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Abstract

In this paper, we briefly introduce different types of buildings such as
spherical buildings, Euclidean buildings, twin buildings, R-buildings and de-
scribe some of their applications to many subjects: (1) differential geom-
etry such as Mostow strong rigidity, rank rigidity of nonpositively curved
manifolds, Margulis superrigidity, quasi-isometry rigidity, classification of
isoparametric manifolds, compactifications of symmetric spaces and locally
symmetric spaces, (2) topology such as cohomology and duality properties of
arithmetic groups, simplicial volume of locally symmetric spaces and Novikov
conjectures, (3) analysis such as harmonic maps, harmonic analysis and rep-
resentation theory of p-adic Lie groups, (4) algebra such as finite simple
groups, infinite simple groups, algebraic K-theory and representations of al-
gebraic groups over finite fields. By putting together many different types of
buildings and applications in seemly unrelated topics, we hope to present an
overview of rich structures and applications of buildings and the underlying
groups.
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1 Introduction and history of buildings

1.1 Summary

Classical simple Lie groups over C are the symmetry groups of quadratic forms or
sesquilinear forms of finite dimensional vector spaces over C. The same construc-
tion works for vector spaces over finite fields and produces classical finite groups
of Lie type, but this method does not extend to exceptional simple Lie groups.
Buildings were originally introduced by Tits in 1950s in order to realize excep-
tional Lie groups as the symmetry groups of spaces (or geometry) so that one can
construct geometrically analogues of exceptional simple Lie groups over arbitrary
fields.!

The first buildings were spherical buildings, and they have been generalized in
various ways: Euclidean buildings (Bruhat-Tits buildings), topological buildings,
R-buildings, in particular R-trees, twin buildings and hyperbolic buildings. Besides
the combinatorial properties, they often carry additional structures from geome-
try and group theory. They are useful for many different applications in various
subjects such as algebraic groups, group theory and in particular finite groups, fi-
nite geometry, representation theory over local fields, algebraic geometry, Arakelov

L According to [RT, p. 292], “.. it is perhaps worth remarking that one of the initial motiva-
tions for the theory of buildings, at a time when Chevalley’s fundamental “Tohoku paper” had
not yet appeared, was the search for a geometric way of obtaining algebraic analogues of the
exceptional Lie groups.”
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intersection for arithmetic varieties, algebraic K-theories, combinatorial and geo-
metric group theory, global differential geometry, geometric and algebraic topology,
cohomology groups of arithmetic groups and S-arithmetic groups, Mostow strong
rigidity and Margulis super-rigidity of lattice subgroups of semisimple Lie groups
and of nonpositively curved manifolds, classification of isoparametric submani-
folds in R™ of high codimension, and existence of hyperbolic structures on three
dimensional manifolds in Thurston’s geometrization program.

Basically, there are two reasons why buildings are useful for questions and
problems on semisimple (or more generally reductive) groups and their subgroups,
and generalizations such as Kac-Moody groups:

1. For semisimple (or reductive) Lie groups and algebraic groups, buildings pro-
vide effective ways to parametrize subgroups such as parabolic subgroups of
reductive algebraic groups over any fields and parahoric subgroups of reduc-
tive algebraic groups over locally compact, totally disconnected fields, and
relations between these subgroups can also be expressed and reflected effec-
tively by the geometry of buildings. Hence properties and structures of the
groups can be described, understood, and proved via buildings. Rich geom-
etry (for example existence of ample collections of subspaces) of buildings is
a geometric reflection of rich structure of the associated (parahoric) groups.

2. Buildings also provide spaces on which the algebraic groups and their sub-
groups act, and representation spaces of these groups can be constructed and
studied. Furthermore, the automorphism groups of locally finite buildings
provide natural locally compact topological groups which can be used to
understand groups that act on the buildings, for example, the Kac-Moody
groups.

In this paper, several applications of buildings in differential geometry, geo-
metric topology and group cohomology theory will be emphasized. There are four
underlying themes in these applications:

1. Spherical buildings often describe the geometry at infinity of symmetric
spaces and locally symmetric spaces, and hence are large scale geometric
invariants of these spaces. The topology of spherical buildings often de-
scribes precisely the topology at infinity of locally symmetric spaces. Both
spherical buildings and R-buildings also appear as limiting objects under
degeneration or scaling of Riemannian manifolds and more generally metric
spaces.

2. Euclidean buildings are analogues of symmetric spaces for semisimple groups
defined over local fields and their discrete subgroups, and they play similar
roles in understanding properties and structures of algebraic groups and their
subgroups, for example, generalization of the standard decompositions such
as the Cartan decomposition and Iwasawa decomposition.

3. Euclidean buildings and symmetric spaces of noncompact type provide the
most important examples of CAT(0)-spaces, which are simply connected and



Buildings and their applications in geometry and topology 5

nonpositively curved geodesic metric spaces. This fact is used crucially in
proving the super-rigidity and arithmeticity of co-finite discrete subgroups
of the rank one simple Lie group Sp(1,7n) and Fy_s0), the isometry groups
of quaternionic hyperbolic space and the Cayley plane. Furthermore, groups
that act properly and isometrically on buildings provide some of the most in-
teresting groups in geometric group theory, for example, Kac-Moody groups
over finite fields.

4. Spherical buildings of higher rank have large symmetry groups and are rigid,
and hence objects which contain or induce higher rank buildings tend to be
rigid.

5. Additional structures on buildings, for example, topological buildings, are
important in applications for infinite groups and nonpositively curved mani-
folds such as rigidity properties of lattices of Lie groups and the rank rigidity
of nonpositively curved compact Riemannian manifolds.

We will provide more details and references to support these themes and give
more precise statements of the vague results mentioned here in the rest of this
paper.

1.2 History of buildings and outline of the paper

In some sense, the theory of buildings is one of the best examples to illustrate the
power of the celebrated Erlangen program by Klein and the geometry envisioned
by Lie.

In 1872, at the tender age of 23, Felix Klein assumed his professorship and
delivered his inaugural address at the University of Erlangen with a title Com-
parative review of recent results in geometry [Kle]?. In the talk, he proposed a
program to understand geometry from the point of view of groups and hence to
unify and classify different geometries. This became known as the famous Er-
langen program, which was summarized in one sentence by Klein: Geometry is
the science which studies the properties of figures preserved under the transfor-
mation of a certain group of transformations, or, as one also says, the science
which studies the invariants of a group of transformations. The Erlangen program
has had profound impact in the development of mathematics. In fact, the phi-
losophy of finding and understanding invariants of automorphism groups of any
system or structure can be found in many branches of mathematics, for example,
homotopy invariants and topological (or homeomorphic) invariants in algebraic
topology, birational invariants in algebraic geometry, conformal invariants in anal-
ysis, and isometric invariants in geometry, and quasi-isometric invariants in large
scale (coarse) geometry. This point of view has also been very useful in physics
and other sciences.

There are two implications in the Erlangen program:

2This paper is also available on the arXiv, http://arxiv.org/pdf/0807.3161v1
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1. Given a geometry, for example, the Euclidean geometry, the hyperbolic ge-
ometry or the projective geometry, find the transformation group which pre-
serves properties of figures and configurations of subspaces in this geometry.?
The purpose of geometry is to understand quantities and properties of these
subspaces and their relations which are invariant under action of the sym-
metry group.

2. Conversely, given a group, find a geometry with a rich collection of subspaces
such that the group acts on it and preserves its geometric properties, and to
realize the group as the automorphism group of the geometry.

In general, we expect the group to be sufficiently large, for example, the action
is transitive and the space becomes a homogeneous space of the group, or more
generally, the quotient of the space by the group is compact, i.e., the action is
transitive up to a compact subset. In the Erlangen program, it is not only the
total transformation group which is important. Subgroups, such as stabilizers of
points or figures (or configurations) are integral parts of the description of geometry
in terms of groups. For example, different homogeneous spaces of a Lie group are
determined by the stabilizers of points in the spaces. In the projective geometry,
the incidence relation between points, lines and subspaces in projective spaces can
be described in terms of the inclusion relation of their stabilizers in the projective
linear group.

Besides the stabilizer subgroups of points and figures (or configurations), other
subgroups are also important, for example, subgroups which preserve some addi-
tional structures on the space. In fact, Klein obtained the Euclidean geometry
and hyperbolic geometry as specializations of the projective geometry by using
suitable subgroups of the projective linear group (see [Kli] for more detail).

It is known that the family of simple complex Lie algebras (or groups) consists
of

1. four classical infinite series: (4,), sl(n + 1,C); (By), so(2n + 1,C); (Cy),
sp(n, C); (Dn), s0(2n,C),

2. and five exceptional ones: Fg, Er7, Eg, Fy and Gs.

The classical ones correspond to classical (metrical) geometry in the sense that
their compact real forms of the complex Lie groups SU(n), SO(n) and Sp(n)
correspond to the identity component of the isometry groups of the projective
spaces CP™~ !, RP*! and HP" !, where H is the algebra of quaternions.

