic
buildings. We hope that such a comparison might motivate more questions and at
the same time suggest methods to solve them. Furthermore it might introduce build-
ings to people who study curve complexes and curve complexes to people who study
buildings.
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1 Introduction

Summary.

Tits buildings ∆Q(G) of linear algebraic groups G defined over Q have
played an important role in understanding partial compactifications of sym-
metric spaces and compactifications of locally symmetric spaces, cohomological
properties of arithmetic subgroups and S-arithmetic subgroups of G(Q). On
the other hand, curve complexes C(Sg,n) of surfaces Sg,n were introduced to
parametrize boundary components of partial compactifications of Teichmüller
spaces and were later applied to understand properties of mapping class groups
of surfaces and the geometry and topology of 3-dimensional manifolds.

Tits buildings are spherical buildings. Another important class of buildings
consists of Euclidean buildings, for example, the Bruhat-Tits buildings of linear
algebraic groups defined over local fields. In this chapter, we summarize and
compare some properties and applications of buildings and curve complexes.
We try to emphasize their similarities but also point out differences. In some
sense, curve complexes are combinations of spherical, Euclidean and hyperbolic
buildings. We hope that such a comparison might motivate more questions
and at the same time suggest methods to solve them. Furthermore it might
introduce buildings to people who study curve complexes and curve complexes
to people who study buildings.

The origin of Tits buildings.

Buildings were originally introduced by Tits [166] [167] in order to realize
exceptional Lie groups as the symmetry groups of spaces (or geometry)1 so that
one can construct geometrically analogues of exceptional simple Lie groups
over arbitrary fields.2 See [152] for an overview of motivations and the history
of Tits buildings.

Since then, Tits buildings have been applied to many different situations
with great success. There are several types of buildings: (1) spherical buildings,
for example, Tits buildings, (2) Euclidean buildings, for example, Bruhat-Tits
buildings, (3) hyperbolic buildings, (4) R-buildings, (5) topological buildings,
(6) twin buildings. We will recall briefly some of these buildings below. See
the book [2] for detailed definitions and structures of buildings, and the survey
[87] for references on many different applications of buildings.

1Classical simple Lie groups over C are the symmetry groups of quadratic forms or
sesquilinear forms of finite dimensional vector spaces over C. The same construction works
for vector spaces over finite fields and produces classical finite groups of Lie type, but this
method does not extend to exceptional simple Lie groups.

2According to [153, p. 292], “... it is perhaps worth remarking that one of the initial
motivations for the theory of buildings, at a time when Chevalley’s fundamental “Tohoku
paper” had not yet appeared, was the search for a geometric way of obtaining algebraic
analogues of the exceptional Lie groups.”
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There are several basic ways in which Tits buildings are used:

(1) Buildings describe the large-scale geometry or the geometry at infinity
of Lie groups, symmetric spaces and locally symmetric spaces.

(2) Buildings describe the topology at infinity of partial compactifications
of symmetric spaces and of the boundary of compactifications of locally
symmetric spaces, and also the topology of the ends of locally symmetric
spaces.

(3) Buildings provide natural combinatorial and metric spaces on which
groups such as Lie groups, arithmetic subgroups and p-adic Lie groups
act.

(4) Buildings can be used to study cohomological properties of arithmetic
groups.

We are mainly interested in infinite buildings in this chapter. For finite
buildings and their applications in finite groups and their representation the-
ory, see [44].

The origin of curve complexes.

Motivated by the Borel-Serre compactification of locally symmetric spaces
[20], Harvey [69] [70] [73] introduced the curve complex C(Sg) of a compact
oriented surface Sg to parametrize the boundary components of partial com-
pactifications of the Teichmüller space Tg, the space of marked compact Rie-
mann surfaces of genus g which induce compactifications of the moduli space
Mg of Riemann surfaces of genus g. In some sense, it was an exact analogue
of the spherical Tits building ∆Q(G) of a linear semisimple algebraic group
G defined over Q which serves as a parameter space for the boundary com-
ponents of the Borel-Serre partial compactification of the symmetric space
X = G/K. The same definition works for a more general oriented surface
Sg,n of genus g with n punctures and gives a curve complex C(Sg,n). Moti-
vated by the analogy between arithmetic groups and mapping class groups
Modg,n = Diff+(Sg,n)/Diff0(Sg,n), the curve complex C(Sg,n) was used to
study cohomological properties of Modg,n [66] [80] [69].

It turns out that the curve complexes C(Sg,n) can also be used to study
many problems in (lower dimensional) topology and geometry, in particular
the ending lamination conjecture of Thurston for 3-dimensional hyperbolic
manifolds, quasi-isometric rigidity of mapping class groups Modg,n and the
finiteness of the asymptotic dimension of Modg,n.

Some applications of curve complexes are motivated by results for Tits
buildings, and others are quite different. There are several basic ways in which
the curve complexes are used.

(1) Curve complexes describe the large scale geometry or the geometry at
infinity of Teichmüller spaces and of the moduli spaces of Riemann sur-
faces.
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(2) Curve complexes parametrize boundary components of partial compact-
ifications of Teichmüller spaces, they describe the topology at infinity
of these partial compactifications, and they also describe the boundary
of compactifications of moduli spaces, and the topology of the ends of
moduli spaces.

(3) Curve complexes provide natural combinatorial and metric spaces on
which mapping class groups act, and structures and representations of
the mapping class groups can be understood and constructed from these
actions.

(4) Curve complexes can be used to study cohomological properties of map-
ping class groups.

(5) Surfaces and simple closed curves occur naturally in the study of 3-
dimensional manifolds and hence curve complexes can be used to under-
stand 3-dimensional geometry and topology.

In this chapter, we will present some applications of buildings and curve
complexes to support these general points. The above two lists suggest many
similarities between these two classes of simplicial complexes. On the other
hand, there are also dramatic differences between buildings and curve com-
plexes.

Besides the curve complex C(Sg,n), there are also several related complexes
for surfaces Sg,n, which are important to understand the geometry and topol-
ogy of Teichmüller spaces Tg,n and mapping class groups Modg,n. We will
address these issues as well.

This chapter can be seen as a sequel of the survey papers [87] and [88] in
some sense. Since it emphasizes curve complexes and their applications, it can
complement the other two papers.

Acknowledgments. This chapter is an expanded version of lecture notes of an
invited talk at International Conference on Buildings, Finite geometries and
Groups in Bangalore, India, August 29-31, 2010. I would like to thank the
organizers for their invitation. This chapter was written for the book with the
same title in the series “Springer Proceedings in Mathematics”. I would like
to thank Springer and the editor of the book, N. Sastry, for their permission
to reprint this chapter in the Handbook of Teichmüller theory.

I would also like to thank Dick Canary for many helpful suggestions and
references, Bill Harvey for sending valuable reprints, Feng Luo, Juan Souto
and Ralf Spatzier for helpful correspondences, Misha Kapovich and B. Sury
for helpful comments, and Athanase Papadopoulos for reading several versions
of the chapter very carefully and for many helpful comments. I would also
like to thank an anonymous referee for helpful suggestions and comments. A
part of the work in this chapter was done during a visit to MSC, Tshinghua



6

University, Beijing, in 2010 and I would like to thank the people at this center
for providing a stimulating environment.

2 Definition of buildings

In this section, we first introduce in §2.1 the spherical Tits building ∆(G) of a
semisimple Lie group G through a classification of geodesics in the associated
symmetric space X = G/K . This justifies the point of view that ∆(G)
describes the geometry at infinity of the symmetric space X. Then in §2.2, we
discuss a more common definition of buildings through a system of apartments.
In §2.3, we introduce Euclidean and hyperbolic buildings and we mention other
buildings. In §2.4, we define the rational Tits building ∆Q(G) of a linear
algebraic group G defined over Q.

2.1 A geometric definition of Tits buildings via
symmetric spaces

Let G be a semisimple noncompact Lie group with finitely many connected
components, and let K ⊂ G be a maximal compact subgroup. Then X = G/K
with an invariant metric is a symmetric space of noncompact type, and X is
a simply connected nonpositively curved Riemannian manifold. Let X(∞) be
the set of equivalence classes of geodesics in X. Specifically, we assume that
all geodesics in X are of unit speed and directed. Two geodesics γ1(t) and
γ2(t) in X are defined to be equivalent if

lim sup
t→+∞

d(γ1(t), γ2(t)) < +∞,

where d(·, ·) is the distance function of X. It can be shown that for any
point x0 ∈ X, X(∞) can be canonically identified with the unit sphere in the
tangent space Tx0

X. It is known that there is a natural topology on X∪X(∞)
such that it is a compactification of X, called the geodesic compactification,
or visual compactification, and X(∞) is hence called the sphere at infinity (or
visual sphere) of X. See [4].

When X = SL(2,R)/SO(2) is identified with the upper half place H2, then
X(∞) = R∪{i∞}. When X = SL(2,R)/SO(2) is identified with the unit disc
D = {z ∈ C | |z| < 1}, then X(∞) is equal to the unit circle S1 = ∂D.

Clearly the isometry action of G on X preserves the equivalence relation
between geodesics and hence acts on X(∞).

A natural question is whether these points in X(∞), i.e, equivalence classes
of geodesics, are the same, i.e., belong to one common G-orbit. If the answer
is negative, a natural problem is to parametrize G-orbits in X(∞).
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It turns out that both questions can be answered using parabolic subgroups
P of G, i.e., closed subgroups P such that G/P is compact. If P = G, it is a
parabolic subgroup by definition. Any parabolic subgroup P with P 6= G is
called a proper parabolic subgroup of G. The set of proper parabolic subgroups
of G is a partially ordered set by inclusion, and there are infinitely many
maximal and minimal elements in this partially ordered set, which are called
maximal proper parabolic subgroups and minimal parabolic subgroups of G.

Proposition 2.1. The G-action on X extends to a continuous action on
X ∪ X(∞). For any point z ∈ X(∞), its stabilizer Gz in G is a proper
parabolic subgroup, and every proper parabolic subgroup P of G arises as the
stabilizer of a point z ∈ X(∞).

For each proper parabolic subgroup P of G, let σP be the set of points in
X(∞) that are fixed by P , equivalently the set of points z ∈ X(∞) whose
stabilizer Gz in G contains P .

Proposition 2.2. For every proper parabolic subgroup P , σP is a spherical
simplex, and its interior σoP , i.e., the open simplex when σP is considered as
a simplex, is equal to the set of points z whose stabilizer is equal to P . The
simplex σP consists of one point if and only if P is a maximal proper parabolic
subgroup. If P is a minimal parabolic subgroup of G, then the dimension of
σP is equal to r− 1, where r is the rank of X, i.e., the maximal dimension of
totally geodesic flat submanifolds of X. The decomposition of X(∞) into σP ,

X(∞) = ∪Pσp =
∐
P

σ0
P ,

gives X(∞) the structure of an infinite simplicial complex, denoted by ∆(X).

The simplicial complex ∆(X) is called the Tits building associated with the
symmetric space X of noncompact type. If the rank r of X is equal to 1, then
∆(X) is a 0-simplicial complex, i.e., a disjoint union of points. If r > 0, it
can be shown that ∆(X) is connected. This can be seen from the axioms of
buildings in the next subsection.

By definition, ∆(X) classifies geodesics of X into different types.

Proposition 2.3. Let P0 be a minimal parabolic subgroup of G. Then every
G-orbit in X(∞) meets σP0

in exactly one point. G acts on the Tits building
∆(X) by simplicial maps, and every simplex σP is contained in the G-orbit of
a face of σP0 , i.e., G\∆(X) can be identified with σP0 .

Corollary 2.4. G acts transitively on X(∞) if and only if a minimal parabolic
subgroup of G is also a maximal parabolic subgroup G, i.e., the rank r of X is
equal to 1.



8

For more discussion and proofs of the above results, see [60].

2.2 Axioms for spherical buildings via apartments

The Tits building ∆(X) defined in the previous subsection can be described
directly in terms of proper parabolic subgroups of G.

Let P be the partially ordered set of proper parabolic subgroups of G,
where the partial order is given by containment, i.e., the opposite of the inclu-
sion mentioned in the previous subsection. The structure theory of parabolic
subgroups of G shows that this poset can be realized by an infinite simplicial
complex ∆(G) satisfying the following conditions:

(1) Every parabolic subgroup P ∈ P corresponds to a unique simplex σP in
∆(G), and every simplex of ∆(G) is of this form.

(2) For any two parabolic subgroups P1, P2 ∈ P, P1 ⊂ P2 if and only if σP1

contains σP2
as a face.

(3) A simplex σP is a point if and only if P is a maximal parabolic sub-
group of G. For a non-maximal parabolic subgroup P , the vertices of
σP correspond to maximal parabolic subgroups that contain P .

This simplicial complex ∆(G) is called the Tits building of G. By Propo-
sition 2.2, ∆(G) is isomorphic to ∆(X). These are important examples of
spherical Tits buildings.

Definition 2.5. A simplicial complex ∆ is called a spherical Tits building
if it contains a family of subsets called apartments and satisfies the following
conditions:

(1) Every apartment is a finite Coxeter complex.

(2) Any two simplices are contained in some apartment.

(3) Given two apartments Σ and Σ′ and simplices σ, σ′ ∈ Σ∩Σ′, there exists
an isomorphism of Σ onto Σ′ which keeps σ, σ′ pointwise fixed.

In the above definition, for any finite Coxeter group W , i.e., a finite group
generated by reflections with respect to hyperplanes in a fixed Euclidean space,
there is a Coxeter complex, which is a finite simplicial complex constructed
as follows. Every reflection α ∈ W fixes a hyperplane Hα. The collection
of such hyperplanes Hα is invariant under W . Connected components of the
complement of the union of {Hα} in V are called chambers, which are simpli-
cial cones. The chambers and their faces together give a partition of V into
simplicial cones. Let S be the unit sphere in V . Then the intersection of S
with these simplicial cones gives a finite simplicial complex, called the Cox-
eter complex of W , whose underlying topological space is S, i.e., the Coxeter
complex gives a finite triangulation of the unit sphere.
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To see that ∆(X) is a spherical Tits buildings, we start with the construc-
tion of apartments. For any flat totally geodesic submanifold F of X, which is
isometric to Rr, its closure in X ∪X(∞) is equal to F ∪F (∞), where F (∞) is
homeomorphic to the sphere Sr−1. The simplicial complex structure of X(∞)
given by ∆(X) induces a simplicial complex structure on F (∞). In fact, F (∞)
is equal to the union of σP for some parabolic subgroups P . Denote this finite
simplicial complex by ΣF . Then it is a Coxeter complex associated with the
Weyl group of the Lie group G.

Proposition 2.6. With respect to the collection of finite subcomplexes ΣF
associated with flat subspaces F , the infinite simplicial complex ∆(X) is a
spherical Tits building.

To understand the spherical building structure of ∆(G), we need to define
apartments in terms of group structure. For any maximal compact subgroup
K of G, let g = k ⊕ p be the Cartan decomposition. Let a ⊂ p be a maximal
abelian subalgebra. Let A = exp a be the corresponding Lie subgroup of G.
Then there are only finitely many parabolic subgroups P that contain A, and
the union of their simplices σP gives a triangulation of the unit sphere a(+∞)
of a and is a Coxeter complex for the Weyl group of G. Denote it by Σa.

Proposition 2.7. With respect to the collection of finite subcomplexes Σa as-
sociated with maximal abelian subspaces, the infinite simplicial complex ∆(X)
is a spherical Tits building.

Proposition 2.7 is proved using the Bruhat decomposition. To derive Propo-
sition 2.6 from Proposition 2.7, we need to identify their apartments.

The finite simplicial complexes ΣF and Σa can be identified as follows. For
any maximal flat totally geodesic submanifold F of X, let x0 ∈ F be any point,
and K = Gx0

be the stabilizer of x0 in G. Then there exists a maximal abelian
subalgebra a ⊂ p with respect to the Cartan decomposition of g induced by K
such that F = exp a x0, and ΣF is identified with Σa under the identification
between ∆(X) and ∆(G). For the proof of the above propositions and more
discussion, see the book [60] and references therein.

2.3 Euclidean and hyperbolic buildings

It will be shown below that the curve complex C(Sg,n) shares some properties
with spherical buildings, and also with Euclidean buildings and hyperbolic
buildings. For convenience, we briefly introduce their definitions here.

First we define Euclidean reflection groups. Let V be a Euclidean space.
An affine reflection group W on V is a group of affine isometries generated
by reflections with respect to affine hyperplanes such that the set H of affine
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hyperplanes fixed by reflections in W is locally finite. Clearly, a finite reflection
group is an affine reflection group. Assume that W is an infinite irreducible
reflection group. Then the hyperplanes in H divide V into simplices, and W
acts simply transitively on the set of simplices. These simplices and their faces
form a Euclidean Coxeter complex.

Definition 2.8. A simplicial complex ∆ is called a Euclidean building if it
contains a family of subsets called apartments and satisfies the following con-
ditions:

(1) Every apartment is an infinite Euclidean Coxeter complex.