The exceptional simple complex Lie groups correspond to the automorphism
groups of the projective planes over the algebras @, O ® C, O ® H and O ® O,
where O is the algebra of octonions (or Cayley numbers). But due to the non-
associativity of O, these spaces do not satisfy the usual axioms for a projective

3 According to wikipedia, geometry is a branch of mathematics concerned with questions of
shape, size, relative position of figures, and the properties of space. For interesting geometries,
the space should contain a rich collection of subspaces and their configurations, and it should
also admit a large symmetry group which acts on these subspaces and their configurations. Any
choice of subspaces and relations between them determine the geometry of underlying space.
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plane, and some other geometric models are needed for the exceptional Lie groups
(see [Bae] for a nice summary of the geometry of these spaces and relations to the
exceptional groups).

To carry out the Erlangen program for the exceptional groups and also to
realize exceptional groups over other fields, for example over finite fields in order
to get finite groups of exceptional Lie types, Tits introduced spherical buildings.
It should probably be emphasized that in the theory of Tits buildings (or Tits
geometry), it is the incidence geometry but not the metric geometry which is
emphasized. In the incidence geometry, a crucial concept is the incidence relation
which is the inclusion relation between distinguished subspaces [Bue]. (Note that
the incidence relation between points, lines and other linear subspaces is a crucial
part of the projective geometry over R and C).

Spherical Tits buildings were first introduced by Tits in a series of papers from
1950s on (see [Tid] [Ti5] [Ti6]), which resulted in the fundamental book [Ti2].
According to [Ti2, p. v], “The origin of the notions of buildings and BN-pairs
lies in an attempt to give a systematic procedure for the geometric interpretation
of the semi-simple Lie groups and, in particular, the exceptional groups”. Once
such geometric interpretation of groups as automorphism groups of buildings is
achieved and buildings are constructed, then exceptional groups over any fields
can be constructed and understood geometrically [RT].4

Spherical buildings are simplicial complexes which contain a “large” collection
of distinguished sub-complexes called apartments, which are finite triangulations
of spheres and satisfy suitable compatibility and symmetry conditions (see §2
below for more details). For any semisimple linear algebraic group G defined over
any field k, there is a spherical building A(G) whose simplexes correspond to
(proper) parabolic subgroups of G defined over k. Let r be the k-rank of G, i.e.,
the maximal dimension of k-split tori contained in G. Then A(G) is a simplicial
complex of dimension r — 1 and is called a building of rank r. (Note that the rank
of a spherical building is equal to the rank of the algebraic group and also equal to
the number of vertices of a maximal dimensional simplex of the building.) If the
field k is finite, the building is a finite simplicial complex. Otherwise, it is infinite
in general. Clearly, G(k) acts on the set of parabolic subgroups defined over k
and hence acts on A(G) by simplicial automorphisms. It turns out that the group
G(k) acts transitively on A(G) (in fact, a stronger version of transitivity holds).
The rich geometry of A(G) reflects group theoretic properties of G. For example,
the existence and compatibility conditions on apartments of A(G) is equivalent to
the Bruhat decomposition of G with respect to a minimal parabolic subgroup of G.
This gives the first implication in the Erlangen program: Constructing geometries
from groups.

On the other hand, given a (spherical) building A, its automorphism group
provides interesting examples of groups. Once buildings can be constructed in-
dependently from groups, it gives a geometric method to construct groups, in

4This geometric approach to construct exceptional groups over finite fields did not seem to
be the driving force for buildings anymore after the fundamental work of Chevalley [Che|, where
for any simple complex Lie algebra, an integral basis is constructed, and a corresponding Lie
algebra and hence algebraic group over any field can be defined.
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particular to construct exceptional algebraic groups over finite fields (see for ex-
ample [RT] [Rol]), which was the original motivation of Tits as mentioned above.
An important result of Tits [Ti2]® shows that a thick spherical building of rank
at least 3 arises essentially from a semisimple algebraic group and in this case
the group is completely determined by the building. This shows that the group
is described by the geometry and gives the second implication of the Erlangen
program: Constructing groups from geometries.

An effective way to construct buildings for a group G is to use a BN-pair, a
pair of subgroups B and N of G which satisfy certain conditions. Such pairs are
often called a Tits system. This also shows that buildings give geometric ways to
describe properties of GG, its subgroups and relations between them.

In [IM], Iwahori and Matsumoto introduced a new type of BN-pairs in Cheval-
ley groups G defined over a field complete with respect to a discrete valuation,
for example, a non-archimedean local field k, i.e., a locally compact field com-
plete with respect to a discrete valuation. As a consequence, conjugacy classes of
maximal compact subgroups of G(k) are determined, and explicit description of
the Hecke ring of G(k) with respect to maximal compact subgroups is obtained.
The BN-pairs in [IM] started a new type of building in which an apartment is a
triangulation of a Euclidean space. These buildings are called Euclidean buildings.
Later, Bruhat and Tits [BT1] constructed a Euclidean building ABT(G) for a lin-
ear (simply connected) semisimple (or reductive) algebraic group G defined over
a non-archimedean local field £ in order to understand structures of subgroups,
for example, compact open subgroups, of G(k). Due to this result, Euclidean
buildings are often called Bruhat-Tits buildings. The dimension of the Bruhat-
Tits building ABT(G) is equal to r, the k-rank of the algebraic group G. When
the rank 7 is equal to 1, the building ABT(G) becomes a tree. The Bruhat-Tits
building ABT(G) and the spherical Tits building A(G) are closely related. In
fact, the latter appears at the infinity of the former.

The primary properties of buildings are of combinatorial nature, for example,
the incidence relations between simplexes. They can be enhanced in different ways.
For example, by considering algebraic subgroups or algebraic subgroup schemes
associated with vertices and facets of Bruhat-Tits buildings, we obtain the Bruhat-
Tits theory.

Remark 1.2.1. It might be worthwhile to point out that the Bruhat-Tits build-
ings is only one part of the vast Bruhat-Tits theory as developed by Bruhat and
Tits [BT1] [BT2] [BT3] [BT4]. It seems that the main point of the Bruhat-Tits
theory is to understand structures of and relations between subgroups of reductive
algebraic groups G(k) over a non-archimedean local field k such as parahoric sub-
groups and compact open subgroups. The underlying Bruhat-Tits buildings give
an efficient and visually effective way to parametrize these subgroups and to clarify
relations between them, and the global geometric properties of the Bruhat-Tits
buildings such as being a CAT(0)-space (i.e., being a simply connected geodesic

5More precisely, it arises from a semisimple algebraic group or a classical group or a group of
type Fy defined over a pair of fields F and K in characteristic 2 such that K2 C F C K. See
30.33 in [Weisl] for more details.
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metric space with nonpositive curvature) has also been used crucially and in a
profound way to understand structures of subgroups of G(k) and representation
theory of G(k). To show that the Bruhat-Tits buildings have the desired rich
geometry such as existence of apartments, chambers, and a large symmetry group
also depends heavily on the structures of the algebraic groups G as integral group
schemes. In this sense, both the underlying topological and geometric aspects
of the Bruhat-Tits buildings and the group theoretic aspects of the Bruhat-Tits
theory are closely intertwined. This is especially important for problems about har-
monic analysis and representation theories of G(k). On the other hand, for many
questions in geometry and topology, what is needed and used is the underlying
simplicial complexes, i.e., the Bruhat-Tits buildings, their geometric properties,
and actions of discrete groups on them, without involving the fine points in the
Bruhat-Tits theory. The latter point of view seems to be reflected by the contents
of the current existing books on buildings listed in the references such as [AbB]
[Brl] [Garr] [Ro2].

Another more direct geometric enhancement of a building is to define a geodesic
metric on the building that is invariant under the group. More precisely, since
apartments can be endowed with metrics which are compatible on their intersec-
tion, these metrics can be glued together into a canonical geodesic metric, called
the Tits metric, on the building. With respect to the topology defined by this
metric, Euclidean buildings buildings are noncompact. In fact, they are CAT(0)-
spaces (see Proposition 4.1.3 below). It turns out that locally compact Euclidean
buildings can be compactified by adding at infinity suitable spherical Tits build-
ings which are given a topology different from the one induced by its canonical
Tits metric [BoS1]. When G is a linear semisimple algebraic group defined over
a non-archimedean local field k, then the Bruhat-Tits building APT(G) is locally
compact, and the spherical Tits building which compactifies APT(G) is exactly
the building A(G) with a suitable topology, which is in general different from the
Tits metric topology. (As will be seen below, the two buildings A(G) and ABT(G)
arise from two different choices of BN-pairs in G(k), or rather two different choices
of B but the same N).

We note that with respect to the topology induced from the Tits metric, the
spherical building is not compact unless it is a finite simplicial complex, and hence
it is important to give the spherical building a different topology. Besides this nat-
ural application to relate two kinds of buildings, this compactification is crucial
for the study of cohomology groups of S-arithmetic subgroups in [BoS1]. When
the Euclidean building is a tree, this compactification is the well-known compact-
ification of trees by the space of ends.