(2) Any two simplices are contained in some apartment.

(3) Given two apartments Σ and Σ′ and simplices σ, σ′ ∈ Σ∩Σ′, there exists
an isomorphism from Σ onto Σ′ which keeps σ, σ′ pointwise fixed.

An important source of Euclidean buildings comes from the Bruhat-Tits
building ∆BT (G) associated with a linear semisimple algebraic group G de-
fined over a non-Archimedean local field k. In this case, the simplices of
∆BT (G) are parametrized by parahoric subgroups of G(k). There is no sim-
ple definition or characterization of parahoric subgroups of G(k) as in the case
of parabolic subgroups. When G is simply connected, any maximal open com-
pact subgroup of G(k) is a maximal parahoric subgroup, and the converse is
also true. See [87, §3] for more details and references.

Now we introduce hyperbolic buildings. Let Hn be the real hyperbolic
space of dimension n. Let P be a compact convex hyperbolic polyhedron such
that the reflections with respect to its codimension 1 faces generate a group W
that acts properly on Hn with P as a fundamental domain. Then the totally
geodesic hypersurfaces of Hn that are fixed by reflections in W are locally
finite, and the connected components of the complement of the union of these
hyperplanes are hyperbolic polyhedra. These polyhedra and their faces form
a polyhedral complex, which is called a hyperbolic Coxeter complex associated
with P . Hyperbolic Coxeter complexes can only exist for n ≤ 29.

Definition 2.9. A polyhedral complex ∆ is called a hyperbolic building of
type P if it contains a family of subcomplexes called apartments and satisfies
the following conditions:

(1) Every apartment is a hyperbolic Coxeter complex determined by P .

(2) Any two polyhedra are contained in some apartment.

(3) Given two apartments Σ and Σ′ and polyhedra σ, σ′ ∈ Σ ∩ Σ′, there
exists an isomorphism of Σ onto Σ′ which keeps σ, σ′ pointwise fixed.

See [55] for more detail and examples. When n = 2, P is given by a compact
polygon in the hyperbolic plane H2 such that the angle at each vertex is equal
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to π/m for some integer m, and we get a hyperbolic building of Fuchsian type
[22].

A natural generalization of spherical buildings is the notion of twin build-
ings. An important example is a pair of spherical Tits buildings associated to
one linear algebraic group, for example, SL(n, Fp[t, t

−1]). See [1] for the def-
inition and applications to S-arithmetic subgroups of linear algebraic groups
defined over function fields. See [45] [46] for a more geometric group theoretic
point of view of buildings and Coxeter complexes.

2.4 Rational Tits buildings of linear algebraic groups

As explained before, for any semisimple Lie group G, there is a spherical
Tits building ∆(G) that can be related to the geodesic compactification of its
symmetric space X = G/K. If G is the real locus of a linear algebraic group
G ⊂ GL(n,C) defined over Q with positive Q-rank, then there are several
other spherical Tits buildings associated with G. They are important for
compactifications of locally symmetric spaces and in the study of arithmetic
subgroups of G(Q) and more generally S-arithmetic subgroups of G(Q).

Let PQ be the set of Q-parabolic subgroups of G, i.e., parabolic subgroups
defined over Q. Then there is an infinite simplicial complex ∆Q(G) whose
simplices σP are parametrized by parabolic subgroups P in PQ and which
satisfies the following conditions:

(1) When P is maximal Q-parabolic subgroup, σP is a point.

(2) For two Q-parabolic subgroups P1,P2, the inclusion relation P1 ⊂ P2

holds if and only if σP1
contains σP2

as a face.

The simplicial complex ∆Q(G) is called the Q-Tits building of G. It cannot
be realized as the boundary of a compactification of X as the Tits building
∆(G), where G = G(R) is the real locus of G, or as a subset of the boundary of
a compactification of X if the R-rank of G is strictly greater than the Q-rank
of G. But ∆Q(G) can be realized as the boundary of a partial compactification
of X, which gives the Tits compactification of Γ\X in [94].

The main application of ∆Q(G) is that ∆Q(G) naturally parametrizes
boundary components of partial compactifications of X whose quotients by
arithmetic subgroups Γ ⊂ G(Q) are compactifications of locally symmetric
spaces Γ\X. See §6.3.

For every prime p, let Qp be the field of p-adic numbers. When G is
considered as a linear algebraic group defined over Qp, the set of parabolic
subgroups of G defined over Qk gives a spherical Tits building ∆Qp(G).

As mentioned before, there is a Euclidean building, the Bruhat-Tits build-
ing, associated with the p-adic Lie group G(Qp). Denote this building by
∆BT (G(Qp)). We will see below that ∆BT (G(Qp)) can be compactified by
adding the spherical building ∆Qp

(G) (Proposition 6.25).
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3 Definition of curve complexes

Let Sg,n be an oriented surface of genus g with n punctures (or n boundary
components). In the rest of this paper, we assume that the Euler characteristic
χ(Sg,n) is negative so that Sg,n admits complete hyperbolic metrics of finite
area.

A simple closed curve c in Sg,n is called essential if it is not homotopic to
a point or a loop around a puncture or a boundary component.

The curve complex C(Sg,n) is a simplicial complex such that:

(1) Its vertices are parametrized by homotopy classes of essential simple
closed curves [c] in Sg,n.

(2) Homotopy classes [c0], [c1], · · · , [ck] form the vertices of a k-simplex if
and only if they are pairwise distinct and admit disjoint representatives.

If we put a complete hyperbolic metric of finite area and with geodesic
boundary on Sg,n, then the homotopy class of each essential simple closed
curves in Sg,n contains a unique simple closed geodesic, and hence the vertices
of C(Sg,n) corresponds to simple closed geodesics of the hyperbolic metric.

The simplest example is C(S1,1). Let Σ1,1 be a hyperbolic surface of genus 1
with one puncture. In this case, for every simple closed geodesic of Σ1,1, there
is no other simple closed geodesic that is disjoint from it. Therefore, C(S1,1) is a
countable collection of points and can be identified with the rational boundary
points Q ∪ {∞} of the upper half-plane H2. For the surface S1,1, a slight
modification gives an interesting complex C1(S1,1). The vertices of C1(S1,1)
still correspond to simple closed geodesics γ in Σ1,1, and k + 1 simple closed
geodesics γ1, · · · , γk+1 form the vertices of a k-simplex if and only if for every
pair of distinct geodesics γi and γj , the intersection number ι(γi, γj) = ±1.
Note that C1(S1,1) is 2-dimensional. Then the 1-skeleton of C1(S1,1) can be
identified with the Farey graph, whose vertices are numbers in Q ∪ {∞}, the
vertex∞ is joined to every integer n, and two points r

s and x
y in reduced form

(i.e., the numerators and denominators do not contain common primes) are
connected by an edge if and only if ry − sx = ±1. The simplicial complex
C1(S1,1) gives an ideal triangulation (or tessellation) of the upper half plane H2,
which is equal to the Farey tessellation, and hence C1(S1,1) is contractible. (It
should be emphasized that a general curve complex C1(Sg,n) is not contractible,
and its nontrivial homotopy is used crucially to prove that the mapping class
group Modg,n is not a virtual Poincaré duality group. See §7.9 below.)

In the general case, C(Sg,n) is fairly complicated and there is no simple
geometric model. For example, it is not locally finite in general. It is not
locally finite because the complement of a simple closed curve on a surface
contains infinitely many homotopy classes of essential simple closed curves
except in some special cases (the torus with at most one hole or the sphere with
at most four holes). Note that C(S1,1) is a disjoint union of countably many
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points and hence is locally finite. But the non-locally finiteness phenomenon
can be seen in the above example C1(S1,1) already. One way to see this is
to note that SL(2,Z) acts on the upper half plane, the Farey tessellation and
the Farey graph. Each vertex of C1(S1,1) has an infinite stabilizer in SL(2,Z),
which permutes the 2-simplices that contain the vertex, and hence there are
infinitely many edges of C1(S1,1) out of each vertex, and C1(S1,1) is not locally
finite.

The curve complex is not “homogeneous” in general as in the case of build-
ings. We will discuss some of its properties later.

Compared with the definition of the spherical Tits building ∆(G), this
suggests that a homotopy class [c] of essential simple closed curves plays a role
similar to the one of a maximal parabolic subgroup, and a simplex of C(Sg,n)
plays the role of a parabolic subgroup. More specifically, we have the following
similarities:

(1) The boundary components of the Borel-Serre partial compactification of
a symmetric space X are parametrized by proper Q-parabolic subgroups
of G, and maximal boundary components correspond to maximal Q-
parabolic subgroups. On the other hand, the boundary components
of an analogous Borel-Serre partial compactification of the Teichmüller
space Tg,n or of the completion of Tg,n in the Weil-Petersson metric
are parametrized by simplices of C(Sg,n), and the maximal boundary
components correspond to the vertices. (See §6 and §7 below for more
details).

(2) For every Q-parabolic subgroup P of G, there is an associated Langlands
decomposition of X. When P is a minimal Q-parabolic subgroup, it is
reduced to the Iwasawa decomposition of X (or rather of the Lie group
G). On the other hand, for every top-dimensional simplex of C(Sg,n),
there is a Fenchel-Nielsen coordinate system (or decomposition) of Tg,n.

It is easy to see that the maximal number of homotopy classes of essential
simple closed curves with disjoint representatives is equal to 3g−3+n. There-
fore C(Sg,n) has dimension 3g − 4 + n. Simplices of C(Sg,n) with dimension
equal to 3g − 4 + n play a similar role as minimal parabolic subgroups.

There are also several other related complexes.

(1) The arc complex for surfaces with at least one puncture or boundary
component in [66] [67] [106]. The topology of the arc complex at infin-
ity is closely related to the topology of the curve complex C(Sg,n) [67,
Theorem 3.4]. The arc complex is used crucially in obtaining a Modg,n-
equivariant cell decomposition and a spine of optimal dimension of Tg,n
when n > 0 [67, Theorem 1.3 and Theorem 2.1].

(2) The Torelli curve complex in [51] (see also [101]), its vertices are ho-
motopy classes of separating simple closed curves of Sg and bounding
pairs of curves. It plays a similar role for the Torelli group as the curve
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complex C(Sg,n) for the mapping class group Modg,n, which is equal to
Diff+(Sg,n)/Diff0(Sg,n) (see §7.5 below).

(3) The pants complex in [74] whose vertices are pants decompositions of
Sg,n. It was originally used to find generators and relations for the
mapping class group Modg,n. It was also used to describe the coarse
geometry of the Weil-Petersson metric of Teichmüller space [33]. (Note
that the pants complex is a CW-complex but not a simplicial complex.)

(4) The train-track complex in [65] [143]. It was used in [65] to prove quasi-
isometric rigidity of the mapping class group Modg,n (see Proposition
7.15 below).

(5) Sub-complexes of C(Sg,n) such as the complex of separating curves [145]
[115] [101] (see also [72]).

(6) The complex of domains and its various subcomplexes [129]. ([129] con-
tains a comprehensive list of complexes associated to surfaces.)

(7) A family of complexes related to the curve complex [136].

Remark 3.1. A class of groups closely related to arithmetic groups and map-
ping class groups consists of outer automorphism groups Out(Fn) of the free
group Fn on n generators. There are several candidates for the analogue of
the spherical Tits building ∆Q(G) and the curve complex C(Sg,n). They are
infinite simplicial complexes on which Out(Fn) acts simplically, and they are
also homotopy equivalent to a bouquet of spheres. See [75] [99] [88].

4 Geometric and topological properties of buildings

As mentioned in the introduction, the original motivation of Tits buildings
was to give a geometric interpretation of exceptional Lie groups and hence
to construct their analogues over finite fields. Their geometric and topologi-
cal structures have been used for various applications, some of which will be
explained in this chapter.

First we define canonical metrics on buildings, their diameters, and curva-
ture properties. Then we state the Solomon-Tits Theorem which determines
the topology of buildings. Finally we explain a relation between Euclidean
buildings and spherical buildings.

Recall that a geodesic segment in a metric space (M,d) is an isometric
embedding γ : [a, b]→M . (M,d) is called a geodesic metric space if every two
points in M are joined by a geodesic segment. M is called geodesically complete
if every geodesic segment in M , γ : [a, b] → M , can be extended infinitely in
both directions to a map γ : (−∞,+∞) such that for any t ∈ (−∞,+∞),
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when |t − t′| is sufficiently small, d(γ(t′), γ(t)) = |t − t′|, i.e., the map is only
locally distance minimizing. Note that this is different from the notion of a
complete geodesic metric space. Clearly any complete Riemannian manifold
is geodesically complete. On the other hand, any Riemannian manifold with
nonempty boundary is not geodesically complete, since a geodesic segment
perpendicular to the boundary cannot be extended.

Proposition 4.1. Every spherical Tits building ∆ admits a metric such that

(1) its restriction to each apartment is isometric to the unit sphere Sr−1 in
Rr, where r is the rank of the building, i.e., the number of vertices of the
top dimensional simplices;

(2) it is a complete geodesic metric space;

(3) it is geodesically complete.

This metric is called the Tits metric. If ∆ = ∆(G), then G acts simplicially
and isometrically on ∆(G).

The idea of the proof is as follows. By definition, each apartment of ∆
is a finite Coxeter complex, which is a triangulation of the unit sphere Sr−1.
The metric on Sr−1 induces a geodesic metric on each apartment. The axioms
for buildings show that the metrics on all the apartments are compatible,
for example they agree on intersection, and they can be patched together to
form a metric on ∆. Since all apartments are isometric and can be mapped
isometrically from one to another, it can be shown that ∆ is a geodesic metric
space. Since each apartment is geodesically complete, it can be shown similarly
that ∆ is also geodesically complete.

Proposition 4.2. For every spherical Tits building ∆, its diameter with re-
spect to the Tits metric is equal to 2π.

Proof. It is clear that the diameter of every apartment is equal to 2π.
Since every two points of ∆ are contained in an apartment, the diameter of ∆
is less than or equal to 2π. Since any apartment can be retracted to a fixed
apartment, it can be shown that each apartment is a totally geodesic subspace
and hence the diameter of ∆ is equal to 2π.

Proposition 4.3. Every Euclidean building ∆ admits a metric such that

(1) its restriction to each apartment is isometric to the Euclidean space Rr,
where r is the rank of the building, i.e., r is equal to the dimension of the
top dimensional simplices of ∆, or equivalently, r + 1 is the number of
vertices of the top dimensional simplices of the Euclidean building ∆;3

3It might be worthwhile to emphasize that the rank of a spherical Tits building in Propo-
sition 4.1 is equal to 1 plus the dimension of the top dimensional simplices. This convention
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(2) it is a complete geodesic metric space;

(3) it is geodesically complete;

(4) with respect to this metric, ∆ is a CAT(0)-space in the sense that every
two distinct points are connected by a unique geodesic, and every triangle
in ∆ is thinner than the corresponding geodesic in Rr of the same side
lengths.

This metric is called the Tits metric. If ∆ = ∆BT (G), the Bruhat-Tits building
of a linear semisimple algebraic group defined over a non-Archimedean local
field k, then G(k) acts isometrically on ∆.

See [2] for more details and also [30] for a general discussion on CAT(0)-
spaces.

Corollary 4.4. The diameter of any Euclidean building with respect to the
Tits metric is infinite.

Proof. This follows from the fact that every apartment is a totally geodesic
subspace and hence has infinite diameter.

Proposition 4.5. Every hyperbolic building ∆ admits a metric such that

(1) its restriction to each apartment is isometric to the hyperbolic space Hn;

(2) it is a complete geodesic metric space;

(3) it is geodesically complete;

(4) with respect to this metric, ∆ is a CAT(-1)-space in the sense that every
two distinct points are connected by a unique geodesic, and every triangle
in ∆ is thinner than the corresponding geodesic in Hn of the same side
lengths;

(5) it has infinite diameter.

This metric is called the Tits metric on ∆.

Recall that a geodesic metric space is called a δ-hyperbolic space if for
every triangle in the space, any one side is contained in the δ-neighborhood
of the union of the other two sides. It is known that the real hyperbolic

is different from the convention of rank of Euclidean buildings here. Roughly speaking, the
reason for these conventions is that the rank of buildings should be equal to the rank of the
algebraic groups which define them. For example, a simple algebraic group over R of rank
1 gives a 0-dimensional Tits building, and a simple algebraic group defined over a p-adic
number field of rank 1 gives a 1-dimensional Euclidean building. Both buildings are defined
to have rank 1. Another reason for such conventions is that for each Euclidean building of
rank r, there is a spherical building of the same rank r which can be added to the infinity
of the Euclidean building. See §6.8 below.
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space Hn is δ-hyperbolic. More generally, every simply connected Riemannian
manifold with sectional curvature bounded from above by a negative constant
is also δ-hyperbolic, and every CAT (−1) geodesic metric space is δ-hyperbolic.
Every metric tree is 0-hyperbolic (i.e., δ-hyperbolic, where δ = 0 if we use
closed δ-neighborhoods.) Note that every metric space with a finite diameter
is automatically hyperbolic for trivial reasons. On the other hand, when n ≥ 2,
Rn is not δ-hyperbolic.

Corollary 4.6. Every hyperbolic building is δ-hyperbolic.

Proposition 4.7. For a Euclidean building ∆, if its rank is equal to 1, then
it is a tree and is a δ-hyperbolic space, otherwise it is not a δ-hyperbolic space.

Proof. The first statement was mentioned earlier, and the second state-
ment follows from the fact that for any δ-hyperbolic space, any totally geodesic
subspace is also δ-hyperbolic. (Recall that a subspace Y of a geodesic space
X is called a totally geodesic subspace if for any two points x, y ∈ Y , any
geodesic segment in X connecting x and y is contained in Y .)

The topology of spherical buildings is given by the Solomon-Tits Theorem
[2].

Proposition 4.8. Let ∆ be a spherical Tits building of rank r. Then ∆ is
homotopy equivalent to a bouquet of spheres Sr−1. If ∆ = ∆Q(G), then the
bouquet contains infinitely many spheres.

Basically, fix one simplex σ in ∆; then ∆ is the union of apartments con-
taining σ. Each apartment is homotopy equivalent to a sphere, and this union
gives the bouquet. When ∆ = ∆Q(G), there are infinitely many Q-parabolic
subgroups and hence there are infinitely many spheres in the bouquet.

On the other hand, the topology of Euclidean and hyperbolic buildings is
trivial, i.e., they are contractible.

Proposition 4.9. Euclidean buildings and hyperbolic buildings are contractible.

Proof. By Proposition 4.3, every Euclidean building ∆ is a CAT(0)-space.
Fix a base point x0 ∈ ∆. Then any other point x ∈ ∆ can be connected to
x0 by a unique geodesic, and deformation retraction along such rays from x0
shows that ∆ is contractible. Since a CAT(-1)-space is also a CAT(0)-space
(or by Proposition 4.5), the same proof works for hyperbolic buildings.
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5 Geometric and topological properties of curve
complexes

The curve complex C(Sg,n) has some properties that are similar to all three
types of buildings in the previous subsection.

We can put a metric on C(Sg,n) by making each simplex a standard Eu-
clidean one with side length 1.

Proposition 5.1. C(Sg,n) is a complete geodesic space, i.e., it is a geodesic
space and is complete as a metric space.

To prove this proposition, we need mapping class groups and their actions
on C(Sg,n). Let Diff+(Sg,n) be the group of orientation preserving diffeomor-
phisms of Sg,n, and Diff0(Sg,n) its identity component, which is a normal
subgroup. Diff+(Sg,n)/Diff0(Sg,n) is called the mapping class group of Sg,n
and denoted by Modg,n. A closely related group is the extended mapping class
group Mod±g,n = Diff(Sg,n)/Diff0(Sg,n), where Diff(Sg,n) is the group of all
diffeomorphisms of Sg,n including both orientation preserving and orientation
reversing diffeomorphisms.

When 3g− 3 +n ≥ 2, for any essential simple closed curve c on Sg,n, there
are infinitely many essential simple closed curves that are disjoint from c and
not homotopy equivalent to c. This implies that the curve complex C(Sg,n)
is not locally finite. Gluing up the metrics on the simplices certainly gives a
length metric on the space, but it is not obvious why it is a geodesic metric,
i.e., every two points are connected by a geodesic segment. This follows from
a theorem on metric simplicial complexes in [29, Theorem 1.1].

Proposition 5.2. If K is a metric simplicial complex with only finitely many
isometry types of simplices, then the metric on K glued up from the metrics
of the simplices is a complete geodesic metric space.

To apply Proposition 5.2 to prove Proposition 5.1, we need to show that
C(Sg,n) has a large symmetry group.

Proposition 5.3. The mapping class group Modg,n and the extended map-
ping class group Mod±g,n act simplicially and isometrically on C(Sg,n) with
respect to the metric which is glued up from the simplices, and the quotients
Modg,n\C(Sg,n) and Mod±g,n\C(Sg,n) are finite CW-complexes, i.e., unions of
finitely many cells.

Proof. Since diffeomorphisms of Sg,n map simple closed curves to simple
closed curves, preserve the homotopy classes, and preserve existence of disjoint
representatives, it is clear that Modg,n acts simplicially on C(Sg,n). Since a
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top dimensional simplex of C(Sg,n) corresponds to a pants decomposition of
Sg,n, the statement that Modg,n\C(Sg,n) is a finite complex is equivalent to
the statement that there are only finitely many nonisomorphic pants decompo-
sitions of Sg,n. The latter is reduced to finiteness of the set of homeomorphism
classes of trivalent graphs on the surface. See [40, §3.5] for detail. The proof
for Mod±g,n is the same.

Proof of Proposition 5.1.

By combining Propositions 5.2 and 5.3, we can see that C(Sg,n) is a com-
plete geodesic space. (Proposition 5.1 was known and stated in [132, p. 1007].)

Remark 5.4. Since the curve complex C(Sg,n) is a thick chamber complex
if g ≥ 2 [69, Proposition on page 266] in the sense that every co-dimension 1
simplex is contained in at least three top dimensional simplices, it might be
reasonable to conjecture that C(Sg,n) is a geodesically complete metric space,
i.e., every geodesic segment in it can be extended infinitely in both directions.

An important metric property of C(Sg,n) is the next result [127, Theorem
1.1, Proposition 4.6].

Proposition 5.5. The curve complex C(Sg,n) is a δ-hyperbolic space of infinite
diameter.

For simplified proofs, see [23] [63] [64]. As a δ-hyperbolic space, C(Sg,n)
has a boundary ∂C(Sg,n), which is similar to the geodesic boundary X(∞)
of a symmetric space of noncompact type mentioned earlier and consists of
equivalence classes of quasi-geodesics. (Note that for a proper δ-hyperbolic
space, the boundary can also be defined as the set of equivalence classes of
geodesics [98, Proposition 2.10].)

Proposition 5.6. The boundary ∂C(Sg,n) is naturally homeomorphic to the
space EL(Sg,n) of laminations of Sg,n which are filling and minimal (every leaf
is dense in the support).

Proposition 5.6 is due to Klarreich [103]. See also [63] for a proof. For every
complete hyperbolic metric of finite volume on Sg,n, a geodesic lamination
is a closed subset which is a disjoint union of complete simple geodesics. A
geodesic lamination is called filling if it intersects every simple closed geodesics.
The set of filling geodesic laminations has a natural topology, which is the
induced topology from the quotient of Thurston’s topology. It is known that
different choices of hyperbolic metrics on Sg,n give rise to homeomorphic spaces
of filling geodesic laminations. Therefore, for the surface Sg,n of negative Euler
characteristic, there is a well-defined space of filling and minimal laminations
up to homeomorphism, denoted by EL(Sg,n) in the proposition.
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A large scale invariant of a noncompact metric space is the asymptotic
dimension introduced by Gromov. Another large scale invariant (or rather
property) is Property A, which is a weak amenability-type condition. See
[140] for definition.

Proposition 5.7. The asymptotic dimension of C(Sg,n) is finite and has Prop-
erty A.

The former was proved in [8] and the latter in [100]. For some results on
the quasi-isometry type of C(Sg,n), see [148].

The homotopy type of C(Sg,n) was determined in [67] (see also [66] and
[80]).

Proposition 5.8. The curve complex C(Sg,n) is homotopy equivalent to a
bouquet of spheres Sd, where d = 2g−2 = −χ(Sg) if n = 0, d = −χ(Sg,n)−1 =
2g − 3 + n if g ≥ 1 and n > 0, and d = −χ(S0,n)− 2 = n− 4 if g = 0.

The natural question on how many spheres in the bouquet was answered
in [86].

Proposition 5.9. The curve complex C(Sg,n) has infinite topology, i.e., the
bouquet of spheres in Proposition 5.8 contains infinitely many spheres.

Propositions 5.8 and 5.9 are an analogue of the Solomon-Tits theorem for
spherical buildings (Proposition 4.8).

Remark 5.10. Apartments are special and important subcomplexes of build-
ings and they explain easily the Solomon-Tits theorem. Though the curve
complex C(Sg,n) shares many properties with buildings, one important differ-
ence or rather a mystery is that inside C(Sg,n), in general, there are no known
corresponding distinguished finite subcomplexes whose underlying spaces are
spheres or are homotopy equivalent to spheres.

In the special case g = 2, n = 1, spheres in C(Sg,n) that generate the top
dimensional homology group have been constructed in [31, §4.3]. There are
also some candidates of spheres in C(Sg,n) when n = 1 in [31, §4.3].

It might be helpful to note that C(Sg,n) contains many infinite subcom-
plexes corresponding to the curve complexes of sub-surfaces of Sg,n. These
subcomplexes have played an important role in understanding the large scale
geometry of C(Sg,n) and Tg,n in [125] [126].
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6 Selected applications of buildings

There are many applications of buildings. We select some which are similar
to the applications of curve complexes discussed below for the purpose of
comparison. For more applications of buildings, see [87].

6.1 Automorphism groups of buildings

One reason why buildings are useful in geometry and topology is that they are
rigid and also admit a large symmetry group.

We state briefly several general results for spherical Tits buildings. For the
precise statements, see Theorems and Propositions numbered by 5.9, 6.3, 6.13,
8.4.5, 9.1, 10.2 in [166, 5.8].

Recall that a building is called thick if every simplex of codimension 1 is
contained in at least three top dimensional simplices.

Proposition 6.1. Every thick irreducible spherical Tits building of rank at
least 3 is the spherical building of a linear semisimple algebraic group.

Proposition 6.2. If ∆k(G) and ∆k′(G
′) are irreducible thick spherical Tits

buildings of rank at least 2 associated with linear semisimple algebraic groups G
and G′ defined over fields k and k′ respectively, then any isomorphism between
∆k(G) and ∆k′(G

′) is essentially determined by an isomorphism between the
algebraic groups G and G′ and an isomorphism between k and k′.

See also [138, Theorem 16.1, Corollary 16.2].

Corollary 6.3. If ∆k(G) is an irreducible thick spherical Tits building of rank
at least 2 associated with a semisimple linear algebraic group defined over a field
k, then any automorphism of ∆k(G) is essentially induced by automorphisms
of the group G and the field k.

6.2 Mostow strong rigidity and generalizations

One major application of Tits buildings is Mostow strong rigidity (also called
Mostow-Prasad strong rigidity) for locally symmetric spaces [138] [144].

Let X = G/K be a symmetric space of noncompact type. Any discrete
subgroup Γ ⊂ G acts properly on X and the quotient Γ\X is called a locally
symmetric space. The invariant metric on X defines an invariant measure on
X which induces a measure on Γ\X. Γ is called a lattice if the volume of Γ\X
with respect to the induced measure is finite. If G = G(R) is the real locus of
a linear semisimple algebraic group and Γ ⊂ G(R) is an arithmetic subgroup
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(see the next subsection for a precise definition), then Γ is a lattice in G, by
the reduction theory of arithmetic subgroups.

A locally symmetric space Γ\X is called irreducible if no finite cover splits
isometrically as a product.

Theorem 6.4 (Mostow strong rigidity). Let Γ\X and Γ′\X ′ be two irreducible
locally symmetric spaces of finite volume. Assume that one of the symmetric
spaces X and X ′ is not isometric to the hyperbolic plane H2, and Γ and Γ′

are isomorphic as abstract groups. Then Γ\X and Γ′\X ′ are isometric after
suitable scaling of the metrics on the irreducible factors of X and X ′.

We note that if Γ is torsion-free, then Γ acts on X fixed-point freely, and
Γ\X is a manifold and its fundamental group π1(Γ\X) is equal to Γ. Other-
wise, Γ\X is an orbifold, and its fundamental group as an orbifold is equal to
Γ. Mostow strong rigidity says roughly that if a locally symmetric space of
finite volume is not a hyperbolic surface, then its isometry type is determined
by its fundamental group.

The proof in [138] depends on the rank of X and works under the assump-
tion that Γ\X and Γ′\X ′ are compact. The basic idea is that an isomorphism
between Γ and Γ′ induces an equivariant quasi-isometry between X and X ′.
When the rank of X is at least 2, it induces an isomorphism between the Tits
buildings ∆(X) and ∆(X ′), which are of rank at least 2, and the rigidity of
Tits buildings in §6.1 implies the desired rigidity. The rank 1 case requires
a different proof that involves quasi-conformal maps and ergodic actions of
lattices on the sphere X(∞), which is a real analytic manifold in this case.

The remaining cases where Γ\X and Γ′\X ′ are noncompact were proved
in [144] when the rank of X is equal to 1, and in [123] when the rank of X is
at least 2.

Remark 6.5. Since the original proofs in [138], there have been several dif-
ferent proofs of Mostow strong rigidity. When the locally symmetric spaces
are irreducible and the covering symmetric spaces are of rank at least 2, the
result also follows from the stronger super-rigidity of Margulis [124]. When
Γ\X and Γ′\X ′ are compact, there are also proofs of Mostow strong rigidity
in some cases by the method of harmonic maps (see [59] for a summary and
references).

When the rank ofX is equal to 1, in particular whenX is the real hyperbolic
space, there are at least two completely new proofs:

(1) A proof by Gromov using the notion of simplicial volume and the fact
that the simplicial volume of a finite volume hyperbolic manifold is pro-
portional to the volume of the hyperbolic metric. See the books [10] and
[149] for detailed descriptions.
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(2) A proof in [13] using the notion of barycenter map that characterizes
locally symmetric spaces among compact negatively curved Riemannian
manifolds in terms of minimal entropy.

There are also proofs in [165] [84] of Mostow strong rigidity for hyperbolic
spaces using quasi-conformal maps that generalize and simplify the original
proof in [138].

Mostow strong rigidity has been generalized in several different ways. One
generalization in [4] replaces one locally symmetric space, say Γ′\X ′, by a
compact Riemannian manifold M ′ of nonpositive curvature, and still concludes
that if Γ\X and M ′ are homotopy equivalent, Γ\X is irreducible and X is
of rank at least 2, then M ′ is also a locally symmetric space isometric to
Γ\X after a scaling of the metric. A further generalization in [109] replaces
the above Riemannian manifold M ′ by a geodesically complete metric space
whose universal covering space is a CAT(0)-space without changing the above
conclusion. For this generalization, the following characterization of symmetric
spaces of noncompact type and Euclidean buildings was proved in [109, Main
Theorem 1.2].

Proposition 6.6. Let X be a locally compact geodesically complete CAT(0)-
space. Let dTits be the Tits metric on X(∞). If (X(∞), dTits) is isomorphic
to a connected thick irreducible spherical building of rank at least 2 with the
Tits metric, then X is either a Riemannian symmetric space of noncompact
type or a Euclidean building.

Another type of rigidity problems concerns the characterization of locally
symmetric spaces in terms of intrinsic geometric properties. For example, the
rank rigidity of nonpositively curved Riemannian manifolds in [3] [38] says that
any irreducible nonpositively curved Riemannian manifold M of finite volume
with rank at least 2 is a locally symmetric space. The proof of [38] consists of
two steps:

(1) The construction of a topological Tits building structure on M̃(∞),

where M̃ is the universal covering space of M ,

(2) The use of rigidity and classification of topological buildings in [39].

All these rigidity results have one thing in common: the asymptotic geom-
etry of the spaces at infinity is described by Tits buildings, and rigidity of Tits
buildings implies the desired rigidity of the spaces.

6.3 Compactifications of locally symmetric spaces

Let G ⊂ GL(n,C) be a linear semisimple algebraic group defined over Q,
and G = G(R) = G ∩ GL(n,R) the real locus, a real Lie group with finitely
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many connected components. Let K ⊂ G be a maximal compact subgroup.
Then X = G/K with an invariant metric is a symmetric space of noncompact
type. Let G(Q) = G ∩ GL(n,Q) be the rational locus of G. A subgroup
Γ ⊂ G(Q) is called an arithmetic subgroup if it is commensurable with G(Z) =
G(Q) ∩GL(n,Z), i.e., Γ ∩G(Z) has finite index in both Γ and G(Z). By the
reduction theory of arithmetic subgroups, it is known that Γ\X has finite
volume and Γ\X is compact if and only if the Q-rank rQ(G) of G is equal
to 0, which is equivalent to the condition that there is no proper Q-parabolic
subgroup of G.

For the rest of this subsection, we assume that Γ\X is noncompact un-
less otherwise indicated and let PQ be the collection of proper Q-parabolic
subgroups of G.

For various applications, we need to compactify Γ\X. We will discuss one
compactification here. See [19] for other motivations and applications.

For any discrete group Γ, there is a classifying space BΓ which is a CW-
complex satisfying the conditions: π1(BΓ) = Γ and πi(BΓ) = {1} when i ≥ 2.
Such a space BΓ is unique up to homotopy equivalence. Its universal covering
space EΓ = B̃Γ is a universal space for proper and fixed point free actions of
Γ. EΓ is a Γ-CW complex characterized by the conditions: (1) Γ acts properly
and fixed point freely on EΓ, and (2) EΓ is contractible.