Spherical buildings with this new topology are called topological buildings by
Burns and Spatzier in [BuS2] (actually, the topological buildings were defined
slightly differently there) and were used by them to prove rank rigidity of complete
manifolds of nonpositive curvature and finite volume in [BuS1]. They were also
used by Thorbergsson [Tho2] to classify compact isoparametric submanifolds in
R™ of codimension at least three. One point we want to emphasize in this article
is that this additional structure of a topology on the spherical Tits buildings is
natural and important. In fact, since Tits buildings are combinatorial objects,
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their automorphism groups do not have natural topologies and are basically groups
with the discrete topology. The additional topology on the buildings allows us to
conclude that the automorphism group (or its identity component) is a Lie group,
which leads to the desired rigidity results or classifications in differential geometry.
For more recents results on uniqueness of topology of the topological buildings,
see [GKMW].

Perhaps it is worthwhile to point out that the first major application of the
spherical Tits buildings to geometry is in the proof of the Mostow strong rigidity
[Mos1]. Though the topological spherical Tits buildings were not introduced or
used in [Mosl], the basic idea of topological buildings played an important role
there. In fact, the combination of an isomorphism of the two spherical Tits build-
ings associated with the two Lie groups in question and the homeomorphism on
their maximal Furstenberg boundaries was used to prove the isomorphism between
the two Lie groups, i.e., the desired Mostow strong rigidity (see the arguments in
[Mos1, p. 126]). The point is that the maximal Furstenberg boundaries can nat-
urally be identified with the spaces of the simplexes of maximal dimension (or
chambers) of the spherical Tits buildings, and the homeomorphism between them
is part of an isomorphism between two topological Tits buildings.

In Thurston’s geometrization program of three dimensional manifolds [Thul]
[Thu2] [Thu3], compactness of the space of hyperbolic structures of certain man-
ifolds is crucial. Morgan and Shalen [MS1] [MS2] [Mor2] showed that if they
are noncompact, such spaces of hyperbolic structures can be compactified by
adding R-trees admitting certain actions of discrete groups. By analyzing such
actions, they could reprove the compactness of the spaces of hyperbolic structures
in [Thul] (see also [Kap]). R-trees also played an important role in the proof by
Otal [Ot2] of a result of Thurston on existence of the hyperbolic metric on certain
3-manifolds fibered over the circle S'. The combination of these two results proves
the Thurston hyperbolization theorem [Kap] [Ot1] [Ot2]. R-trees have also been
used in other related problems in geometry, topology and combinatorial group the-
ory. In fact, R-trees were used to understand the automorphism groups of and the
topology of the boundaries of Gromov-hyperbolic groups; see [Besl] [Paul] [BF]
for surveys of these applications together with relations to measured foliations.
See also [KIS] [AS] [Woll] [DDW] for other applications.

The R-trees also occur naturally in algebraic group theories. In fact, Bruhat
and Tits [BT1, §7.4] defined R-Euclidean buildings which are not simplicial com-
plexes for linear semisimple simply connected algebraic groups over fields with
non-discrete valuations. When the rank of the algebraic groups is equal to 1, the
R-Euclidean buildings are R-trees.

The R-trees in [MS1] [MS2] can be interpreted as the tangent cone at infinity
of the real hyperbolic space. Naturally, the tangent cone at infinity of higher
rank symmetric spaces of noncompact type is expected to lead to R-Euclidean
buildings. In fact, they were introduced and used by Kleiner and Leeb in [KL2] to
prove the rigidity of irreducible symmetric spaces of rank at least two under quasi-
isometries, which is a conjecture of Margulis. For completeness, we mention that
the tangent cone at infinity of other rank-1 symmetric spaces of non-compact type
is also R-trees, and the tangent cone at infinity of a (usual) Euclidean building



Buildings and their applications in geometry and topology 11

is also an R-Euclidean building, and the results in [KL2] also hold for irreducible
Euclidean buildings of rank at least two.

Symmetric spaces of noncompact type have played an important role in under-
standing structures of semisimple Lie groups G and its subgroups, for example, the
conjugacy of maximal compact subgroups of GG, and the cohomology groups and
other problems of discrete subgroups of G. For linear semisimple algebraic groups
over non-archimedean local fields, the analogues of the symmetric spaces are the
Bruhat-Tits buildings. In fact, the Bruhat-Tits buildings have been used to un-
derstand compact open subgroups of semsimple p-adic Lie groups and cohomology
groups of S-arithmetic subgroups.

An important application of the Bruhat-Tits buildings in Riemannian geome-
try is the proof by Gromov and Schoen [GS] of the non-archimedean super-rigidity
of co-finite discrete subgroups of Sp(1,n) and Fy_0), the isometry groups of the
quaternionic hyperbolic spaces and the Cayley hyperbolic plane. In fact, they
developed a theory of harmonic maps from Riemannian manifolds into the Eu-
clidean buildings for this purpose. This result was not covered by the famous
Margulis super-rigidity theorem [Mar]. In this application, the fact that Bruhat-
Tits buildings are nonpositively curved metric spaces is used crucially. Combined
with the archimedean superrigidity for lattices in Sp(1,7n) and Fj_s0) in [Col, the
result of [GS] implies that co-finite discrete subgroups of Sp(1,n) and Fy_g0) are
arithmetic subgroups.

All the buildings mentioned above appear naturally in geometry and topology.
As explained in the beginning of the introduction, an important part of geometry
is existence of large symmetry group. It is easy to construct Euclidean buildings
of rank 1 whose automorphism group is trivial. For example, any tree without
any vertex of valence 1, i.e., with only one edge connected with it, with different
valences for different vertices is an Euclidean building with trivial automorphism
group. If a thick building has high enough rank, then it will have a large auto-
morphism group. For example, as mentioned before, any thick spherical building
of rank at least 3 is the spherical Tits building of a semisimple algebraic group
and hence admits a large automorphism group. There is a class of buildings with
large symmetry called Moufang buildings (or buildings with Moufang property).
Briefly, they are buildings with large (root) automorphisms. Spherical buildings
of rank at least 3 and Bruhat-Tits buildings over power series fields are Moufang
buildings. But there are other Moufang buildings, for example, those associated
with infinite dimensional Kac-Moody algebras in [MT]. In fact, they showed that
any crystallographic Coxeter group can be realized as the Weyl group of suitable
BN-pairs of the automorphism group of some (infinite dimensional) Kac-Moody
algebras. Many crystallographic Coxeter groups arise from reflections in the real
hyperbolic spaces (see [Vi] [VS] [Nil] [Ni2] [JS]), in which case the apartment in
the building has negative curvature and the building is called a hyperbolic building
(see [Re3] and its references).

As in the case of Chevalley groups associated with simple complex Lie algebras,
there are also Kac-Moody groups associated with Kac-Moody algebras over any
field [Ti9] [Re3]. For Kac-Moody groups, a more natural choice of geometry is
a twin building, which is a pair of buildings A_, A, of the same type with a
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codistance between every pair of chambers of A_,A,. The Kac-Moody group
acts on A_ x Ay. If the field is finite, then the Kac-Moody group acts properly
on A_ x Ay and can be realized as a cofinite volume discrete subgroup of the
locally compact group Aut(A_) x Aut(AL) when the thickness of the buildings
is large enough (e.g. if the size of the ground field is greater than the size of the
canonical set of generators of the Weyl group). In this case, the buildings AL
are locally finite, and hence the automorphism groups Aut(A.) have a natural
locally compact topology and hence Haar measures. Without the twin buildings,
it might be difficult to construct locally compact topological groups that contain
the Kac-Moody groups as cofinite discrete subgroups.

We remark (see below) that apartments in spherical buildings have positive cur-
vature, and apartments in Euclidean buildings have zero curvature. Some rigidity
results similar to the rigidity of quasi-isometries in [KL2] have been developed for
certain hyperbolic buildings in [BP2]. See [BP1] for a survey of related results. On
the other hand, hyperbolic buildings have played an increasing important role in
combinatorial group theory [CaG1] [CaG2] [Lu] [Rel] [Re2] [Red4] [DJ] [Ja] [Lafl]
[Laf2].

For the organization of paper and the topics discussed, see the table of contents
at the beginning of this paper. On the other hand, in the rest of the introduction,
we outline the main divisions of this paper and the rationales for them.

In §2, we define the spherical Tits buildings and discuss their rigidity properties.
We emphasize the classical approach via simplicial complexes and will mention the
other more modern approach via W-distance.

In §3, we describe in some detail a striking application of buildings to the
Mostow strong rigidity of locally symmetric spaces (or lattices of semisimple Lie
groups) when the locally symmetric spaces are irreducible and the symmetric
spaces are of rank at least 2 (or lattices are irreducible lattices of semisimple Lie
groups of rank at least 2), and an application to the rank rigidity of manifolds of
nonpositive curvature (i.e., a characterization of locally symmetric spaces of non-
positive sectional curvature in terms of a notion of rank defined by the dimension
of infinitesimal flat subspaces at every point). They make essential use of rigidity
properties of the spherical Tits buildings of semisimple Lie groups (or symmetric
spaces). For the Mostow strong rigidity, the proof of rank 1 case is very different
and does not use Tits buildings. (We note that the spherical Tits building of a
symmetric space of rank 1 is a 0-dimensional simplicial complex, i.e., a disjoint
union of points, and hence lacks a rich structure).

Though the Margulis super-rigidity is a natural continuation of the Mostow
strong rigidity, it involves p-adic Lie groups and hence Bruhat-Tits buildings. Due
to this reason, it is put in §5 later. The second part of §3 deals with applications
of the spherical Tits buildings to the large scale geometry and compactifications of
locally symmetric spaces and cohomology of arithmetic subgroups. In particular,
we discuss applications to the Borel-Serre compactification of locally symmet-
ric spaces, to determination of the virtual cohomological dimension of arithmetic
subgroups, and to vanishing of simplicial volume of high rank locally symmetric
spaces. These applications of spherical Tits buildings have motivated other sim-
plicial complexes in low dimensional topology and geometric group theory such as
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the curve complex of surfaces, which will be discussed briefly in §3.11.

In §4, we define Euclidean buildings, the Bruhat-Tits buildings of semisimple
p-adic groups, describe some of the basic properties, and discuss their compacti-
fications. One compactification establishes a close connection between Euclidean
and spherical buildings as mentioned earlier.

In §5, we discuss applications of Bruhat-Tits buildings to the Margulis super-
rigidity and the integral Novikov conjectures of S-arithmetic subgroups. We also
mention some applications to harmonic analysis and representation theory of p-
adic reductive groups.

After discussing the usual spherical and Euclidean buildings in §2 and §4, we
discuss R-Euclidean buildings, which are non-discrete analogues of usual Euclidean
buildings in §6. Since R-trees are very important special cases of R-Euclidean
buildings, we discuss them and their applications first. Then we recall the gen-
eral R-Euclidean buildings and a method in [BT1, §7.4] to construct them from
algebraic groups over fields with non-discrete valuations. This method can also be
used to construct the usual (simplicial) buildings.

One recent striking application of buildings in geometric group theory is to
Kac-Moody groups over finite fields. In §7, we briefly mention twin buildings,
Kac-Moody groups over finite fields and some of their properties from the point
of view of geometric group theory. We also summarize some results on discrete
groups acting on buildings.

Though this paper mainly discusses applications of buildings in geometry and
topology, in §8, we indicate briefly other applications in algebraic geometry, poten-
tial theory (random walks and Martin compactifications) on buildings, algebraic
combinatorics and finite geometry etc together with (hopefully) adequate refer-
ences.

Before concluding the introduction, we mention that besides the original papers
and expository writings of Tits and Bruhat (for example [Til] [Ti2]), there are also
excellent books [AbB] [Brl] [Br2] [Ro3| [Garr] [TW] [Weisl] [Abrl], survey articles
[Rol] [Ro2] [Sca] [RS], and books consisting of expository articles on buildings and
incidence geometries [Bue] [KLPS] [Ros]. Some applications of buildings have been
discussed in [AbB] [Brl] [Ro2] [RS]. Some other books on buildings and related
topics include [Lan2] [Mal] [Ma2] [Pal.

On the other hand, many applications of buildings in geometry and topology
such as to Kac-Moody groups occurred after the books [Brl] [Ro3] and the paper
[RS] were written, and some important applications such as Mostow strong rigidity
and the applications of the topological spherical Tits buildings to the rank rigidity
of nonpositively curved manifolds and the isoparametric manifolds were mentioned
only briefly in [AbB] [RS]. The purpose of this article is to give a more systematical
discussion of applications of buildings. We hope to convey to the reader the
following points:

1. Buildings are more than simplicial complexes and its global metric properties
and topological properties are also important applications.

2. The enhanced topological buildings are more natural and important than
the usual combinatorial buildings for applications in differential geometry
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and topology.

3. Tt is instructive and helpful to study and compare types of buildings simulta-
neously: the (usually locally finite) combinatorial buildings (both spherical
and non-spherical), topological buildings, and (non-locally finite) R-buildings
and the particularly important special class of R-trees. For example, the
curve complexes of surfaces were motivated by spherical Tits buildings but
share properties with spherical, Euclidean and hyperbolic buildings.

4. Groups become interesting and can be effectively studied by actions on suit-
able topological spaces, and the algebraic groups and their actions on build-
ings provide some of most beautiful and fruitful examples of transformation
groups.
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Though I never had a chance to talk to the late Professor S.S. Chern, I would
like to dedicate this paper discussing many different aspects of geometry as en-
visioned by Klein and Lie to the memory of my academic grandfather Professor
Chern, a great geometer of the twentieth century, on his 100th birthday in 2011.

2 Spherical Tits buildings

In this section, we recall two definitions of spherical Tits buildings, and then
construct the spherical Tits building of a semisimple algebraic group over any
field using parabolic subgroups, and the general method using BN-pairs or Tits
systems. We state the Solomon-Tits Theorem on the homotopy type of buildings,
which will be needed for understanding cohomological properties of arithmetic
groups later. For applications to rigidity problems, we recall two main results of
Tits in [Ti2].

2.1 Definition of buildings as chamber complexes and Solomon-
Tits theorem

In this paper, all simplicial complexes are assumed to be finite dimensional.

Definition 2.1.1. A simplex in a simplicial complex is called a chamber if it
is maximal, i.e., not contained in another simplex as a face. Two simplexes are
called adjacent if they have a common face of codimension 1 (i.e., a facet) and
hence of the same dimension. A simplicial complex is called a chamber complex if
all chambers have the same dimension, and any two chambers C, C’ are connected
by a gallery, i.e., a sequence of chambers C1,--- ,C, such that C; = C, C,, = C’,
and C;, C;41 are adjacent for i =1,--- ;n—1.

For example, a tree is a 1-dimensional chamber complex. But two 2-simplexes
connected by a 1-simplex in the shape of dumbbell is not.

Definition 2.1.2. A finite group W acting isometrically on a Euclidean space V'
is called a finite reflection group if it is generated by reflections with respect to
hyperplanes.

Clearly, the collection of hyperplanes is finite and invariant under the reflec-
tions. We emphasize that the elements in W act as linear transformations. Assume
that W acts essentially on V in the sense that there is no nontrivial linear sub-
space which is fixed by W (see [Brl, Chap I. §1, Chap II. 4, Chap III] for details
of definitions and discussions below). Then W is a finite Coxeter group, and any
abstract finite Coxeter group can be realized this way.

Recall a Coxeter matrix is a symmetric matrix M = (m;;) with m;; € NU{+o0}
satisfying the conditions:

Then the associated Coxeter group W is defined by the following presentation
W= (i | (rars)™ = 1), (2.11)
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where (r;7;)>° =1, i.e., m;; = 400, means no relation.

Proposition 2.1.3. Given any finite Coxeter group W, there is a Cozeter com-
plex, which is a finite chamber complex on which W acts and the action is simply
transitive on the set of chambers.

The Coexter complex is a finite simplicial complex and can be constructed as
follows. Every reflection o € W fixes a hyperplane H,. The collection of such hy-
perplanes H,, is invariant under W. Connected components of their complements
in V are called chambers, which are simplicial cones. The chambers and their faces
together give a partition of V' into simplicial cones. Let S be the unit sphere in
V. Then the intersection of S with these simplicial cones gives a finite simplicial
complex, which is the Coxeter complex of W and whose underlying topological
space is S, i.e., a finite triangulation of the unit sphere. It can be seen that a
Coxeter complex is a chamber complex.

Definition 2.1.4. A simplicial complex A is called a spherical Tits building if it
contains a family of subsets called apartments and satisfies the following condi-
tions:

1. Every apartment is a finite Coxeter complex.
2. Any two simplexes are contained in some apartment.

3. Given two apartments ¥ and ¥’ and simplexes 0,0’ € ¥ N Y/, there exists
an isomorphism of ¥ onto ¥’ which keeps o, ¢’ pointwise fixed.

The condition (3) implies that there is a common Coxeter group whose complex
gives the apartments. Since the apartments are triangulations of the unit sphere,
the building is called spherical. It also implies that A is a chamber complex.

Definition 2.1.5. A spherical Tits building A is called thick if every simplex of
codimension one is contained in at least three chambers.

In the following, all buildings are assumed to be thick unless indicated other-
wise. The rank of the building A is defined to be dim A + 1.

Example 2.1.6. A simplex of dimension 0 consists of one point, a 0-dimensional
Coxeter complex is the disjoint union of two points where the Coxeter group
W = {£1} acts by either fixing both points or swapping them. A spherical Tits
building of dimension 0 is a disjoint union of points where every pair of points is
an apartment. It is a thick building if and only if it contains at least 4 points. In
this case, the building does not carry any more information than the underlying
set of points.

By definition, a spherical Tits building of rank r is a union of spheres of dimen-
sion r — 1. In view of this, the following result is reasonable (see [AbB, Theorem
4.73, p. 197] for references and proofs).

Proposition 2.1.7 (Solomon-Tits Theorem). As a topological space, a spherical
Tits building A of rank r has the homotopy type of a bouquet of spheres of dimen-
sion r—1, where there is one sphere for every apartment in the building containing
a fized chamber.
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We note that when r» = 1, a sphere of dimension 0 consists of two points. In
the following, we are mainly interested in spherical Tits buildings of dimension at
least 1.