It is known that if Γ contains nontrivial torsion elements, then there does
not exist finite-dimensional BΓ or EΓ spaces. In this case, another important
space is the universal space for proper actions of Γ which is usually denoted
by EΓ and is characterized by the conditions: (1) EΓ is a Γ-CW complex and
Γ acts properly on it, (2) for any finite subgroup F ⊂ Γ, the fixed point set
(EΓ)F is nonempty and contractible. In particular, EΓ is contractible.

If Γ is torsion-free, then the only finite subgroup of Γ is the trivial one, and
an EΓ-space is an EΓ-space.

Definition 6.7. A classifying space BΓ is called finite if it is a finite CW-
complex. Equivalently, EΓ is called cofinite if the quotient Γ\EΓ ∼= BΓ is a
finite CW-complex. Similarly, EΓ is called a cofinite universal space for proper
actions of Γ if Γ\EΓ is a finite CW-complex.

For topological problems involving Γ, in particular cohomological properties
and invariants of Γ, it is important to find explicit and cofinite models of EΓ
and EΓ [116].

Proposition 6.8. Let Γ ⊂ G(Q) be an arithmetic subgroup as above. Then
X is an EΓ-space. It is a cofinite EΓ-space if and only if Γ\X is compact.

Proof. It is known that X is a simply connected and nonpositively curved
Riemannian manifold. For any finite subgroup F ⊂ Γ, by the Cartan fixed
point theorem, the set of fixed points XF is nonempty. In fact, for any point
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x ∈ X, the so-called center of gravity of the orbit Fx, which is finite, is fixed
by G. Since XF is a totally geodesic submanifold, it is also contractible.

If X is a cofinite EΓ space, then Γ\X is compact. Conversely, if Γ\X is
compact, then the existence of an equivariant triangulation implies that X has
the structure of a Γ-CW-complex such that Γ\X is a finite CW-complex.

When Γ is torsion-free, then Γ\X is a BΓ-space. Assume that Γ\X is
noncompact. One approach to obtain a compact BΓ-space is to construct a
compactification Γ\X such that the inclusion Γ\X → Γ\X is a homotopy

equivalence. The Borel-Serre compactification Γ\X
BS

in [20] satisfies this
property.

For every Q-parabolic subgroup P ∈ PQ, let P = P(R) be its real locus,
NP be its unipotent radical, and NP = NP(R) its real locus. Let AP be a
Q-split component of P that is stable under the Cartan involution of G with
respect to the maximal compact subgroup K of G, and AP = AP(R) its real
locus. Then P admits a Q-Langlands decomposition

P = NPAPMP
∼= NP ×AP ×MP.

The subgroup MP is a reductive subgroup and MP ∩K is a maximal compact
subgroup of MP. The quotient XP = MP/MP ∩K with an invariant metric
induced from X is a symmetric space of nonpositive sectional curvature (it
might contain a flat factor and may not be of noncompact type), and is called
the boundary symmetric space of P. The Q-Langlands decomposition of P
induces a horospherical decomposition of X with respect to the Q-parabolic
subgroup P:

X ∼= NP ×AP ×XP.

One example to illustrate this is G = SL(2,C), and Γ = SL(2,Z). Then

P = {
(
a b
0 a−1

)
| a ∈ R×, b ∈ R}

is a Q-parabolic subgroup, and

NP = {
(

1 b
0 1

)
| b ∈ R}, AP = {

(
a 0
0 a−1

)
| a > 0}, MP = {

(
a 0
0 a−1

)
| a = ±1}.

The boundary symmetric space XP is one point, and the horospherical de-
composition of X = H2 = SL(2,R)/SO(2) with respect to P is the (x, y)-
horospherical coordinates of the upper half plane H2. See [19] for more detail.

For every Q-parabolic subgroup P, define

e(P) = NP ×XP

and call it the boundary component of P.
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According to the slightly modified procedure in [19], the Borel-Serre com-

pactification Γ\X
BS

is constructed in the following steps.

(1) For every P ∈ PQ, attach the boundary symmetric space e(P) at the
infinity of X using the horospherical decomposition of X with respect to
P to obtain a Borel-Serre partial compactification

QX
BS

= X ∪
∐

P∈PQ

e(P).

(2) Show that the Borel-Serre partial compactification QX
BS

is a real ana-
lytic manifold with corners.

(3) Show that the Γ-action on X extends to a proper real analytic action on

QX
BS

with a compact quotient, which is the Borel-Serre compactifica-

tion of Γ\X and denoted by Γ\X
BS

.

From the above description, it is clear that the simplices of the Tits building
∆Q(G) parametrize the boundary components of the Borel-Serre compactifi-

cation Γ\X
BS

.

Corollary 6.9. When Γ is torsion-free, Γ\X
BS

is a finite BΓ-space.

Proof. When Γ is torsion-free, it acts fixed point freely on QX
BS

and

hence Γ\X
BS

is a real analytic compact manifold with corners whose interior

is equal to Γ\X. Then it is clear that the inclusion Γ\X → Γ\X
BS

is a
homotopy equivalence by retracting from the boundary faces into the interior.

Hence π1(Γ\X
BS

) = Γ and πi(Γ\X
BS

) = {1} for i ≥ 2, and Γ\X
BS

is a BΓ-
space. Since a compact manifold with corners admits a finite triangulation,

Γ\X
BS

is a finite BΓ-space.

When Γ contains torsion elements, the following result was proved in [89].

Proposition 6.10. The Borel-Serre partial compactification QX
BS

is a cofi-
nite EΓ-space.

The only non-obvious condition to check is that for any finite subgroup

F ⊂ Γ, the fixed point set (QX
BS

)F is contractible. The point is that if F
fixes a point in the boundary component NP ×XP, then F is contained in P .

For applications in the next subsection, we note

Proposition 6.11. The boundary ∂QX
BS

is homotopy equivalent to the spher-
ical Tits building ∆Q(G), and hence to a bouquet of infinitely many spheres
SrQ(G)−1, where rQ(G) is the Q-rank of G.
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Proof. Since each boundary space XP is contractible, and since for any
two Q-parabolic subgroups P1,P2, the inclusion relation P2 ⊂ P2 holds if and
only if XP1

is contained in the closure of XP2
, the first statement follows. The

second statement follows from Proposition 4.8 and the fact that ∆Q(G) is a
spherical building of rank rQ(G).

Remark 6.12. To compare with the two partial compactifications of Te-
ichmüller space in §7.5, we mention that in the above construction of the
Borel-Serre compactification, if we replace the boundary component e(P) by
the boundary symmetric space XP, then we obtain the reductive Borel-Serre
partial compactification

QX
RBS

= X ∪
∐

P∈PQ

XP.

Its boundary decomposes into contractible components XP, and these bound-
ary components are also parametrized by the Tits building ∆Q(G) and its

boundary ∂QX
RBS

is also homotopy equivalent to a bouquet of spheres SrQ(G)−1.

The Γ-action on X also extends to a continuous action on QX
RBS

with a

compact quotient Γ\QX
RBS

. All these results on the boundary of reductive
Borel-Serre partial compactification are similar to the Borel-Serre partial com-

pactification QX
BS

. But the difference is that this extended action on QX
RBS

is not proper any more. The inclusion Γ\X → Γ\QX
RBS

is not a homotopy

equivalence. In some sense, Γ\X
BS

is a blow-up of the reductive Borel-Serre

compactification Γ\QX
RBS

.

6.4 Cohomological dimension and duality properties of
arithmetic groups

Let Γ ⊂ G(Q) be an arithmetic subgroup as in the previous subsection. Once
good models of classifying spaces for Γ such as BΓ and EΓ spaces are found,
they can be used to study cohomological properties of Γ.

Recall that for any discrete group Γ, the cohomological dimension cd(Γ) is
defined by

cd(Γ) = sup{i | Hi(Γ,M) 6= 0, for some ZΓ-module M}.

It is known that if Γ contains nontrivial torsion elements, then cd(Γ) = +∞.
For any discrete group Γ that is virtually torsion-free, i.e., if γ contains a

finite index torsion-free subgroup Γ′, then cd(Γ′) is independent of the choice
of Γ′ and is called the virtual cohomological dimension of Γ, denoted by vcd(Γ).
It is also known that for any classifying space BΓ′, cd(Γ′) ≤ dimBΓ′. See [36]
for more details.



28

It is also known that every arithmetic subgroup Γ ⊂ G(Q) is virtually
torsion-free. Since X is an EΓ-space for a torsion-free arithmetic subgroup,
an immediate corollary is the following bound on vcd(Γ):

vcd(Γ) ≤ dimX.

The precise value of vcd(Γ) was determined in [20] using the Borel-Serre

partial compactification QX
BS

and the topology of the spherical Tits building
∆Q(G).

Proposition 6.13. The vcd(Γ) = dimX−rQ(G), where rQ(G) is the Q-rank
of G, i.e., the maximal dimension of Q-split tori in G.

This was proved together with a stronger result on duality properties of
Γ in [20]. A group Γ is called a Poincaré duality group of dimension n if for
every ZΓ-module M and every i, there is an isomorphism

Hi(Γ,M) ∼= Hn−i(Γ,M).

If Γ admits a BΓ-space given by a closed orientable manifold of dimension n,
then Γ is a Poincaré duality group. But the converse is not true in general. An
important question is under what further conditions a Poincaré duality group
Γ admits a closed manifold as a BΓ-space.

More generally, Γ is called a duality group of dimension n if there exists a
ZΓ-module D, called the dualizing module, such that for every ZΓ-module M
and every integer i, there is an isomorphism

Hi(Γ,M) ∼= Hn−i(Γ, D ⊗M).

In this case, it is known that cd(Γ) = n.
Since groups Γ containing nontrivial torsion elements have cd(Γ) = +∞,

they cannot be duality groups. On the other hand, if Γ admits a finite-index
torsion-free subgroup that is a duality group, it is called a virtual duality group.
Similarly, the notion of virtual Poincaré duality group can be defined.

The stronger result proved in [20] is the following:

Proposition 6.14. Every arithmetic subgroup Γ ⊂ G(Q) as above is a virtual
duality group of dimension dimX − rQ, where rQ = rQ(G). It is a Poincaré
duality group if and only if rQ = 0, i.e., Γ\X is compact. When rQ > 0, the
dualizing module of Γ is equal to the ZΓ-module HrQ−1(∆Q(G)), where H∗ is
the reduced homology group.

The conclusion that Γ is a virtual Poincaré duality group if Γ\X is compact
is clear since it is a closed orientable manifold if Γ is torsion-free.

Since G(Q) and hence Γ acts on the set of Q-parabolic subgroups of G
and hence on the spherical Tits building ∆Q(G), for every i, Hi(∆Q(G)) is a
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ZΓ-module. By Proposition 4.8, the reduced homology of ∆Q(G) is non-zero
in only degree rQ(G)− 1.

The basic idea of the proof of Proposition 6.14 is as follows. Assume

that Γ is torsion-free and Γ\X is noncompact. Then Γ\X
BS

is a finite BΓ-

space and QX
BS

is a cofinite EΓ-space. By general results for cohomology
of groups [36, Proposition 7.5, Proposition 8.2, Theorem 10.1], it suffices to

show that Hi(Γ,ZΓ) ∼= Hi
c(QX

BS
,Z) is not zero only when i = dimX−rQ(G),

where Hi
c(QX

BS
,Z) denotes the cohomology group with compact support. By

Poincaré-Lefschitz duality,

Hi
c(QX

BS
,Z) ∼= Hd−i(QX

BS
, ∂QX

BS
),

where d = dimX. Since QX
BS

is contractible,

Hd−i(QX
BS
, ∂QX

BS
) ∼= Hd−i−1(∂QX

BS
),

where H∗ is the reduced homology. By Proposition 6.11, the latter is not zero
if and only if d− i− 1 = rQ(G)− 1, i.e., i = d− rQ(G). This proves that Γ is
a duality group of dimension d− rQ(G) and the dualizing module is equal to
Hd−rQ(G)(∆Q(G),Z).

6.5 Simplicial volumes of locally symmetric spaces

An important homotopy invariant of manifolds is the simplicial volume intro-
duced by Gromov [58].

Suppose that M is a connected oriented compact manifold of dimension n,
let [M ] be the fundamental class in Hn(M,R), or rather the image of the fun-
damental class in Hn(M,Z) under the natural map Hn(M,Z) → Hn(M,R).
For each n-chain c =

∑
σ aσσ with R-coefficients, where σ are n-singular sim-

plices, define the simplicial `1-norm

||c||1 =
∑
σ

|σ|.

Then the simplicial volume of M , denoted by ||M ||, is defined by

||M || = inf{||c||1 | c is an n-chain with R-coefficients in the fundamental class [M ]}.

If M is a connected non-orientable manifold, then let M̃ be its double
cover and define ||M || = 1

2 ||M̃ ||. If M is an oriented orbifold, then it has
a fundamental class and hence the usual notion of simplicial volume. If M
admits a finite smooth cover N , then it also has a orbifold simplicial volume
||M ||orb = ||N ||/d, where d is the degree of the covering N → M . It fol-
lows from the multiplicative property of simplicial volumes of manifolds that
||M ||orb is independent of the choice of a finite smooth cover N . It is known
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that

||M ||orb ≥ ||M ||,

and the strict inequality can occur. See [91] for details.
Assume that M is a connected orientable noncompact manifold of dimen-

sion n. Let H lf
∗ (M,R) be the locally finite homology group of M . Let [M ]lf be

the fundamental class in H lf
∗ (M,R). For any locally finite n-chain c =

∑
σ aσσ,

define the simplicial norm ||c||1 =
∑
σ |σ| as above. Recall that to say that a

chain is locally finite means that every compact subset of M meets the images
of only finitely many singular simplices σ in the chain. Hence, ||c||1 could be
equal to infinity.

The simplicial volume ||M || of a noncompact manifold M is defined by

||M || = inf{||c||1 | c is a locally finite n-chain in the fundamental class [M ]lf}.

One of the motivations of Gromov for introducing the simplicial volume was
to give a lower bound on the minimal volume of a manifold M . Consider all
complete Riemannian metrics g on M whose sectional curvature K(g) satisfies
the bound |K(g)| ≤ 1 at all points. Let Vol(M, g) denote the volume of M
with respect to the metric g. Then the minimal volume of M is defined by

Min-Vol(M) = {inf(Vol(M, g) | gis a complete metric , |K(g)| ≤ 1}.

Another major application of simplicial volume is a different proof by Gro-
mov of Mostow strong rigidity for compact hyperbolic spaces of dimension at
least 3 as mentioned above. See [10] [149] for detailed discussions.

A basic result in [58, §0.5] states that there exists a universal constant Cn
only depending on the dimension n such that

Min-Vol(M) ≥ Cn||M ||.

Therefore, a natural problem is to understand when the simplicial volume
||M || is equal to zero.

It is known that if a compact manifold M admits a self-map of degree
greater than or equal to 2, then its simplicial volume ||M || = 0. If a noncom-
pact manifold M admits a proper self-map of degree greater than or equal to
2, then ||M || = 0 or ||M || = +∞. As a consequence, the simplicial volumes of
spheres and tori are equal to zero. It is also known that the simplicial volume
of Rn is equal to 0.

For spaces related to locally symmetric spaces, the following results on
simplicial volume are known:

Proposition 6.15. If M is a complete hyperbolic manifold of finite volume,
then ||M || > 0. More generally, if M admits a complete metric such that its
sectional curvature K is bounded uniformly between two negative constants,
then ||M || > 0.
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This is a a result due to Thurston [58, §0.3]).

Proposition 6.16. If M = Γ\X is a compact locally symmetric space of
noncompact type, then ||M || > 0.

This was conjectured by Gromov [58, p. 11] and proved in [107] and [37].

Proposition 6.17. If M = Γ\X is an arithmetic locally symmetric space
whose Q-rank, denoted by rQ(G), is greater than or equal to 3, then ||M || = 0.

This vanishing result was proved in [114]. In the proof, Proposition 6.9 and
Proposition 6.11 are used crucially. Briefly, a vanishing criterion [58, p. 58] was
applied. In order to apply this, a suitable covering of Γ\X with multiplicity
at most dim Γ\X is needed. For this purpose, the conditions that the map

π∞1 (Γ\X) = π1(Γ\X
BS

) → π1(Γ\X) = π1(Γ\X
BS

) is injective and that the
virtual cohomological dimension of Γ is at most dim Γ\X − 2 are needed.
Since the virtual cohomological dimension of Γ is equal to dim Γ\X − rQ(G),
the condition that rQ(G) ≥ 3 is more than enough. The assumption that

rQ(G) ≥ 3 is needed to show that the boundary ∂QX
BS

, which is homotopy
equivalent to a bouquet of spheres SrQ(G)−1, is simply connected.