2.2 Semisimple Lie groups and buildings

An important example of spherical Tits buildings is constructed from a semisimple
algebraic group G over a field k as follows.

Recall that a subgroup P of G defined over k is called a k-parabolic subgroup
of G if G/P is a projective variety. For example, when G = SL(n), the subgroup
B consisting of upper triangular matrices is a k-parabolic subgroup, and more
generally, any subgroup of block upper triangular matrices corresponding to a
fixed partition of {1,---,n} is a parabolic subgroup. In fact, any k-subgroup P
containing B is a k-parabolic subgroup, and any k-parabolic subgroup of G is
conjugate to one which contains B.

Let A = A(G) be the simplicial complex whose simplexes correspond to proper
k-parabolic subgroups as follows:

1. The vertices of A correspond to maximal (proper) k-parabolic subgroups of
G.

2. Vertexes Q1,: - ,Q,, form the vertices of a simplex ¢ if and only if the
intersection Q1 N --- N Q,, is a k-parabolic subgroup, which corresponds to
the simplex o.

The apartments in the building A(G) are constructed as follows. For any
maximal k-split torus T of G, there are only finitely many k-parabolic subgroups
containing T, and their corresponding simplexes in A form a Coxeter complex
whose Coxeter group is given by the Weyl group W of T, where W = N(T)/T,
where N(T) is the normalizer of T in G (see [Ti2]). In this building, chambers
correspond to minimal parabolic subgroups. Clearly, the group G(k) of k-points
acts on the set of k-parabolic subgroups by conjugation and hence acts on the
building A(G) by simplicial automorphisms. The rank of the building A(G) is
equal to the k-rank r of G.

Remark 2.2.1. In this section, we are only concerned with two cases: either
k=R or £k = Q. In the former case, instead of the algebraic group G defined
over R, we could consider only the real locus G = G(R), a Lie group with finitely
many connected components, and the parabolic subgroups of the Lie group G. In
the second case, we need the structure of the algebraic group G defined over Q in
order to study the boundary components for locally symmetric spaces defined by
arithmetic subgroups.

Example 2.2.2. When G = SL(2), every proper parabolic subgroup P is both
maximal and minimal, and hence the simplicial complex A(G) is of dimension 0,
i.e., is a disjoint union of points parametrized by the set of proper k-parabolic
subgroups of G. As explained in the previous subsection, it is a spherical building
for trivial reasons.
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To show that the simplicial complex A(G) defined above satisfies the conditions
in Definition 2.1 for spherical buildings, we need the Bruhat decomposition to
understand the structure of k-parabolic subgroups. It turns out that they are best
described in terms of BN-pairs or Tits systems. In some sense, the conditions for
spherical buildings are the geometric way to describe the group structure on G(k)
imposed by the Bruhat decomposition.

2.3 BN-pairs or Tits systems, and buildings

The procedure of constructing a building from parabolic subgroups can be formal-
ized as BN-pairs or Tits systems (see [Brl, p. 110]).

Definition 2.3.1. A BN-pair in a group G consists of two subgroups B, N sat-
isfying the following properties:

1. B, N generate G.
2. The subgroup H = BN N is normal in N.

3. The quotient group W = N/H is called the Weyl group of the BN-pair and
has a generating set S such that

(a) for any s € S, sBs™! # B,
(b) for any s € S and w € W, BsB BwB C BwB U BswB.

We note that the above sets sBs~!, BwB etc. are well-defined even though
s,w are elements in the quotient group W. It can be shown that elements in S
are of order 2. For any subset S’ C S, let (S’) be the subgroup of W generated
by W. Then B(S’)B is a subgroup of G (see [Brl, Chap V]).

In the above example of an algebraic group G defined over k, let N be the
normalizer of T and B a minimal k-parabolic subgroup of G which contains T.
Then B = B(k) and N = N(k) form a BN-pair in G(k).

Given a BN-pair, assume that the Weyl group W is finite. We can construct
a spherical building A = A(G, B) as follows. For any subset S’ C S, the cor-
responding subgroup B(S")B is called a standard parabolic subgroup of G with
respect to the Tits system (B, N). A subgroup of G is called a parabolic subgroup
if it is conjugate to a standard one. The building A associated with the BN-pair
is the simplicial complex whose simplexes correspond to parabolic subgroups and
the incidence relation between the simplexes is the opposite of the inclusion rela-
tion of parabolic subgroups. The set of simplexes corresponding to B{S’) B, where
S’ c S, form an apartment ¥ of A, and the translates g% under g € G form a
system of apartments. The rank of the building is equal to the number of elements
in S.

It can be shown that the conditions for buildings in §2.1 are satisfied by the
building A(B, N). It turns out that such buildings constructed from BN-pairs
admit more symmetries.

We say that G acts strongly transitively on A if G acts transitively on the set
of pairs (X, C), where ¥ is an apartment and C' is a chamber in 3.
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Proposition 2.3.2. Assume that A(G, B) is a thick building. Given a BN -pair,
the action of G on A(G, B) is strongly transitive such that B is the stabilizer of a
chamber, and N stabilizes an apartment 3 that contains the chamber fived by B and
acts transitively on the set of chambers in X, i.e., the Weyl group W = N/(NNB)
acts simply transitively on the set of chambers in X.

The converse is also true. For a building A whose automorphism group acts
strongly transitively on it, it can be shown that it is isomorphic to the building
associated with a BN-pair in its automorphism group. In fact, fix a labeling of
the building A (see [Brl, p. 78, Proposition 1], also [Brl, p. 30, p. 72] and §3.3
below). Then the labeling of the vertices gives types to simplexes in A. Let G
be the automorphism group of A that preserves the type of simplexes and the
apartment system. Define

B={geG|gC=C}, N={geG|gx=23}

Then
H=BNN ={g € G| g fixes ¥ pointwise. }

Proposition 2.3.3. Suppose that G acts strongly transitively on A. Then (B, N)
is a Tits system in G, and the building A is canonically isomorphic to A(G, B).

For proofs of the above two propositions, see [AbB, Theorem 6.56] and [Brl,
Chap V.

Example 2.3.4. When G is a linear semsimple algebraic group defined over an
algebraically closed field k. Let T be a maximal torus in G, and B be a Borel
subgroup of G, i.e., a maximal solvable connected subgroup. Let B = B(k), and
N be the normalizer of T(k) in G(k). Then it can be shown that B and N form
a BN-pair.

Example 2.3.5. If k is not algebraically closed, then G many not admit any Borel
subgroup defined over k. Let P be a minimal parabolic subgroup of G defined
over k, and B = P(k) be the set of its rational points. Let T be a maximal k-split
torus of G. Let N be the normalizer of T(k) in G(k). Then B and N form a
BN-pair by the results in [BoT1].

See [AbB, pp. 691-692] [Ti2] for more details and references for the above two
examples.

Remark 2.3.6. An important application of BN-pairs is to prove simplicity of
finite groups coming from algebraic groups defined over finite fields in [Ti8]. See
also [Carl] [Car2] for more detailed expositions. We note that the simplicity
criterion in [Ti8] applies to both infinite and finite groups.

2.4 Other definitions of and approaches to buildings

In the previous subsection, we treated buildings as simplicial complexes and cham-
bers complexes, and built them up by starting from vertices. Another important
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way to building chamber complexes is to start from chambers and other lower
dimension simplices can be constructed from chambers containing them. The key
to this combinatorial approach is to understand how chambers are related by el-
ements in the Weyl groups, for example, reflections with respect to their faces of
codimension 1.

To make this precise, we the notion of W-distance. We will follow the definition
of [AbB, Definition 5.1.1] (see also [Ro2] [Ro4]) to give the reader a flavor of this
approach.

Let W be a Coxeter group with a set of generator S, and let £ = {g be the
length function on W with respect to S, i.e., for any element w € W, £(w) is the
minimum length of words in S that represent w, i.e.,

l(w) = min{m | w = s1 -+ 8y, where s1,---,8, € S}.

Let C be a nonempty set, whose elements are called chambers. A function
0:CxC — W is called a W-distance function if the following conditions are
satisfied:

1. (C,D) =1 if and only if C' = D.

2. If 6(C,D) = w and C’ € C satisfies 6(C’",C) = s € S, then 6(C’, D) = sw or
w. If, in addition, ¢(sw) = £(w) + 1, then §(C’, D) = sw.

3. If 5(C,D) = w, then for any s € S there is a chamber ¢’ € C such that
6(C",C) = s and §(C’, D) = sw.

Definition 2.4.1. A building of type (W,S) is a pair (C,d), where § is a W-
distance on C.

One important feature of this approach is its close connection with the Bruhat
decomposition of groups and the related building [AbB, pp. 308-309].

Definition 2.4.2. Given a group G, a subgroup B, and a Coxeter group W with
a set of generators S, then a bijection C : W — B\G/B is called a Bruhat
decomposition of G with respect to B of the type (W, S) if the following conditions
are satisfied:

1. Foralls€ S and w e W,
C(sw) C C(s)C(w) C C(sw) U C(w).

2. 1If, in addition, (sw) = L(w) + 1, then C(s)C(w) = C(sw).

Given a Bruhat decomposition of G with respect to B of the type (W, S), we
can construct a building whose set of chambers C is equal to G/B. In fact, define
a W-valued function § : G/B x G/B — W by

§(9B,hB) = C(Bg~'hB) € W.

It can be checked that the conditions for a W-distance function are satisfied.
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It is known that the above approach to buildings is equivalent to the earlier
one in terms of simplicial complexes and chamber systems [AbB, Chapter 5, §5.6,
Theorem 5.91].

The approach to define buildings via W-distance function is also convenient
for establishing the Bruhat decomposition. We state [AbB, Theorem 6.34] for the
convenience of the reader.

Given a building A = (C, ) defined by a W-distance function ¢, an action of
a group on C that preserves the W-distance, i.e., 6(¢gC, gD) = §(C, D), C,D € C,
is called Weyl transitive if for every element w € W, the action of G is transitive
on the set of ordered pairs (C, D) of chambers with §(C, D) = w.

Proposition 2.4.3. If a group G admits a Weyl-transitive action on a building A
and B is the stabilizer of a fixzed chamber, then G admits a Bruhat decomposition
with respect to B, and the building A is canonically identified to the building G/B
defined above.

Remark 2.4.4. As mentioned before, given a building (C,¢) defined by a W-
distance function, there is a canonical simplicial complex which is a Tits building
and whose chambers are in one-to-one correspondence with elements in C. This
simplicial complex realization of the abstract building (C, ) for general infinite
Coxeter groups W has some drawbacks for applications in geometric group theory.
Different realizations have been given in [Dal], where detailed explanations of the
difficulties and constructions are given.

2.5 Rigidity of Tits buildings

An important result of Tits [Ti2, 6.3, 6.13, 8.4.5, 9.1, 10.2] gives a classification
of irreducible thick spherical buildings of rank at least 3. For the convenience of
the reader, we follow [Sca, §7.3] to state a sample theorem from the classification
results.

Recall that a simplicial complex is called a flag complez if a subset of vertices
forms a simplex if and only if every pair of vertices in that set forms an edge.
By assigning a vertex to a linear subspace of a vector space (or equivalently a
projective space), and assigning an edge for every pair of subspaces if and only if
one is contained in another, we can construct flag complexes.

Theorem 2.5.1. FEwvery thick spherical Tits building of type A,, n > 3, which
means that the Coxeter group W is of type Ay, is isomorphic to the flag complex
of a projective space.

Every spherical Tits building of type D,,, n > 4, Eg, E7, Eg is the building of
the natural BN -pair (or Tits system) of the K -rational points of the split algebraic
group (Chevalley) whose Dynkin diagram is of the corresponding type, where K is
a unique commutative field.

Every spherical Tits building of type C,, n > 4, is the flag complex of to-
tally isotropic subspaces with respect to a trace valued Hermitian form or (pseudo-
)quadratic form.
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We note that this is only a sample result on the classification of spherical
buildings. For complete statements, see [Ti2] and [Weis2].

The classification of buildings of higher rank is responsible for several rigid-
ity results, for example, characterizations and classification of some finite simple
groups of Lie type (see [Sul] [Su2] [Su3] [Har], [Car2]), rank rigidity of manifolds of
nonpositive curvature [BuS1] which uses a generalization of Theorem 2.5.1 above
(see Theorem 3.3.6 and §3.5 below), and classification of isoparametric subman-
ifolds in R™ (see [Terl] [Tho2] and §3.7). Though the applications are different,
the strategy is the same and consists of two steps:

1. Construct a building or BN-pair from the given groups or manifolds.

2. Apply the classification result to determine the building and use it to recover
the original object.

Another important result of Tits shows that group structures can be fully
recovered from the buildings through description of morphisms between them [Ti2,
Theorem 5.8] [Mos, Theorem 16.1, Corollary 16.2].

Theorem 2.5.2. Let G, G’ be linear semisimple groups defined over R which
have no center and no simple factors of R-rank less than or equal to 1. For any
isomorphism between the spherical Tits buildings ¢ : A(G) — A(G'), then there
exists an isomorphism between G(R) and G'(R) as abstract groups that induces
the map 1 on the buildings.

This shows that the building A(G) determines the group G = G(R). Since
parabolic subgroups of G describe the structures of G at infinity or large scale
geometry of G, this also reflects some rigidity property of G. In fact, this is used
crucially in the proof of the Mostow strong rigidity in [Mosl] (see Theorem 3.4.1).

Remark 2.5.3. It should be emphasized that the building A(G) does not obvi-
ously determine G as a Lie group. In fact, by Theorem 2.5.2, G(R) is isomorphic
to G'(R) as abstract groups, ¢ : G(R) = G/(R). If G is almost simple over R,
by [BoT2], then ¢ is essentially given by an isogeny G — G/, since any automor-
phism of R is trivial (It follows from the fact that any automorphism preserves
well-orderedness and rational numbers). In this case, the topology of G = G(R)
is determined by the building A(G). On the other hand, if G is a complex Lie
group, then the topology of G is not determined by A(G) due to nontrivial auto-
morphisms of C over R. See [Kr5] for more discussions and more general results
on the uniqueness of topology of a simple Lie group.

If we enrich the spherical Tits buildings to topological spherical Tits buildings
as in [BuS2] (see Definition 3.3.1 below), then we can recover the topologies of G
and G’ and should be able to show that they are isomorphic as Lie groups. This
was used in [Mosl, p. 126] in the proof of Mostow strong rigidity. This is the
reason that we emphasize topological buildings in this paper. As mentioned in the
introduction, the idea of topological buildings was used implicitly in the proof of
the Mostow strong rigidity since the homeomorphism on the maximal Furstenberg
boundaries is crucial to the proof.
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3 Geometric realizations and applications of spher-
ical Tits buildings

In this section, we discuss a geometric realization of the spherical Tits building of
semisimple Lie groups, define the related topological Tits buildings, and describe
applications of buildings to rigidity problems in differential geometry, and global
geometry and compactifications of symmetric and locally symmetric spaces.

More specifically, for real semisimple Lie groups, we realize their spherical
buildings in terms of the sphere at infinity of the corresponding symmetric space of
noncompact type. This naturally leads to the concept of topological Tits buildings.
Then we recall the maximal Satake compactification of symmetric spaces in order
to introduce the maximal Furstenberg boundary, which is used crucially in the
proof of the Mostow strong rigidity, and explain relations between the boundaries
of compactifications of symmetric spaces and the Tits buildings in [GJT] [BJ1].

Then we outline the proof of the Mostow strong rigidity in the higher rank case,
which will motivate the Margulis super-rigidity in §5 and the Margulis conjecture
on quasi-isometries between symmetric spaces and quasi-flats in §6.

To illustrate the power of topological Tits buildings, we discuss their applica-
tions to the problem of rank rigidity of manifolds of nonpositive curvature and
finite volume, and the classification of compact isoparametric submanifolds of
codimension at least 3 in Euclidean spaces. These are major applications of the
(topological) Tits buildings of real Lie groups.

Then we discuss the spherical Tits buildings of semisimple linear algebraic
groups defined over Q. Quotients of the Tits buildings by arithmetic subgroups
occur naturally as the boundary of a compactification of the arithmetic locally
symmetric spaces, called the Tits compactification, which is homeomorphic to the
Gromov compactification and the geodesic compactification of locally symmetric
spaces, and is also related to the tangent cone at infinity of the locally symmetric
spaces and the Siegel conjecture on comparison of metrics on Siegel sets.

Finally we describe how the Borel-Serre compactification of locally symmetric
spaces and the Solomon-Tits theorem of buildings can be used to determine the
duality property and the virtual cohomological dimension of arithmetic subgroups
of semi-simple Lie groups. We also explain how these applications motivated curve
complexes of surfaces which have played a fundamental role in the low dimensional
topology and mapping class groups. This is another indication of that simplicial
complexes arise naturally in describing geometry and topology at infinity of im-
portant noncompact spaces such as Teichmiiller spaces of Riemann surfaces.

3.1 Geodesic compactification of symmetric spaces

Let G be a linear semisimple Lie group, K C G a maximal compact subgroup, and
X = G/K the associated Riemannian symmetric space. For simplicity, we endow
X with the invariant metric induced from the Killing form. In this subsection, we
will realize the spherical Tits building A(G) using the asymptotic geometry of X
and show how it can in turn be used to understand the geometry at infinity of X
and compactifications of X.
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It is known that X is a Riemannian symmetric space of noncompact type and
hence is simply connected and of nonpositive sectional curvature, i.e., a Hadamard
manifold. It admits the geodesic compactification X U X (co) which is defined as
follows.

All geodesics considered in this paper are of unit speed and directed. Two
geodesics 71 (t), v2(t), t € R, in X are called equivalent if

lim sup d(v1 (t), v2(t)) < +oo.
t—+oco
Denote the set of equivalence classes of geodesics by X (00).