If rQ(G) = 1, this vanishing result does not hold in general. For example, it
was proved in [113] that if M is a Hilbert modular variety, then ||M || > 0. Note
that Hilbert modular varieties are important examples of locally symmetric
spaces of Q-rank 1. If the rank of X is equal to 1 and Γ\X is noncompact,
which implies that rQ(G) = 1, then the sectional curvature of Γ\X is bounded
by two negative constants and hence the simplicial volume of Γ\X is positive
[58, §0.3].

Remark 6.18. For any topological space M of dimension n that admits a
suitable fundamental class in Hn(M,Z) or H lf

n (M,Z), we can define its sim-
plicial volume. We can show that for any arithmetic locally symmetric space
Γ\X of Q-rank at least 3, and any irreducible arithmetic locally symmetric
space Γ\X of Q-rank at least 1 and the rank of X at least 2, the simpli-
cial volumes of the reductive Borel-Serre compactification and the Baily-Borel
compactification (if Γ\X is Hermitian) also vanish. See [91] for details.

6.6 Asymptotic cones of symmetric spaces and locally
symmetric spaces

Buildings also occur naturally in the large scale geometry of symmetric spaces
X and locally symmetric spaces Γ\X.

For any metric space (M,d), choose a basepoint x0 ∈ X. For any ε > 0,
consider the family of pointed metric spaces (M, εd, x0). The limit limε→0(M, εd, x0),
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if it exists, is called the asymptotic cone (or tangent cone at infinity) of M and
denoted by Cone∞(M). Though the ordinary limits many not exist, there are
always ultra limits, which may not be unique. Any Cone∞(M) is a metric
cone and does not depend on the choice of the basepoint x0.

If (M,d) has finite diameter, then Cone∞(M) consists of one point. If
M = Rn with the standard Euclidean metric, then Cone∞(Rn) is isomorphic
to Rn due to the scaling invariance of the Euclidean metric. On the other
hand, if M = Hn, n ≥ 2, Cone∞(M) is an R-tree that branches at every
point. Recall that a usual simplicial tree branches only at a discrete set of
points on every geodesic.

The asymptotic cone of a general symmetric space of noncompact type was
determined in [104].

Proposition 6.19. If X is a symmetric space of noncompact type, then
Cone∞(X) is an R-Euclidean building.

One application of this result is the quasi-isometric rigidity of symmetric
spaces [104] [48], which is a generalization of Mostow strong rigidity.

Proposition 6.20. Let X and X ′ be two symmetric spaces of noncompact type
that have no irreducible factors of rank 1. If X and X ′ are quasi-isometric,
then they are isometric up to suitable scaling of the metrics on irreducible
factors.

If Γ ⊂ G(Q) is an arithmetic subgroup and Γ\X is noncompact, then
Cone∞(Γ\X) was determined in [76] [110] [94].

Proposition 6.21. If Γ\X is a noncompact arithmetic locally symmetric
space, then the asymptotic cone at infinity Cone∞(Γ\X) is a metric cone over
the finite complex Γ\∆Q(G).

Recall that Γ acts on ∆Q(G) via the action on the set PQ of parabolic
subgroups of G. By the reduction theory of arithmetic subgroups, there are
only finitely many Γ-conjugacy classes of proper Q-parabolic subgroups and
hence Γ\∆Q(G) is a finite simplicial complex.

6.7 Applications of Euclidean buildings

In the previous subsections, we have mainly concentrated on applications of
spherical Tits buildings. Now we briefly consider some applications of Eu-
clidean buildings.

A natural generalization of arithmetic subgroups is the class of S-arithmetic
subgroups. Let S = {p1, · · · , pl,∞}, where p1, · · · , pl are prime distinct
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numbers, and Z[ 1
p1
, · · · , 1

pl
] be the ring of S-integers, denoted by ZS . For

any linear semisimple algebraic group G ⊂ GL(n,C) defined over Q, let
G(ZS) = G(Q) ∩ GL(n,ZS). Then a subgroup Γ of G(Q) is called an S-
arithmetic subgroup if it is commensurable with G(ZS).

It is known that under the diagonal embedding, Γ is a discrete subgroup
of G×G(Qp1)× · · · ×G(Qpk), where G = G(R) is the real locus of G.

For each pi, let ∆pi be the Bruhat-Tits building of the group G(Qpi). Let
X = G/K be the symmetric space of noncompact type associated with G as
above. Define

XS = X ×∆p1 × · · · ×∆pk .

Then Γ acts properly on XS , since each G(Qpi) acts properly on ∆pi .

Proposition 6.22. Any S-arithmetic subgroup Γ acts properly on XS and XS

is an EΓ-space.

The reason is that each ∆pi is a CAT(0)-space and hence the product XS is
also a CAT(0)-space. Since the Cartan fixed point theorem holds for CAT(0)-
spaces, for any finite subgroup F ⊂ Γ, the fixed point set (XS)F is nonempty.
It is also a totally geodesic subspace.

If the quotient Γ\XS is compact, then XS is a cofinite EΓ-space by [93].
Otherwise, we need an analogue of the Borel-Serre partial compactification

QXS
BS

= QX
BS ×∆p1 × · · · ×∆pk ,

on which Γ acts properly with a compact quotient. See [89].

Remark 6.23. Bruhat-Tits buildings, or rather the Bruhat-Tits theory, have
played an important role in the representation theory of reductive p-adic Lie
groups. Due to the lack of knowledge of the author, we only mention one
application which is connected with the fact that Bruhat-Tits buildings are
CAT(0)-spaces. In [139], it was proved that for any Bruhat-Tits building
∆BT (G(k)), and any g ∈ Aut(∆BT (G(k))), the displacement function

dg : ∆BT (G(k))→ R≥0, x 7→ dist(x, gx),

is a convex function. This has important applications in representation theory.
See [137] for detail.

Remark 6.24. On the set of vertices of a Bruhat-Tits building, there is also
a combinatorial distance, which is induced from the distance on the 1-skeleton
of the building. This has applications to arithmetic algebraic geometry. In
[170], non-Archimedean intersection indices on projective spaces over a non-
Archimedean local field of characteristic zero are expressed in terms of the
combinatorial distance of the Bruhat-Tits building for G = PGL(n).
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6.8 Compactifications of Euclidean buildings

It is clear from the definition that Euclidean buildings are noncompact, since
each apartment is a closed noncompact subspace. For many purposes, Eu-
clidean buildings play a similar role for p-adic Lie groups as symmetric spaces
of noncompact type for noncompact real Lie groups. There has been a lot of
work on compactifications of symmetric spaces motivated by applications in
group theory, geometry, topology and analysis. See [19] for a history, more
details and references.

By Proposition 4.3, every Euclidean building ∆ is a CAT(0)-space. It is
also known that a symmetric space of noncompact type with an invariant
Riemannian metric is a complete nonpositively curved simply connected Rie-
mannian manifold and is hence also a CAT(0)-space. This is one important
common property shared by both Euclidean buildings and symmetric spaces.

It is known that for any CAT(0)-space ∆, its set of equivalence classes of
geodesics X(∞) forms the geodesic (or visual) boundary of ∆ as in the case of a
symmetric space that we saw in §2.1. If ∆ is a proper metric space, then there
is a natural compact topology on ∆ ∪∆(∞) [30] [21]. This compactification
X ∪ X(∞) is called the geodesic compactification. The following result was
also proved in [21].

Proposition 6.25. (1) If ∆ is a Euclidean building, then its geodesic boundary
∆(∞) has a natural structure of a spherical Tits building. If the rank of ∆
is equal to r, then the rank of ∆(∞) is also equal to r. (2) If ∆ = ∆BT (G)
is the Bruhat-Tits building of an algebraic group G over a locally compact
local field k, then ∆ = ∆BT (G) is locally compact, and ∆(∞) is the spherical
Tits building ∆k(G). Furthermore, the geodesic compactification ∆BT (G) ∪
∆BT (G)(∞) is contractible.

This geodesic compactification explains a close relation between spherical
and Euclidean buildings.

Suppose ∆1,∆2 are two locally compact Euclidean buildings. Then there
are at least two natural compactifications of the product ∆1 ×∆2.

The first one is obtained by taking the product of the geodesic compactifi-
cations ∆1 ∪∆1(∞) and ∆2 ∪∆2(∞),

∆1 ×∆2
prod

= (∆1 ∪∆1(∞))× (∆2 ∪∆2(∞)).

Note that the product ∆1×∆2 is also a CAT(0)-space. Then the geodesic
compactiication gives another compactification of ∆1 ×∆2,

∆1 ×∆2 ∪ (∆1 ×∆2)(∞).

It is clear that these two compactifications are not isomorphic, and each of
them is natural in its own way. It turns out that the second type of compact-
ifications has an application to the Novikov conjecture in geometric topology
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for certain classes of S-arithmetic subgroups of algebraic groups. Let Γ be an
S-arithmetic subgroup of a linear algebraic group as in §6.7. Assume that Γ
acts cocompactly on XS = X ×∆p1 × · · ·∆pk . By Proposition 6.22, XS is a
cocompact universal space for proper actions of Γ, i.e., a cocompact model of
EΓ. Since X is also a CAT(0)-space as mentioned above, the product XS is
a CAT(0)-space and hence admits a geodesic compactification. The Γ-action
on XS extends continuously to the compactification. An important point of
the geodesic compactification of XS is that the extended action of Γ on the
compactification is small at the boundary (or infinity). Then it follows from
a general criterion for the validity of Novikov conjectures that the integral
Novikov conjecture holds for Γ. See [92] [93] for precise statements of the
Novikov conjecture, for the criterion and for other details.

On the other hand, if we take the product compactification of XS induced
from compactifications of the factors, i.e., the product of X ∪ X(∞), ∆p1 ∪
∆p1(∞), · · · ,∆pk ∪ ∆pk(∞), the action of Γ might not be small at infinity,
and it might not be used for proving the integral Novikov conjecture for Γ.

Motivated by many different compactifications of symmetric spaces of non-
compact type (see [19]), there are also corresponding compactifications of Eu-
clidean buildings. As discussed in §2.2, one important feature of rich structure
of a symmetric space is reflected by the flat subspaces F of maximal dimension
in X, which determine the Tits building of X.

There are several ways to understand a compactification X of X, and they
can be generalized to construct compactifications of Euclidean buildings:

(1) Decompose the boundary X−X into smaller subspaces which enjoy some
natural structures.

(2) Determine the closure of maximal flat subspaces F in the compactifica-
tion X and the intersection pattern of these compactified flat subspaces,
and recover the compactification of X from the compactified flats.

(3) Interpret X as a moduli space of certain objects and the boundary points
in X −X as degenerate objects.

For the geodesic compactification X∪X(∞) in §2.1, the boundary X(∞) is
naturally decomposed into simplices and can be viewed as the underlying space
of the Tits building of X. As pointed out earlier, a geodesic compactification
can be constructed for every locally compact Euclidean building.

Another important compactification of X is the maximal Satake compact-

ification X
S

max, which is the maximal element in the partially ordered finite
set of Satake compactifications of X. See [60]. Each maximal flat F of X
has a natural decomposition by Weyl chambers and Weyl chamber faces. The

closure of F in X
S

max is canonically homeomorphic to a polyhedron, its bound-
ary is a finite cell complex dual to the Weyl chamber decomposition, and the

compactification X
S

max can be constructed by gluing these compactified flats
[60].
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It turns out a similar construction works for any Euclidean building ∆ by
gluing polyhedral compactifications of apartments of ∆. See [108].

To explain Satake compactifications of symmetric spaces, we start with a
special Satake compactification of the symmetric space SL(n,C)/SU(n). Let
Hn be the real vector space of (n × n)-Hermitian matrices, and P (Hn) the

associated projective space. Then the map A 7→ AA
t

defines an embed-
ding of SL(n,C)/SU(n) into P (Hn), and the closure of SL(n,C)/SU(n) under
this embedding gives a Satake compactification. In this case, every point in
SL(n,C)/SU(n) corresponds to a positive definite Hermitian matrix of de-
terminant 1 (or equivalently a positive definite Hermitian quadratic form of
determinant 1), and the boundary points correspond to projective classes of
degenerate positive semi-definite Hermitian matrices.

For a general symmetric space X = G/K of noncompact type, any finite-
dimensional projectively faithful representation of G gives an isometric em-
bedding of X into SL(n,C)/SU(n) for some n, and the closure of X in the
above special Satake compactification of SL(n,C)/SU(n) gives a Satake com-
pactification of X. Though there are infinitely many representations of G,
it turns out that they only give rise to finitely many non-isomorphic Satake
compactifications of X.

For the Bruhat-Tits building ∆BT (G) of a reductive algebraic group over a
local field, the corresponding Satake compactifications have been constructed
in [151] [150] [171] [172] [173]. The paper [150] constructs the compactification
by using Berkovich analytic geometry over complete non-Archimedean fields,
and the paper [151] uses irreducible representations of the algebraic group and
is more similar to the Satake compactifications of symmetric spaces. The con-
struction in [171] is also similar to the Satake compactifications of symmetric
spaces. Compactifications of some special buildings were treated in [172] and
[173].

The boundary ∂X
S

max of the maximal Satake compactification is naturally
decomposed into symmetric spaces of noncompact type of smaller dimension,
which are naturally parametrized by proper parabolic subgroups of G, where
X = G/K, or by simplices of the Tits building ∆(X). Since each boundary

symmetric space is a cell, this shows that the boundary ∂X
S

max has a natural

cell structure which is dual to the Tits building. See [60]. The boundary ∂X
S

max

can also be constructed in this way by adding these boundary components
using the idea of the Borel-Serre compactification of locally symmetric spaces.
See [19]. For Bruhat-Tits buildings, a similar construction should also work.
For the Bruhat-Tits building of PGL(n) over a local compact field, such a
construction has been carried out in [171].

The maximal Satake compactification X
S

max can also be constructed by
embedding X into the compact space of closed subgroups of G [60]. A similar
compactification of Bruhat-Tits buildings has been constructed in [61].
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An important application of compactifications of symmetric spaces is to
harmonic analysis on symmetric spaces, for example, the determination of the
Poisson boundary. The analogue of the Poisson boundary of certain Bruhat-
Tits buildings has been determined in [57].

Remark 6.26. For a hyperbolic building ∆, its geodesic boundary ∆(∞)
has the structure of a trivial (or rank 1) spherical building structure, i.e., the
top dimensional simplices of the building are points. The reason is that the
boundary Hn(∞) of the real hyperbolic space Hn has the structure of a rank-1
spherical building.

7 Applications of curve complexes

In this section, we briefly discuss some applications of curve complexes. In
§7.1, we discuss the identification of the automorphism group of C(Sg,n) with
Modg,n, which is responsible for several rigidity results on the geometry of
Tg,n in §7.2. In §7.3, we briefly describe the ending lamination conjecture of
Thurston on the rigidity of 3-dimensional hyperbolic manifolds with finitely
generated fundamental group and its formulation in terms of the boundary
∂C(Sg,n) of C(Sg,n) as a δ-hyperbolic space. This is probably one of the most
striking applications of the curve complex C(Sg,n). In §7.4, we discuss an
application to quasi-isometric rigidity of Modg,n. In §7.5, we describe several
different notions of the Novikov conjectures and an application of the curve
complex to finiteness of the asymptotic dimension of Modg,n. In §7.6, we
mention an application to non-Gromov-hyperbolicity of the Weil-Petersson
metric of Tg,n. In §7.7, we define the Hempel distance of a Heegaard splitting
via the image of Heegaard diagrams in C(Sg). After these applications to 3-
dimensional manifolds, we describe the Borel-Serre partial compactification of
Tg,n via C(Sg,n), the original motivation of introducing C(Sg,n). Cohomological
properties of Modg,n are studied in §7.9. The asymptotic cone at infinity of
Mg,n is described in §7.10 and the simplicial volume of Mg,n is discussed in
§7.11. In the last subsection, §7.12, we mention applications of C(Sg,n) to the
classification of elements of Modg,n, presentations and unitary representations
of this group.

7.1 Automorphism groups of curve complexes

As mentioned in §5, the extended mapping class group Mod±g,n acts on C(Sg,n)

simplicially. This defines a map Mod±g,n → Aut(C(Sg,n)), where Aut(C(Sg,n))
is the simplicial automorphism group of C(Sg,n). It turns out that the image
is essentially the whole automorphism group [81] [117, Theorem, p. 7] [105].
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Proposition 7.1. (1) If the dimension of C(Sg,n) is at least 1 and (g, n) 6=
(1, 2), then the map Mod±g,n → Aut(C(Sg,n)) is surjective. (2) When (g, n) =
(1, 2), the image of the map Modg,n → Aut(C(Sg,n)) contains all automor-
phisms of C(S1,2) that preserve vertices represented by separating curves. Fur-
thermore, this map is injective and the image has index 2 in Aut(C(Sg,n)).
(3) When Sg,n is not a torus with 1 or 2 punctures, or a sphere with at
most 4 punctures, or a closed surface of genus 2, then the map Mod±g,n →
Aut(C(Sg,n)) is an isomorphism.

This is an analogue of Corollary 6.3 for Tits buildings and it will be used
in the next subsection to prove several rigidity results.