Let g € X be a basepoint in X. Then it can be shown that in each equivalence
class, there is a unique geodesic passing through z¢, and hence X (co) can be iden-
tified with the unit sphere in the tangent space T, X. Due to this identification,
X (00) is often called the sphere at infinity.

The topology of the compactification X U X (00) is defined such that an un-
bounded sequence y; in X converges to an equivalence class & € X(o0) if the
sequence of geodesics 7; passing through zo and y; converges to a geodesic Yoo
which belongs to &. It can be checked easily that X UX (co) is a compact Hausdorff
space and is called the geodesic compacfification of X.

Example 3.1.1. If X = SU(1,1)/U(1) is the Poincaré disk, D = {z € C | |z] < 1}

2
with the metric ds? = %, then the set of equivalence classes of geodesics can

be canonically identified with the unit circle St = {z € C | |z| = 1}, and the
geodesic compactification X U X (00) is equal to the closed unit disk D. It is well-
known that the Mobius transformations (or fractional linear transformations) that
preserve the unit disk D extends to the closed disk D.

If we identify X with the open unit ball in T}, X by the exponential map and
shrinking along rays from the origin, then X UX (00) is homeomorphic to the closed
unit ball in T,,X. But the intrinsic definition of the compactification X U X (c0)
allows us to see that any isometry on X extends continuously to X U X (c0). Hence
we have

Proposition 3.1.2. The G-action on X extends continuously to X U X (c0), and
the geodesic compactification does not depend on the choice of base point xg.

This action allows one to understand parabolic subgroups of G geometrically.

Proposition 3.1.3. For any point § € X (00), its stabilizer G = {g € G | g§ = &}
is a parabolic subgroup. Conversely, any (proper) parabolic subgroup P fizes some
boundary point in X (00).

For proofs, see [GJT] [BJ1] [BGS]. For each (proper) parabolic subgroup P,
let op be the set of points in X (co) whose stabilizer in G is exactly equal to P.
It can be shown that the set of points in X (c0) fixed by P is exactly equal to the
closure of op. Unless P is a maximal proper parabolic subgroup, op is not closed.

Proposition 3.1.4. For any two parabolic subgroups P, P>, o and op, are
either disjoint or identical. Furthermore, op, is contained in the closure of op, in
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X (00) if and only if P1 contains Py; and op consists of a point if and only if P
is a mazximal parabolic subgroup; and each op has a natural (spherical) simplicial
structure under the identification of X (0o) with the unit sphere in Ty, (X).

See [BJ1, §1.2] for a proof. An immediately corollary of the above proposition
is

Proposition 3.1.5. The disjoint decomposition X (00) = Upop gives a simplicial
complex isomorphic to the spherical Tits building A(G) of G.

It should be emphasized that the simplicial topology on A(G) is not the same
as the topology of X (oo) when it is identified with the unit sphere in T,,, X. For
example, when X is a symmetric space of rank 1, X (00) is a closed (real analytic)
manifold differomophic to the unit sphere in T, X. On the other hand, in this case,
every proper parabolic subgroup of GG is both a maximal and minimal parabolic
subgroup, and A(G) is the disjoint union of points in X (c0), i.e., X (oco) with the
discrete topology, and hence A(G) induces the discrete topology on X (00).

3.2 Buildings and compactifications of symmetric spaces

This identification of A(G) with the boundary X (co) in Proposition 3.1.5 is im-
portant for several reasons:

1. Since X (oc0) is defined in terms of asymptotic classes of geodesics, the build-
ing A(G) describes the asymptotic geometry at infinity of X.

2. The boundary X (oco) of the compactification X U X (00) is assembled from
the boundary pieces op where P runs over parabolic subgroups of G.

The conclusion in (2) suggests that if we change the boundary component
op of the parabolic subgroup P, we could get other compactifications X of X.
This is indeed the case, and hence the boundaries X of the compactifications X
often have a cell-complex structure related to the spherical Tits building A(G),
or rather the boundaries are unions of boundary components parametrized by the
Tits building.

To illustrate this, we discuss the maximal Satake compactification Yiax of X
to show that its boundary has a cell-complex structure dual to the spherical Tits
building A(G) (for more details and proofs of the following discussions, see [GJT]
and [BJ1]).

Let

7:G — SL(n,C)

be a finite dimensional irreducible and faithful representation satisfying the con-
dition:

7(0(9)) = (1(9)") ™", g€G,
where 6 is the Cartan involution of G associated with the maximal compact sub-
group K. Then 7 induces a G-equivariant embedding

ir : X =G/K — SL(n,C)/SU(n), ¢gK — 7(9)7(g9)".
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The quotient SL(n,C)/SU(n) is the symmetric space of positive definite Hermitian
matrices of determinant 1 and is hence contained in the real vector space H,, of
Hermitian n x n-matrices. Let P(H,,) be the associated real projective space. By
composing with 7., we obtain an embedding

ir: X = P(Hy),

and the closure of i-(X) in P(H,) is called the Satake compactification of X

. . . S .
associated with the representation p, denoted by X .. Since G acts on H,, through
the representation p and the embedding i, is G-equivariant, the G-action on X

extends to a continuous action on X .

. S . s
As a topological G-space, X, only depends on the relative position of the
highest weight . of 7, i.e., on the Weyl chamber face which contains u, as an
interior point. When pu, is generic, i.e., contained in the interior of the Weyl

. . <5 . . . .
chamber, the compactification X is called the mazimal Satake compactification
=S
and denoted by X ...

—S

The boundary 0.X . can be decomposed into boundary components parametrized
by parabolic subgroups. For each parabolic subgroup P of G, let Np be the unipo-
tent radical of P, Ap the split component invariant under the Cartan involution

0 associated with K, and
P:NPAPMPEJNPXAPXMP (321)
be the Langlands decomposition of P. Note that the Langlands decomposition is a

diffeomorphism but not a group isomorphism. For example, when G = SL(n,R),
and

P={g= (g‘ g) | A € My(R),C € My_4(R), B € Myxn_(R),g € SL(n,R)},
then
1 B
Np = {(g Ink) | B € Mixn-k},
_ (el O X kon—k _
Ap—{<0 dn_k>|a,c€R ,a®c" Tt =1}
A 0
Mp = {<O C) | det Adet C' = 1}.
Define

Xp = Mp/K N Mp, (3.2.2)

which is a lower dimensional symmetric space of noncompact type, called the
boundary symmetric space associated with P. In the above example of P in
SL(n,R), the boundary symmetric space is

Xp = (SL(k,R)/SO(k)) x (SL(n — k,R)/SO(n — k)).
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Then as a set,
s

X = X U] Xp.
P

For any two parabolic subgroups P, P», the symmetric space Xp, is contained in
the closure of Xp, if and only if P, is contained in P,. Since each Xp is a cell,

the boundary 8Yiax is a cell-complex dual to the spherical Tits building A(G)
and the topology of the boundary components Xp is determined by the topology

of the topological building of G.

Remark 3.2.1. There are also other compactifications of X, for example the
Martin compactification, whose boundaries have cell-complex structure of more
complicated type. The relations between the Tits buildings and structures of the
boundary components of compactifications already exist on closures of maximal

flat totally geodesic submanifolds, called flats, in symmetric spaces. For example,
. . . LS.
the boundary of a flat in the maximal Satake compactification X, is a polyhedral

compactification whose boundary is dual to an apartment in the spherical Tits
building. See [GJT] and [BJ1] for more details.

In Yiax, there are only finitely many G-orbits corresponding to the finitely
many conjugacy classes of parabolic subgroups. In fact, each boundary component
is contained in a G-orbit as a proper subset and the boundary symmetric spaces
of conjugate parabolic subgroups belong to the same G-orbit. The orbit for the
minimal parabolic subgroups is the only closed one and is equal to G/Py, where
Py is a minimal parabolic subgroup.

Definition 3.2.2. Let Fy be a minimal parabolic subgroup of G, the homogeneous
space G/ Py is called the maximal Furstenberg boundary of X or G, and denoted
by Xo.

Remark 3.2.3. The fact that the maximal Furstenberg is contained canonically
in err'lax is important in the proof of Mostow rigidity to be discussed below. It
should be pointed out that when the rank of X is greater than or equal to 2, the
sphere at infinity X (co) (or the boundary of the geodesic compactification) con-
tains infinitely many G-orbits which are isomorphic to the maximal Furstenberg
boundary. The maximal Furstenberg boundary AXj is closely related to the Tits

building. In fact, the set of chambers in the Tits building A(G) is parametrized

. . . S . .
by Xp. Its canonical embedding in X .. explains why the maximal Satake com-
pactification rather than the geodesic compactification X U X (c0) is used in the
Mostow strong rigidity below.

3.3 Topological spherical Tits buildings and Moufang build-
ings

As explained in the previous subsection, the boundary of a compactification of the

symmetric space X, for example, the geodesic compactification X U X (c0) and the
. . . =S
maximal Satake compactification X, ., has the structure of cell-complex closely

related to the spherical Tits building of X.
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On the other hand, the boundary of the compactification is a compact topo-
logical space. When X = SL(2,R)/SO(2) is the Poincaré upper half plane, or
equivalently the unit disc, the Tits building A(G) is the unit circle with the dis-
crete topology. On the other hand, the boundary X (co) is the unit circle with the
usual topology.