Remark 7.2. There are several related results on rigidity of simplicial maps
of C(Sg,n) which imply co-Hopfian property of the mapping class group Modg,n
[79] [162] [9]. Some quasi-isometric embeddings of curve complexes are con-
structed in [147], and they lead to some new quasi-isometric embeddings be-
tween mapping class groups.

Remark 7.3. A closely related result on the simplicial automorphism group
of the arc complex of a surface is proved in [106]. The automorphism group
of the pants complex of a surface is determined in [122].

Remark 7.4. The paper [17] studies the automorphism group Aut(Ĉ(Sg,n)) of
the profinite completion of the complex of curves C(Sg,n) and compares it with

the Grothendieck-Teichmüller group. This paper also shows that Aut(Ĉ(Sg,n))
coincides (apart from two low dimensional exceptions) with the automorphism

group of M̂odg,n, where M̂odg,n is the profinite completion of the extended
mapping class group Modg,n.

7.2 Isometry groups of Teichmüller spaces

Motivated by the proof of Mostow strong rigidity for irreducible compact lo-
cally symmetric spaces of rank at least 2 via rigidity of Tits buildings, Ivanov
[82] gave a new proof of the following theorem of Royden [154] by using the
rigidity of C(Sg,n) in Proposition 7.1.

Proposition 7.5. The Teichmüller metric dTei of the Teichmüller space Tg,n
is invariant under the natural action of the extended mapping class group
Mod±g,n. If g ≥ 2, or g = 1 and n ≥ 3, or g = 0 and n ≥ 5, then Mod±g,n is
equal to the full isometry group Iso(Tg,n, dTei).

The Teichmüller metric is historically the first metric defined on Tg,n. It
is a complete Finsler metric and it gives the natural topology on Tg,n. The
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Teichmüller space Tg,n also admits another metric, the Weil-Petersson metric
dWP . This is an incomplete Kähler metric. Its isometry group was identified
in [128].

Proposition 7.6. For any Teichmüller space Tg,n, the extended mapping class
group Mod±g,n is canonically mapped into the isometry group Iso(Tg,n, dWP ).

If g ≥ 2, or g = 1 and n ≥ 3, or g = 0 and n ≥ 5, then Mod±g,n is equal to the
full isometry group Iso(Tg,n, dWP ).

The idea of the proof, simplified in [174], is similar to the previous propo-
sition and can be explained as follows. The completion of Tg,n in the Weil-

Petersson metric is the augmented Teichmüller space T̂g,n. The boundary com-

ponents of T̂g,n are Teichmüller spaces of stable Riemann surfaces of smaller
genus with more punctures (the same Euler characteristic). These boundary
components are parametrized by simplices of C(Sg,n). Since any isometry of
(Tg,n, dWP ) extends to its completion, it induces an automorphism of C(Sg,n).
Proposition 7.1 implies that the isometry is induced by an element of Modg,n.

Remark 7.7. Teichmüller spaces Tg,n are the counterpart of symmetric spaces
in the analogy between Tits buildings and arithmetic groups on the one hand,
and curve complexes and mapping class groups on the other hand. The above
proposition shows one difference. Any symmetric space is a homogeneous space
and has continuous symmetry, but Tg,n has only discrete symmetry, which
implies that there is a uniform lower bound on volumes of Γ\Tg,n. Maybe one
result to repair this difference is that for any symmetric space X, there is a
uniform lower bound on volumes of all locally symmetric spaces Γ\X which
are quotients of X.

7.3 The ending lamination conjecture of Thurston

Another generalization of Mostow strong rigidity is the ending lamination
conjecture of Thurston.

A special case of Mostow strong rigidity concerns 3-dimensional hyperbolic
manifolds of finite volume. Let Γ1\H3 and Γ2\H3 be two hyperbolic manifolds
of finite volume. If Γ1

∼= Γ2, then Γ1\H3 and Γ2\H3 are isometric.
On the other hand, the conclusion does not hold if the volumes of Γ1\H3

and Γ2\H3 are not finite. For example, let Γ ⊂ SL(2,R) be a torsion-free
cocompact Fuchsian group, i.e., a discrete subgroup such that Γ\H2 is a com-
pact hyperbolic surface Σ. Consider Γ as a discrete subgroup of SL(2,C).
Then Γ\H3 is a 3-dimensional hyperbolic manifold of infinite volume and is
diffeomorphic to Σ× R. There are injective morphisms ρ : Γ→ SL(2,C) such
that ρ(Γ)\H3 is not isometric to Γ\H3, but is still diffeomorphic to Σ × R.
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A deformation ρ(Γ) of Γ is called a quasi-Fuchsian deformation if ρ(Γ) is a
quasi-Fuchsian group in the sense that the limit set of ρ(Γ) in H3(∞) is a
Jordan curve. The complement of the limit set consists of two simply con-
nected domains Ω1 and Ω2. Many quasi-Fuchsian deformations of Γ have the
property that ρ(Γ)\H3 is not isometric to Γ\H3.

In this case, clearly Γ and ρ(Γ) are isomorphic. Therefore, a direct general-
ization of Mostow strong rigidity does not hold for infinite volume hyperbolic
manifolds of dimension 3, i.e., if Γ1\H3 and Γ2\H3 are both of infinite volume,
then Γ1

∼= Γ2 does not imply that Γ1\H3 and Γ2\H3 are isometric. (Note that
by [119, Theorem 8.3], if one of the manifolds Γ1\H3 and Γ2\H3 has finite
volume and Γ1

∼= Γ2, then the other manifold also has finite volume and hence
Γ1\H3 and Γ2\H3 are isometric.)

For each quasi-Fuchsian deformation ρ(Γ), the noncompact infinite volume
3-dimensional hyperbolic manifold ρ(Γ)\H3 has two ends4 and admits a nat-
ural compactification ρ(Γ)\H3 by adding the two Riemann surfaces ρ(Γ)\Ω1

and ρ(Γ)\Ω2 as the boundary. Therefore, the Riemann surfaces ρ(Γ)\Ω1 and
ρ(Γ)\Ω2 are called the Riemann surfaces at infinity of the ends of ρ(Γ)\H3.

The following fact establishes a connection between the Riemann surfaces
at infinity and the geometry of the interior.

Proposition 7.8. Two quasi-Fuchsian deformations ρ1(Γ) and ρ2(Γ) of Γ give
rise to isometric 3-dimensional hyperbolic manifolds ρ1(Γ)\H3 and ρ2(Γ)\H3

if and only if they have the same Riemann surfaces at infinity of the ends.
Furthermore, all possible conformal structures on the Riemann surfaces at
infinity can arise.

This is a proper generalization of Mostow strong rigidity for the class of
quasi-Fuchsian hyperbolic manifolds, and it gives a complete classification of
quasi-Fuchsian hyperbolic manifolds of dimension 3. See [12] [121, Chapter 5]
for more details.

Quasi-Fuchsian deformations are important examples of geometrically fi-
nite hyperbolic manifolds. Recall that a three-dimensional hyperbolic manifold
Γ\H3 is called geometrically finite if Γ admits a finite-sided convex fundamen-
tal domain (see [26] for discussion of several equivalent definitions), which is
also equivalent to the fact that Γ\H3∪Ω(Γ) is homeomorphic to M−P where
M is a compact 3-manifold with boundary and P is a finite collection of dis-
joint annuli and tori in ∂M , and Ω(Γ) is the largest open subset of H3(∞)
where Γ acts properly [43, p. 139].

A similar rigidity result and classification of hyperbolic metrics holds for
geometrically finite hyperbolic manifolds M of dimension 3. Roughly speaking,

4By an end of a 3-dimensonal manifold, we mean a connected unbounded component of
the complement of a sufficiently large compact subset. Strictly speaking, an end is a limit
of such unbounded connected components over an exhausting family of compact subspaces.
For a precise definition, see [159].
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for each end of M , there is a Riemann surface at infinity. Such a collection
of Riemann surfaces at infinity together with the topology of the manifold
uniquely determines the hyperbolic manifold [119, Theorem 8.1] [120] [121,
Chapter 5] [12] [132, p. 188] [43, §7.3]. We note that the topology of a
quasi-Fuchsian hyperbolic manifold is determined by any of the two Riemann
surfaces at infinity, and hence the condition on the topology of the manifold
is contained in the Riemann surfaces at infinity.

For a finitely generated torsion-free subgroup Γ ⊂ SL(2,C), the hyperbolic
manifold Γ\H3 has only finitely many ends. This case is more complicated
than the geometrically finite case. For simplicity, in the following discussion,
we assume that Γ does not contain any nontrivial parabolic element (see [121,
§5.5] for the complication caused by the presence of parabolic elements.)

A three-dimensional hyperbolic manifold M = Γ\H3 is called geometrically
tame if each of its ends is either geometrically finite or simply degenerate
(defined below). It is called topologically tame if M is homeomorphic to the
interior of a compact manifold with boundary. It is known that if Γ is finitely
generated, then Γ\H3 is topologically tame if and only if it is geometrically
tame [41] [18]. Therefore, the solution of Marden’s tameness conjecture implies
that Γ\H3 is geometrically tame. See [42] for a precise description of these
two notions of tameness and a history of Marden’s tameness conjecture.

Thurston associated an invariant to an incompressible end of Γ\H3, and
an end invariant for a general end was defined in [41] (see also [18]).

If an end is geometrically finite and of infinite volume, then there is a
Riemann surface at infinity which gives the end invariant. For a geometrically
finite end of finite volume, there is no invariant.

For a simply degenerate end, there is a filling lamination on an associated
surface, which is an invariant of the end. For simplicity, we assume that Γ\H3

has no cuspidal ends. Then for each end, there is a surface Sg,n such that the
end is homeomorphic to Sg,n × (0,+∞). For every simple closed curve α in
Sg,n, there is a well-defined homotopy class of simple closed curves in the end
of Γ\H3 and hence in Γ\H3. Let α∗ be the unique geodesic representative in
Γ\H3. Then the end is called simply degenerate if there is a sequence of simple
closed curves αi on Sg,n such that their geodesic representatives α∗i exit the
end, i.e., they are eventually contained in any small neighborhood of the end.

The family of curves αi in Sg,n converges to a lamination, called the ending
lamination of the end. It can also be interpreted through the curve complex of
a surface in the end. The sequence of simple closed curves αi gives a sequence
of vertices in the curve complex C(Sg,n). It is known that they converge to a
boundary point ∂C(Sg,n), which is a filling lamination on Sg,n by Proposition
5.6.

Thurston made the following Ending lamination conjecture.
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Conjecture 7.9. A three dimensional hyperbolic manifold Γ\H3 with finitely
generated fundamental group Γ is determined by its topological type and its end
invariants.

If Γ\H3 has finite volume, then each end has finite volume and is a cusp,
the end invariant is trivial, and the space Γ\H3 is determined by its topology,
i.e., Γ as the fundamental group, up to isometry by Mostow strong rigidity.

This ending lamination conjecture has been proved by Brock-Canary-Minsky
(see [34] [130] [131]). Slightly different proofs have also been given. See [27]
[28]. A crucial step in the proof is to build a bi-Lipschitz model of each of the
ends of Γ\H3. (In [27] [28], a weaker Lipschitz model of each end is needed
and constructed.) The large-scale geometry of the curve complex C(Sg,n) and
its connection with the Teichmüller metric of Tg,n, in particular results in [126]
[127], were used crucially for this purpose. (It seems that the papers [126] [127]
were motivated by the ending lamination conjecture.) One result in [126] (see
[64, Theorem 4.1]) says that when Tg,n is given the Teichmüller metric dTei,
there is a Modg,n-coarsely-equivariant map ψ : (Tg,n, dTei)→ C(Sg,n) which is
quasi-Lipschitz in the following sense:

(1) there exists a constant c > 1 such that for every point x ∈ Tg,n and
γ ∈ Modg,n,

d(ψ(γx), γψ(x)) ≤ c,

(2) for any two points x, x′ ∈ Tg,n,

d(ψ(x), ψ(x′)) ≤ c dTei(x, x′) + c.

This is an important instance of the philosophy that C(Sg,n) describes the
large scale geometry of Tg,n. For detailed descriptions of the ending lamination
conjecture and methods to prove it, see [132] [133] [134] [27].

Remark 7.10. Besides giving a complete classification of 3-dimensional hy-
perbolic manifolds, the ending lamination conjecture has applications to the
local connectivity of limit sets of Kleinian groups and the Cannon-Thurston
map. See [135].

Remark 7.11. See [146] for related results on a model for the Teichmüller
metric in terms of combinatorial information on short curves on the hyperbolic
surfaces that correspond to points on a Teichmüller geodesic. The paper [102]
compares the Thurston boundary of Tg,n and the boundary ∂C(Sg,n).
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7.4 Quasi-isometric rigidity of mapping class groups

In this subsection, we discuss another important application of curve complexes
to quasi-isometric rigidity of Modg,n. As mentioned before, the notion of quasi-
isometry was used in the proof of Mostow strong rigidity.

Recall that two metric spaces (M1, d1) and (M2, d2) are called quasi-isometric
if there are positive constants C,D and a map f : M1 → M2 such that for
every two points x1, x2 ∈M1,

C−1d2(f(x1), f(x2))−D ≤ d1(x1, x2) ≤ Cd2(f(x1), f(x2)) +D,

and every point of M2 lies in the D-neighborhood of f(M1).
It is clear that if a finitely generated group Γ acts properly and isometrically

on a metric space X with a compact quotient, then Γ with any word metric is
quasi-isometric to X. The quasi-isometry type of the group Γ does not depend
on the choice of a word metric.

A finitely generated group Γ is called quasi-isometrically rigid if the follow-
ing property holds: for any finitely generated group Γ′, if Γ′ is quasi-isometric
to Γ, then there exists a finite-index subgroup Γ′′ ⊂ Γ′ and a homomorphism
Γ′′ → Γ with finite kernel and finite cokernel, i.e., Γ′′ and Γ are virtually
isomorphic.

The three propositions below are combinations of results in several papers
including [49] [48] [54] [160] [161] [104]. See [50] for the history, references and
more detailed statements of these propositions. There are also other rigidity
results on mapping class groups. See [80].

Proposition 7.12. If Γ ⊂ G is an irreducible non-uniform lattice of a
semisimple Lie group G, then Γ is quasi-isometrically rigid.

The assumption that Γ is not uniform is necessary. All uniform lattices of
one semisimple Lie group G are quasi-isometric, but they are not necessarily
commensurable up to conjugation by elements of G, and hence they are not
necessarily isomorphic up to finite index subgroups and quotients. On the
other hand, this class of uniform lattices is quasi-isometrically rigid.

Proposition 7.13. If a finitely generated group Γ′ is quasi-isometric to a
uniform lattice in a semisimple Lie group G, then there exists a finite index
subgroup Γ′′ and a homomorphism ρ : Γ′′ → G with a finite kernel such that
its image is a uniform lattice in G.

Proposition 7.14. Non-uniform lattices of SL(2,R) form one quasi-isometry
class of groups.

Quasi-isometric rigidity and the quasi-isometric classification of lattices of
semisimple Lie groups were obtained by joint efforts of many people. See [50]
for the history and more detailed statements of the above three propositions.
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In the analogy between the mapping class groups Modg,n and lattices of
semisimple Lie groups, Modg,n correspond to non-uniform lattices. Therefore,
the next proposition on the quasi-isometrical rigidity of the mapping class
group Modg,n, proved in [65] [6], is expected.

Proposition 7.15. Assume that 3g − 3 + n ≥ 2. Then Modg,n is quasi-
isometrically rigid.

One ingredient used in the proof in [6] is the hyperbolicity of the curve
complex C(Sg,n) in the sense of Gromov, and one ingredient used in the proof
of [65] is the train track complex. Results on the asymptotic cones at infinity
Cone∞(Modg,n) in [7] (see Proposition 7.42 below) were used crucially.

The papers [65] [6] also prove the following result on quasi-isometries of
Modg,n.

Proposition 7.16. Assume that 3g − 3 + n ≥ 2 and (g, n) 6= (1, 2), then
quasi-isometries of Modg,n are uniformly close to isometries induced by left-
multiplication of elements of Modg,n.

7.5 Finite asymptotic dimension of mapping class groups
and the Novikov conjectures

In this subsection, we briefly describe another important application of the hy-
perbolicity of the curve complex C(Sg,n) to prove that the asymptotic dimen-
sion of the mapping class group Modg,n is finite. We also explain applications
of this result to several different versions of the Novikov conjecture.

For any noncompact metric space (M,d), an important large scale geometry
invariant is the asymptotic dimension of M , denoted by asd(M). It is defined
to be the smallest integer n, which could be ∞, such that for every r > 0,
there exists a cover C = {Ui}, i ∈ I, of M by uniformly bounded sets Ui with
r-multiplicity less than or equal to n + 1, i.e., every ball in M of radius r
intersects at most n+ 1 sets in C.

For any finitely generated group Γ, its asymptotic dimension asd(Γ) is
defined to the asymptotic dimension of Γ endowed with any word metric.

Finiteness of asd(Γ) has applications to the Novikov conjectures for Γ,
including various versions of the integral Novikov conjectures. For the conve-
nience of the reader, we briefly recall several versions of the Novikov conjec-
tures, both the integral and rational versions. See [92] for more discussions,
details and proper references for the conjectures and results stated below.

To motivate the Novikov conjectures, we first recall the Hirzebruch index
theorem. Let M4k be a compact oriented manifold (without boundary) of
dimension 4k. The cup product defines a non-degenerate quadratic form on
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the middle dimension cohomology group:

Q : H2k(M,Q)×H2k(M,Q)→ H4k(M,Q) = Q. (7.5.1)

This quadratic form can be diagonalized over R to the form Diag(1, · · · , 1;−1, · · · ,−1),
and the number of +1’s minus the number of −1’s is called the signature of M
and denoted by Sgn(M). Since the identification H4k(M,Q) = Q depends on
the orientation of M , the signature Sgn(M) depends on the orientation and is
an oriented homotopy invariant of M .

The Hirzebruch class L(M) is a power series in Pontrjagin classes P1, P2, · · · ,
with rational coefficients,

L(M) = 1 + L1 + L2 + · · · ,

where Li are polynomials of Pontrjagin classes, for example, L1 = 1
3P1, L2 =

1
45 (7P2 − P 2

1 ).
Then the Hirzebruch index theorem is the following equality:

Sgn(M) = 〈L(M), [M ]〉, (7.5.2)

where the right hand side is the evaluation of L(M) on the fundamental class
[M ].

The Hirzebruch class L(M) depends on the characteristic classes of the
tangent bundle of M and a priori it also depends on the differentiable struc-
ture of M . (In fact, these rational classes in H∗(M,Q) are homeomorphism
invariants of M). As pointed out earlier, the left-hand side in the above for-
mula is an oriented homotopy invariant, and hence the above equality shows
that 〈L(M), [M ]〉 only depends on the oriented homotopy type of M .

To get more homotopy invariants, Novikov introduced the higher signa-
tures. Let Γ = π1(M). Let BΓ be a classifying space of the discrete group Γ,
i.e., a K(Γ, 1)-space,

π1(BΓ) = Γ, πi(BΓ) = {1}, i ≥ 2.

The universal covering space EΓ of BΓ is contractible and admits a free Γ-
action. Equivalently, we can reverse this process and define first EΓ as a
contractible space with a free Γ-action, and then define BΓ as the quotient
Γ\EΓ. For example, when Γ = Z, it acts freely by translation on R and hence
EΓ = R and BΓ = R/Z = S1.

For each group Γ, the spaces EΓ and BΓ are unique up to homotopy. The
universal covering map M̃ → M determines a classifying map f : M → BΓ,
which is unique up to homotopy.

For any α ∈ H∗(BΓ,Q), f∗α ∈ H∗(M,Q), and define a higher signature

Sgnα(M) = 〈f∗α ∪ L(M), [M ]〉. (7.5.3)

The original Novikov conjecture is stated as follows:



46

Conjecture 7.17 (Novikov conjecture). For any α ∈ H∗(BΓ,Q), the higher
signature Sgnα(M) is an oriented homotopy invariant of M , i.e., if N is an-
other oriented manifold and g : N →M is an orientation preserving homotopy
equivalence, then

〈(g ◦ f)∗α ∪ L(N), [N ]〉 = 〈f∗α ∪ L(M), [M ]〉.

The Novikov conjecture can be reformulated in terms of the rational injec-
tivity of the assembly map in surgery theory, or L-theory.

The surgery obstruction groups L∗(Z[Γ]), or L-groups of Z[Γ], are briefly
defined as follows. For m = 2k, Lm(Z[Γ]) is the Witt group of stable iso-
morphism classes of (−1)k-quadratic forms on finitely generated free modules
over the group ring Z[Γ], and L2k+1(Z[Γ]) is a stable automorphism group of
hyperbolic (−1)k-quadratic forms on finitely generated free modules over Z[Γ].
Since (−1)k is 4-periodic in m, the groups Lm(Z[Γ]) are 4-periodic in m.

Let L(Z) be the surgery spectrum:

πm(L(Z)) = Lm(Z), m ∈ Z.

The spectrum L(Z) defines a general homology theory with coefficient in L(Z).
For any topological spaceX, there are general homology groupsH∗(X;L(Z)) =
π∗(X+ ∧ L(Z)), where X+ is the disjoint union of X and a point.

There is an important notion of assembly map:

A : H∗(X;L(Z))→ L∗(Z[π1(X)]). (7.5.4)

Proposition 7.18. The Novikov conjecture, i.e., the oriented homotopy in-
variance of the higher signatures in Conjecture 7.17, is equivalent to the ra-
tional injectivity of the assembly map in Equation (7.5.4), i.e., the following
rational assembly map is injective:

A⊗Q : H∗(BΓ;L(Z))⊗Q→ L∗(Z[Γ])⊗Q.

The injectivity of the map A⊗Q is called the rational Novikov conjecture.

Conjecture 7.19 (Integral Novikov conjecture). If Γ is torsion-free, then the
assembly map A : H∗(BΓ;L(Z))→ L∗(Z[Γ]) is injective.

This conjecture is also called the L-theory (or surgery theory) integral
Novikov conjecture.

In the integral Novikov conjecture, the torsion-free assumption on Γ is
important. In fact, it is known that the conjecture is often false for finite
groups.

Clearly, the integral Novikov conjecture implies the rational Novikov con-
jecture and gives an integral version of homotopy invariance of higher signa-
ture. There are also several other reasons to consider the integral, rather than
the original (rational) Novikov conjecture:
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(1) The relation to the rigidity of manifolds, in particular, the Borel con-
jecture for rigidity of aspherical manifolds, which says that two closed
aspherical manifolds with the same fundamental group are homeomor-
phic.

(2) The computation of the L-groups L∗(Z[Γ]) in terms of a generalized
homology theory, i.e., the injectivity of the assembly map in Equa-
tion (7.5.4) shows that the left-hand side is a summand of the groups
L∗(Z[Γ]).

Once formulated in terms of the assembly map, there are also other ver-
sions of the Novikov conjecture. For any associative ring with unit R, there is
a family of algebraic K-groups Ki(R), i ∈ Z. For example, K0(R) is defined
as the stable equivalence classes of finitely generated projective modules, and
K1(R) = GL(R)/[GL(R), GL(R)]. The higher K-groups Ki(R), i ≥ 2, are de-
fined to be the homotopy groups of the space BGL(R)+, where BGL(R) is the
classifying space of GL(R) considered as a discrete group, and BGL(R)+ is the
space obtained by applying the Quillen +-construction to the perfect subgroup
E(R) = [GL(R), GL(R)], in particular, the homology groups of BGL(R)+ and
BGL(R) are equal to each other under inclusion. The K-theory spectrum K(R)
with πi(K(R)) = Ki(R), i ∈ Z, is given by the delooping of the infinite loop
space BGL(R)+ ×K0(R).

Let Γ be a group as above, and H∗(BΓ;K(Z)) the generalized homology of
BΓ with coefficients in K(R). There is also an assembly map

A : H∗(BΓ;K(Z))→ K∗(Z[Γ]). (7.5.5)

Conjecture 7.20 (Integral Novikov conjecture in algebraic K-theory). As-
sume that Γ is torsion free. Then the assembly map

A : H∗(BΓ;K(Z))→ K∗(Z[Γ]) (7.5.6)

is injective.

There is also a rational version of the Novikov conjecture in algebraic K-
theory, i.e., the induced map A ⊗ Q : H∗(BΓ;K(Z)) ⊗ Q → K∗(Z[Γ]) ⊗ Q is
injective.

One fruitful approach to prove the Novikov conjecture for a group Γ is to
show that the asymptotic dimension of Γ is finite.

Theorem 7.21. If a finitely generated group Γ has finite asymptotic dimen-
sion, asdim Γ < ∞, and has finite BΓ, i.e., if its classifying space BΓ can
be realized as a finite CW-complex, then the integral Novikov conjectures in
K-theory and L-theory hold for Γ.

We note that the existence of a finite model of BΓ implies that Γ is torsion-
free. For groups containing torsion elements, there is also a modified version
of the integral Novikov conjecture. See [92].
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In [14], the following result was proved.

Proposition 7.22. The asymptotic dimension of Modg,n is finite.

For any finite index torsion-free subgroup Γ of Modg,n, the quotient by Γ
of the thick part of the Teichmüller space Tg,n(ε) gives a cofinite model of
BΓ-spaces by [95]. One corollary of the above proposition is the following
conclusion.

Corollary 7.23. For any finite index subgroup Γ of Modg,n, the rational
Novikov conjecture in L-theory holds for Γ.

This result was proved earlier in [62] [100]. Even though it was not stated
in [14], the above discussion shows that the following stronger corollary also
holds.

Proposition 7.24. For any finite index torsion-free subgroup Γ of Modg,n,
the integral Novikov conjecture in L- and K-theories holds for Γ.

This shows that the results of [14] imply a stronger version of the Novikov
conjecture than what was known previously.

7.6 Non-hyperbolicity of Weil-Petersson metric of
Teichmüller space

As mentioned before, the Teichmüller space Tg,n admits a Modg,n-equivariant
Kähler metric, the Weil-Petersson metric. This is an incomplete metric with
strictly negative sectional curvature. It is known that if any simply connected
Riemannian manifold with strictly negative sectional curvature admits a com-
pact quotient, then it is a hyperbolic space in the sense of Gromov. The
quotient Modg,n\Tg,n is non-compact, and one question raised by Bowditch
and others was whether the Weil-Petersson metric is hyperbolic in the sense
of Gromov.

This problem was solved in [32], and the hyperbolicity of the curve complex
C(Sg,n) was used in the proof.

Proposition 7.25. The Weil-Petersson metric on Tg,n is Gromov-hyperbolic
if and only if 3g − 3 + n ≤ 2.

Besides the curve complex C(Sg,n), the pants complex and its quasi-isometry
with Tg,n endowed with the Weil-Peterson metric was also used crucially in
the proof. See [32] for details.
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7.7 Heegaard splittings and Hempel distance of
3-manifolds

Another important application of the curve complex C(Sg) in 3-dimensional
topology is the Hempel distance for Heegaard splittings of 3-dimensional man-
ifolds.

A handlebody is a submanifold with boundary of R3 with only one con-
nected boundary component, which is a compact orientable surface Sg.

Any closed oriented three dimensional manifold M3 can be written as the
union of two handlebodies V1, V2 of the same genus glued along their boundary,

M = V1 ∪Sg V2, ∂V1 ∼= Sg, ∂V2 ∼= Sg.

Such a decomposition of M3 is called a Heegaard splitting, and Sg is called
the splitting surface. It is not unique and there are infinitely many different
isotropy classes of Heegaard splittings of M3.

A simple closed curve in Sg is called essential if it does not bound a disc.
The identification of Sg with the boundary of a handlebody V1 is determined
by a maximal set ∆1 of disjoint non-homotopic essential simple closed curves
in Sg that bound essential discs in the handlebody V1 (these curves are called
meridians). Let ∆2 be a corresponding set for the identification of Sg as
the boundary of V2. The pair (∆1,∆2) is called a Heegaard diagram and
corresponds to a pair of simplices in C(Sg).

For each Heegaard splitting V1 ∪Sg
V2 with Sg as the splitting surface,

the set of all possible simplices ∆1 and their faces form a subcomplex K1 of
C(Sg) (the subcomplex spanned by the vertices corresponding to all essential
simple closed curves of Sg that bound some meridians of the handlebody V1).
Similarly, there is a subcomplex K2 of C(Sg) for the other handlebody V2.

The Hempel distance for the Heegaard splitting V1 ∪Sg
V2 of M3 is the

distance d(K1,K2) between K1 and K2 with respect to the geodesic length
function of C(Sg).

This defines a numerical invariant of the Heegaard splitting of M and is
closely related to topological properties of the manifold M and of the Heegaard
splitting. For detail, see [77]. The paper [137] discusses behavior of the Hempel
distance under stabilization of splitting.

Remark 7.26. In [96], the curve complex C(Sg,n) is replaced by the pants
complex of Sg,n and a similar distance function is introduced. The paper [97]
contains some results relating the bridge number of hyperbolic knots and an
invariant defined in terms of the distance function on C(Sg,n). The paper [155]
applies the idea of Hempel distance to knots and defines a distance for certain
knots in lens spaces.

Remark 7.27. The paper [68] shows that for a closed orientable 3-manifold
containing an incompressible surface of genus g, any Heegaard splitting has
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Hempel distance at most 2g. See also [158] [157] [112] [168] for related results
on the Hempel distance.

Remark 7.28. Based on the Hempel distance, the paper [156] defines a trans-
lation distance on open book decompositions of three dimensional manifolds,
and relates it to the topological properties of the manifolds.

7.8 Partial compactifications of Teichmüller spaces and
their boundaries

Recall that Tg,n is the Teichmüller space of marked complex structures on Sg,n,
where a marking is a choice of a set of generators of Sg,n. Then the mapping
class group Modg,n acts on Tg,n by changing the markings, and the quotient
Modg,n\Tg,n is the moduli space Mg,n of Riemann surfaces of genus g with n
punctures.

It is known that Tg,n is a complex manifold of complex dimension 3g−3+n
and diffeomorphic to R6g−6+2n, and that Modg,n acts holomorphically and
properly on Tg,n. In particular, Mg,n has a natural structure of a complex
orbifold.

Proposition 7.29. For any torsion-free subgroup Γ ⊂ Modg,n, Γ\Tg,n is a
BΓ-space.

Proof. Since Γ acts properly on Tg,n and is torsion-free, Γ acts fixed-point
freely on Tg,n. Since Tg,n is contractible, it is an EΓ-space, and Γ\Tg,n is a
BΓ-space.

A more general result is true for subgroups of Modg,n containing torsion
elements.

Proposition 7.30. For any subgroup Γ ⊂ Modg,n, Tg,n is an EΓ-space.

We only need to check that for any finite subgroup F ⊂ Γ, the set of fixed
points T Fg,n is nonempty and contractible. The former follows from the solution
of the Nielsen realization problem, and the latter from either the existence of
a unique left (or right) earthquake between any two points or the convexity of
the Weil-Petersson metric. See [95] for more details.

It is known thatMg,n = Modg,n\Tg,n is noncompact. Therefore, Tg,n is not
a cofinite EModg,n-space. To see this, we assume for simplicity that 2g−2+n >
0. Then every Riemann surface inMg,n admits a unique hyperbolic metric of
finite area which is conformal to the complex structure. By pinching a simple
closed geodesic on a hyperbolic surface Σg,n, we obtain a family of Riemann
surfaces in Mg,n that has no limit.
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For a non-uniform torsion-free arithmetic subgroup of a linear semisimple
algebraic group G, Γ\X is a non-cofinite BΓ-space. To obtain a cofinite BΓ-
space, this problem was solved by the Borel-Serre compactification of Γ\X,
which is a quotient of the Borel-Serre partial compactification of the associated
symmetric space X = G/K.

In order to construct an analogue of the Borel-Serre partial compactification
of Tg,n, Harvey [69] [70] [73] introduced the curve complex C(Sg,n).

To explain the relation between partial compactifications of Tg,n and sim-
plices of C(Sg,n), we note the following compactness criterion of Mumford.

Proposition 7.31. A sequence of Riemann surfaces Σj in Mg,n has no ac-
cumulation point in Mg,n if and only if there is a disjoint collection of simple
closed geodesics γj,1, · · · , γj,rj with respect to the hyperbolic metric of Σj whose
lengths go to 0 as j → +∞, i.e., that can be simultaneously pinched.

Note that in the above proposition, the geodesics must be disjoint since
the collar theorem for hyperbolic surfaces implies that two sufficiently short
geodesics are disjoint and hence simultaneously pinched geodesics must be
disjoint.

Conversely, a collection of disjoint simple closed geodesics in a hyperbolic
surface Σg,n can be pinched simultaneously if and only if they are disjoint.
This can be seen from pants decompositions of hyperbolic surfaces.

Given the above discussion, a natural compactification ofMg,n is obtained
by adding degenerate Riemann surfaces. This is the Deligne-Mumford com-

pactification Mg,n
DM

of Mg,n.

As a topological space, Mg,n
DM

can be constructed as a quotient of the

augmented Teichmüller space T̂g,n. For every simplex σ of C(Sg,n), there is
a boundary Teichmüller space Tg,n;σ, which is the Teichmüller space of the
surface obtained from Sg,n by cutting along the curves in σ. In terms of the
hyperbolic metric, every homotopy class of curves in σ determines a unique
simple closed geodesic in every marked hyperbolic surface in Tg,n, and degen-
erated hyperbolic surfaces in the boundary Tg,n;σ are obtained by pinching

exactly the geodesics in σ. Then the augmented Teichmüller space T̂g,n is

T̂g,n = Tg,n ∪
∐

σ∈C(Sg,n)

Tg,n;σ.

The action of Modg,n on Tg,n extends to a continuous action on T̂g,n and

the quotient Modg,n\T̂g,n is homeomorphic to Mg,n
DM

.
An important point here is that the curve complex C(Sg,n) is a parameter

space for the boundary components of the augmented Teichmüller space T̂g,n
[69] [174]. Since each boundary Teichmüller space Tg,n;σ is contractible, the
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boundary ∂T̂g,n is homotopy equivalent to C(Sg,n) and hence is homotopy
equivalent to a bouquet of spheres.

Proposition 7.32. The action of Modg,n on T̂g,n is not proper. For every
point in a boundary Teichmüller space Tg,n;σ, its stabilizer in Modg,n contains
an infinite subgroup, which is generated by the Dehn twists along the curves in
σ and is isomorphic to Zσ, as a subgroup of finite index.

This implies that for any finite-index subgroup Γ ⊂ Modg,n, the inclusion

Γ\Tg,n → Γ\T̂g,n is not a homotopy equivalence. This is similar to the situation
with the reductive Borel-Serre compactification of Γ\X in §6.3.

To overcome the problem of infinite stabilizers Zσ for points in Tg,n;σ, we
need to enlarge the boundary component to Rσ × Tg,n;σ. The resulting space

is a Borel-Serre partial compactification Tg,n
BS

of Tg,n constructed in [70] [73]
[82]:

Tg,n
BS

= Tg,n ∪
∐

σ∈C(Sg,n)

Rσ × Tg,n;σ.

Proposition 7.33. The action of Modg,n on Tg,n extends to a continuous and

proper action on Tg,n
BS

with a compact quotient Modg,n\Tg,n
BS

. The bound-

ary of the Borel-Serre partial compactification Tg,n
BS

is homotopy equivariant
to C(Sg,n) and hence to a bouquet of spheres Sd, where d = 2g − 2 = −χ(Sg)
if n = 0, d = −χ(Sg,n) − 1 = 2g − 3 + n if g ≥ 1 and n > 0, and
d = −χ(S0,n)− 2 = n− 4 if g = 0.

Corollary 7.34. For any finite-index torsion-free subgroup Γ ⊂ Modg,n,

Tg,n
BS

is a cofinite EΓ-space and the quotient Γ\Tg,n
BS

is a finite BΓ-space.

Proof. Since Tg,n
BS

is a manifold with corners whose interior is equal
to Tg,n, it is contractible. Since Γ is torsion-free, it acts fixed-point freely on

Tg,n
BS

, and the quotient Γ ⊂ Modg,n is a compact manifold with corners.

Therefore, the quotient Γ\Tg,n
BS

is a finite BΓ-space.

On the other hand, for Modg,n or its finite index subgroups Γ which contain

torsion elements, it is not clear whether Tg,n
BS

is an EΓ-space.
To solve this problem, we can take suitable subspaces of Tg,n instead of a

compactification. For any sufficiently small ε > 0, define the ε-thick part

Tg,n(ε) = {Σ ∈ Tg,n | for any simple closed geodesic γ ⊂ Σ, `(γ) ≥ ε},

where `(γ) is the length of the geodesic γ.
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Proposition 7.35. The thick part Tg,n(ε) is a submanifold with corners and
invariant under the action of Modg,n with a compact quotient. The bound-
ary faces of Tg,n(ε) are also parametrized by the simplices of C(Sg,n) and
contractible, and the boundary ∂Tg,n(ε) is homotopy equivalent to a wedge of
spheres Sd, where d = 2g−2 = −χ(Sg) if n = 0, d = −χ(Sg,n)−1 = 2g−3+n
if g ≥ 1 and n > 0, and d = −χ(S0,n)− 2 = n− 4 if g = 0.

In [95], we proved

Proposition 7.36. There is a Modg,n-equivariant deformation retraction of
Tg,n to Tg,n(ε), and hence Tg,n(ε) is a cofinite EModg,n-space.

If n > 0, there is another equivariant deformation of Tg,n which is of
the smallest possible dimension, i.e., the virtual cohomological dimension of
Modg,n in [66].

Problem 7.37. When n = 0, construct a Modg,0-deformation retract of Tg,0
of dimension equal to the virtual cohomological dimension of Modg, which is
equal to 4g − 5.

This problem seems to be completely open. It is not clear what subspaces
of Tg,n are possible candidates for such a retract. It is not abvious if such a
retract exists.

7.9 Cohomological dimension and duality properties of
mapping class groups

As discussed earlier, one important application of the Borel-Serre partial com-
pactification of a symmetric space concerns the virtual cohomological dimen-
sion and duality properties of arithmetic subgroups. The analogous partial
compactifications of Tg,n in the previous subsection have similar applications.

Proposition 7.38. When the Euler characteristic χ(Sg,n) is positive, Modg,n
is a virtual duality group of dimension d, where d = 4g−5 = dim Tg+χ(Sg)−1
if n = 0, and d = 4g − 4 + n = dim Tg,n + χ(Sg,n) if g ≥ 1 and n > 0, and
d = n − 3 = dim T0,n + χ(S0,n) + 1. The dualizing module is equal to the
only nonzero reduced homology group of C(Sg,n), called the Steinberg module
of Modg,n.

The proof is similar to the proof for arithmetic groups using results on the
Borel-Serre partial compactification of Tg,n in the previous subsection. See
[66] [67] [80] [69] for details.

In [86], using Proposition 5.9 on the topology of C(Sg,n), we proved
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Proposition 7.39. Modg,n is not a virtual Poincaré duality group.

This proposition is equivalent to the fact that when dim Tg,n > 0, the
Steinberg module of Modg,n is of infinite rank. See [31] for more information
on this module.

Since Modg,n\Tg,n is noncompact, Proposition 7.39 is consistent with the
result that an arithmetic subgroup Γ is not a virtual Poincaré duality group if
and only if Γ\X is noncompact (Proposition 6.14).

The Euler characteristic of Modg,n is given by special values of the Riemann
zeta function, and the homology groups of Modg,n in low degrees are also
known. See [66] and references there.

Problem 7.40. Compute Hi(Modg,n,Z) in all degrees. Maybe compute them
for special values of g and n, and also for special values of i first.

7.10 Tangent cones at infinity of Teichmüller spaces,
moduli spaces, and mapping class groups

As discussed earlier, the asymptotic cones at infinity of symmetric spaces and
locally symmetric spaces are given by buildings. A natural problem is to
consider the asymptotic cones of the Teichmüller space Tg,n and its quotient
Mg,n = Modg,n\Tg,n.

Proposition 7.41. With respect to the Teichmüller metric, for any finite
index subgroup Γ ⊂ Modg,n, the asymptotic cone at infinity Cone∞(Γ\Tg,n) is
equal to the metric cone over Γ\C(Sg,n).

This result was proved in [111] [53]. There are some results on Cone∞(Modg,n)
and Cone∞(Tg,n, dWP ), where dWP is the Weil-Petersson metric.

By [5], for any asymptotic cone Cone∞(Modg,n), every point is a global
cut-point, i.e., Cone∞(Modg,n) is tree-graded.

Since the quotient Modg,n\Tg,n is noncompact, it is reasonable to ex-
pect that Modg,n is not quasi-isometric to Tg,n, and that Cone∞(Tg,n) and
Cone∞(Modg,n) will be different. The following bounds on the dimension of
Cone∞(Modg,n) and Cone∞(Tg,n, dWP ) were obtained in [7].

Proposition 7.42. The maximal dimension of locally compact subsets of
theasymptoticconeCone∞(Modg,n) is equal to the maximal rank of free abelian
subgroups of Modg,n, which is equal to 3g − 3 + n. Consequently, the geomet-
ric rank of Modg,n is equal to the maximal rank of free abelian subgroups of
Modg,n.
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The geometric rank of a group Γ is defined as the largest integer n for
which there exists a quasi-isometric embedding Zn → Γ. This result was used
to prove the quasi-isometric rigidity of Modg,n in [6] [65]. See §7.4.

Proposition 7.43. The maximal dimension of locally compact subsets of
the asymptotic cone Cone∞(Tg,n, dWP ) is equal to [ 3g+p−22 ], that is, the in-

tegral part of 3g+p−2
2 , and hence the geometric rank of (Tg,n, dWP ) is equal to

[ 3g+p−22 ].

The geometric rank of a metric space is the maximal dimension of quasi-
flats in the metric space. The geometric ranks of some complexes related to
the curve complex were determined in [136].

Problem 7.44. Understand the global structure of the asymptotic cones at in-
finity, Cone∞(Modg,n) and Cone∞(Tg,n, dWP ), and determine the maximal di-
mension of compact subsets of the asymptotic cone at infinity Cone∞(Tg,n, dTei),
where dTei is the Teichmüller metric.

There are some other results that connect the geometry and topology of
Mg,n at infinity with the curve complex C(Sg,n).

Proposition 7.45. Assume that dim Tg,n ≥ 2. Then for any finite index
subgroup Γ ⊂ Modg,n, the quotient Γ\Tg,n has only one end.

Briefly, the reason is that under the assumption that dim Tg,n ≥ 2, Sg,n
contains at least two simple closed essential curves, and C(Sg,n) is connected.
Now a suitable neighborhood of the infinity of Γ\Tg,n is homotopy equivalent
to Γ\C(Sg,n) and hence is connected.

Proposition 7.46. For any finite-index subgroup Γ ⊂ Modg,n, the quotient
Γ\Tg,n has a compactification Γ\Tg,n ∪ Γ\C(Sg,n) whose boundary is equal to
the finite complex Γ\C(Sg,n).

This is similar to the Tits compactification of locally symmetric spaces in
[94]. See [90, Proposition 12.6].

7.11 Simplicial volumes of moduli spaces

As recalled in §6.5, for an arithmetic locally symmetric space Γ\X, whether
its simplicial volume vanishes or not depends on the size of its Q-rank, which
is related to the dimension of the spheres that determine the homotopy type
of the Tits building ∆Q(G). It turns out that similar results hold for Mg,n

[91].
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Proposition 7.47. The orbifold simplicial volume of Mg is equal to zero if
and only if g ≥ 2. The simplicial volume of Mg vanishes for all g ≥ 1.

It is known that Modg,n admits finite index torsion-free subgroups and
hence Mg,n admits finite smooth covers. Since the orbifold simplicial volume
is greater than or equal to the simplicial volume [91], it suffices to show that
the orbifold simplicial volume of Mg is equal to zero if and only if g ≥ 2, and
the simplicial volume of M1 is equal to 0.

For the first statement, the proof is similar to the proof of Proposition 6.17
by replacing the Borel-Serre partial compactification of the symmetric space by
the thick part Tg(ε) of the Teichmüller space Tg, and the rational Tits building
∆Q(G) by the curve complex C(Sg). Since C(Sg) is homotopy equivalent to a
bouquet of spheres of dimension 2g− 2 for g ≥ 2, it is simply connected. This
is a crucial ingredient of the proof of the above proposition. The nonvanishing
of the orbifold simplicial volume ofM1

∼= SL(2,Z)\H2 follows from the result
of Thurston for finite volume hyperbolic manifolds (Proposition 6.16).

To prove that the simplicial volume of SL(2,Z)\H2 vanishes, we note that
SL(2,Z)\H2 is homeomorphic to R2. Since the orbifold simplicial volume
and hence the simplicial volume of SL(2,Z)\H2 is finite, this implies that the
simplicial volume of R2 is finite. Since R2 admits proper self-maps of degree
greater than 2, its simplicial volume is 0. Hence the simplicial volume of
SL(2,Z)\H2 is 0. This also gives a new proof of the fact that the simplicial
volume of R2n vanishes. See [91] for details.

More generally, for the general moduli space Mg,n, we have

Proposition 7.48. When g ≥ 1 and n > 0, both the simplicial volume and
orbifold simplicial volume of Mg,n are equal to zero if −χ(Sg,n)− 1 ≥ 2, i.e.,
2g + n ≥ 5; and when g = 0 and n ≥ 4, the simplicial volume of M0,n if
−χ(S0,n)− 2 ≥ 2, i.e., n ≥ 6.

It is known that M1,1
∼=M1,0 = SL(2,Z)\H2, which is homeomorphic to

R2. Since the simplicial volume of R2 is equal to 0, the simplicial volume of
M1,1 and M1,0 is also equal to 0. On the other hand, by Proposition 6.16,
any finite smooth cover of M1,1 and M1,0 have positive simplicial volume.
Therefore, the orbifold simplicial volume of M1,1 and M1,0 is positive.

Since T0,4 ∼= T1,1 ∼= H2 [142] and Mod0,4 is commensurable with SL(2,Z), it
follows from that for (g, n) = (1, 0), (1, 1), (0, 4), the orbifold simplicial volume
of Mg,n is positive.

Problem 7.49. Decide whether the simplicial volume and orbifold simplicial
volume of Mg,n vanish or not for (g, n) = (1, 2), (0, 5).
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7.12 The action of Modg,n on C(Sg,n) and applications

As mentioned before, Modg,n acts on C(Sg,n), and this action can be used to
understand structures and representations of Modg,n.

One of the early applications of the curve complex by Harvey [71] concerns
a simplified proof of the classification of elements of Modg,n by Thurston [164].

Recall that the group SL(2,R) acts on H2 by Mobius transformations and
that any element γ ∈ SL(2,R) belongs to one of the following types:

(1) γ is elliptic and is characterized by the property that it fixes a point in
H2;

(2) γ is parabolic and is characterized by the property that it fixes exactly
one point in the boundary H2(∞) ∼= S1;

(3) γ is hyperbolic and is characterized by the property that it fixes exactly
two points in the boundary H2(∞) ∼= S1.

Since H2∪H2(∞) is a closed ball and γ acts on it continuously, it must fix
some point in H2 ∪H2(∞), and the three possibilities above cover all cases.

For any discrete subgroup Γ ⊂ SL(2,R), any element γ ∈ Γ belongs to one
of the following types:

(1) γ is periodic, i.e., there exists some integer n such that γn = Id;

(2) γ is parabolic and fixes a boundary point in H2(∞);

(3) γ is hyperbolic and fixes exactly two points in the boundary H2(∞) ∼=
S1.

Thurston [164] defined a compactification Tg,n
Th

of Tg,n through projective
measured laminations such that

(1) Tg,n
Th

is homeomorphic to a closed ball of dimension 6g − 6 + n;

(2) the action of Modg,n extends to a continuous action on Tg,n
Th

.

Using this action, he classified elements γ ∈ Modg,n into corresponding
three types:

(1) γ is periodic, i.e., there exists some integer n such that γn = Id, and is
characterized by the condition that γ fixes a point in Tg,n;

(2) γ is reducible, i.e., γ leaves invariant a collection of disjoint simple closed
essential curves of Sg,n;

(3) γ is pseudo-Anosov and is characterized by the condition that γ fixes

exactly two points in the boundary ∂Tg,n
Th

.

Remark 7.50. The action of Modg,n on C(Sg,n) can be used to define a
translation length of an element γ of Modg,n: for any simple closed curve α in
Sg,n, the translation length of γ is defined by

lim inf
j→+∞

dC(α, f
j(α))

j
,
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where dC(α, f
j(α)) is the distance between the two vertices α and f j(α) of

C(Sg,n). It was proved in [125] that an element γ is pseudo-Anosov if and only
if its translation length is positive. See [52] [56] for some estimates on the
translation length.

Remark 7.51. An important application of the action of Modg,n on the curve
complex C(Sg,n) is to give an explicit presentation of Modg,n in [78] [169] (see
also [72]). Another presentation was constructed via the action of Modg,n on
a variant of the curve complex in [11].

Remark 7.52. The action of Modg,n on the curve complex C(Sg,n) is also
used essentially in the proof of the Tits alternative for Modg,n [16] [85].

Remark 7.53. The action of Modg,n on the pants complex [74] was also used
to construct a presentation of Modg,n.

Remark 7.54. Another application of the action of Modg,n on C(Sg,n) is to
construct irreducible unitary representations of Modg,n. It was shown in [141]
that the action of Modg,n on C(Sg,n) has non-commensurable stabilizers and
a general method was used to produce irreducible unitary representations.

Remark 7.55. By [125], there is a relative metric on Modg,n, which is quasi-
isometric to C(Sg,n). (A relative metric on a group is a word metric on the
group with respect to an infinite generating set, consisting of a finite generating
set and a finite collection of subgroups.) The paper [118] shows that a random
walk on Modg,n makes linear progress in this relative metric.

References

[1] P. Abramenko, Twin buildings and applications to S-arithmetic groups,
Lecture Notes in Mathematics, 1641. Springer-Verlag, Berlin, 1996. x+123
pp.

[2] P. Abramenko, K. Brown, Buildings, Theory and applications, Graduate
Texts in Mathematics, 248. Springer, New York, 2008. xxii+747 pp.

[3] W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math.
(2) 122 (1985), no. 3, 597–609.

[4] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature,
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Progress in Mathematics, 156. Birkhäuser Boston, Inc., Boston, MA, 1998.



62

xiv+284 pp.
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