The unit circle X (o0) with the usual topology is the topological spherical Tits
building corresponding to the building A(G).

In fact, topological buildings are defined in [BuS2, Definition 1.1] as follows.
Let A be a spherical Tits building of rank . Then any chamber of A has r

vertices. Fix a chamber C' and list its vertices as v1,---,v,.. Then any other
chamber has also a unique induced ordering of its vertices. Similarly, the vertices
of every simplex ¢ in A have also a well-defined ordering. For each n=1,--- ,r,

let A,, be the set of simplexes with n vertices. Then A; is the set of vertices, and
A, is the set of chambers. The above ordering of vertices gives a well-defined map

An — (Al)n7 o= (xlv"' 7mn)a (331)
where x1,- -+ ,x, are the vertices of ¢ listed according to the order.

Definition 3.3.1. A topological spherical Tits building is a spherical Tits building
A with a Hausdorff topology on A; such that the image of A,, in (A1)™ under the
map in Equation (3.3.1) is a closed subset.

In a topological building, we endow A,, with the subset topology induced from
(A1)™. We can also define a topological Tits building as a Tits building with a
topology on every A, such that the map in Equation (3.3.1) is an embedding with
a closed image.

If the topology of a topological building is metrizable, it is called a metric
building [BuS2, p. 12]. Many naturally occurring spherical Tits buildings such as
A(G) are metric buildings.

Identify X (oo) with the unit sphere in T,,X and denote the subset distance
induced from the Riemannian norm on 7, X by d. Then d induces the Hausdorft
distance on the collection of subsets of X (o0) by:

di (A, B) = inf{5 | A C N5(B), B C N5(A)},

where Ns(B) is the d-neighborhood of B.

Realize A(G) as a simplicial complex on X (00). Then the Hausdorff distance
function dy defines a metric on Ay, -+, A, where r is the rank of G or A(G). It
can be checked easily that with this metric on A;, A(G) is a metric spherical Tits
building and hence is a topological spherical Tits building.

Definition 3.3.2. A topological spherical Tits building A of rank r is called com-
pact, connected, locally connected if the topological space A, has the corresponding
property. An automorphism of a topological Tits building is an automorphism of
the building whose restriction to each Ay, n=1,---,r, is a homeomorphism.

Remark 3.3.3. On a topological building A, we can put a topology on the whole
underlying space of the building A by gluing up the topologies on the subspaces
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A,, n=1--- r. Then an automorphism is a homeomorphism that preserves
the simplicial structure. Other notions such as compactness can also be defined
directly in terms of A. This might be more useful for the compactification of
the Bruhat-Tits buildings by the spherical Tits buildings in [BoS1] (see also §3.5
below), since the spherical Tits buildings are topological in the sense here.

Two important results on topological buildings in [BuS2| are given in the next
two theorems.

Theorem 3.3.4. If A is an irreducible compact metric building of rank at least
2, then its topological automorphism group is locally compact in the compact open

topology.

Before stating the next result, we need the notion of Moufang buildings. For
any apartment 3 C A, a root hyperplane in ¥ divides the apartment into two half
planes, which are often called roots.” The star of a simplex A € A is the set of
simplices joinable to A and is denoted by staA. For a root « of a building A,
let U, be the group consisting of all elements of g € G = Aut(A) satisfying the
conditions:

1. g fixes every point, in particular all the chambers, in a.
2. g fixes sta P pointwise for every panel P € a — da.

The group U, is called the root group associated with the root o [AbB, Definition
7.24].

Given a root a and a panel P C Ja, the set of chambers of a building A that
has P as a face is denoted by Cp. Let C be the unique chamber in « that has P
as a face, and define C(P, o) = Cp — {C}. See [AbB, Definition 7.1].

Definition 3.3.5. In the above notation, a building A is called a Moufang building
if for every root a, U, acts transitively on the set of all apartments containing «,
which is equivalent to that for every panel P C «, U, also acts transitively on

C(P, ).

In particular, a Moufang building A has abundant automorphisms. This Mo-
ufang condition is the one given in [AbB, Definition 7.27] [Ti2], [Ro2] and [Weisl,
Definition 11.2]. The definition in [BuS2, p.22] is slightly different by imposing a
weaker condition in the definition of root groups.

Theorem 3.3.6. If A is an infinite, irreducible, locally connected, compact, metric
Moufang spherical building of rank at least 2, then the identity component GO of the
topological automorphism group of A is a simple noncompact real Lie group without
center, and A is isomorphic to the topological spherical Tits building A(G°).

7 Abstractly, a chamber complex is called thin if every panel (i.e., a simplex of codimension 1)
is a face of exactly two chambers. A folding of a thin complex ¥ is an idempotent endomorphism
¢, i.e., 2 = ¢, such that for every chamber C' € ¢(X), there is exactly one chamber C’ € ¥ —¢(%)
with ¢(C’) = C. A root of ¥ is a subcomplex « that is the image of a reversible folding. (A
reversible folding means a folding ¢ such that the “folding on chambers” opposite to ¢ can be
extended to a folding of the thin complex. See [AbB, Definition 3.48] for details.)
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This theorem [BuS2] is similar to Theorem 2.5.1. In fact, in Theorem 2.5.1,
the building is required to be of rank at least three, which together with the other
conditions there implies that the building is Moufang. Hence the conditions in
Theorem 3.3.6 of rank being at least 2 and of being Moufang is weaker. This
weakening to rank at least 2 is crucial for application to the rank rigidity of man-
ifolds of nonpositive curvature in [BuS1] (see §3.5 below).

3.4 Mostow strong rigidity

The fundamental result of Mostow rigidity [Mos1] concerns the rigidity of finite
volume locally symmetric spaces of higher rank. It says roughly that the funda-
mental group determines the space isometrically up to scaling factors. This is a
major application of the result of Tits on rigidity (or classification) of spherical
Tits buildings of higher rank.

Let G be a connected semisimple Lie group without center and with no non-
trivial compact factor, K C G a maximal compact subgroup, and X = G/K the
associated symmetric space as before. Any torsion free discrete subgroup I' of G
acts freely and properly on X, and the quotient I'\ X is a smooth manifold, called
a locally symmetric space.

The discrete subgroup T is called a lattice if '\ X has finite volume and uniform
if '\ X is compact. It is called reducible if G admits a nontrivial decomposition
G = (G1 X Go, which implies an isometric decomposition X = X; x X5, and two
subgroups I'1 C G, I'y C G2 such that I' is commensurable to 'y x I's, i.e.,
' N Ty x 'y has finite index in both I" and I'; x I';. In this case, after lifting
to a finite cover, I'\X splits as a product of two locally symmetric spaces. An
equivalent definition is that the images of I in G, G2 are discrete [Mos, p. 133].
If T is not reducible, it is called irreducible.

We recall that a flat in X is a totally geodesic flat subspace in X. It is known
that G acts transitively on the set F of maximal flats X, and hence the maxi-
mal flats in X have the same dimension, which is equal to the rank of G. For
convenience, a flat means a maximal flat in X in the following unless indicated
otherwise.

The precise statement of the Mostow strong rigidity [Mosl] is given in the
following theorem.

Theorem 3.4.1. Let X = G/K be a symmetric space of noncompact type as
above, and I' an irreducible uniform lattice in G. Assume that either the rank
of X s at least 2, or the rank of X is equal to 1 and dim X > 3. Suppose that
X' =G /K’ is a symmetric space of noncompact type and T is a uniform lattice
acting on X'. If T” is isomorphic to T (as abstract groups), then T\X and T\ X’
are isometric up to suitable normalizing scalars of the irreducible factors of X,
which implies that G and G’ are isomorphic as Lie groups.

This theorem says that under the conditions in the theorem, the fundamental
group of '\ X determines I'\ X isometrically up to suitable scaling. It should be
pointed out that both conditions are necessary. For example, if G = SL(2,R),
X = SL(2,R)/SO(2), the upper half plane, the rank of X is equal to 1, and the
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strong rigidity of I fails due to the high dimension of the moduli spaces of Riemann
surfaces (or the deformation space of T'\X). Now take G = SL(2,R) x SL(2,R),
the associated symmetric space X has rank equal to 2. Take a reducible lattice
' =Ty x 'y, where I'1, Ty C SL(2,R) are uniform lattices. Due to the failure of
the strong rigidity for I';, it also fails for such reducible T'.

Remark 3.4.2. For a history of the results leading to the Mostow strong rigidity,
see [Mos, p. 5]. A generalization of this theorem is given in [BGS]. In fact, when
the rank of X is at least 2, the target manifold I\ X’ can be replaced by any
compact manifold with nonpositive sectional curvature. The assumption on the
rank is necessary due to existence of exotic negatively curved metrics on locally
symmetric spaces of rank 1 (see [On] [FJO] [AF]). See [Spl] [Sp2] for surveys of
other aspects of rigidity results, in particular, from the point of view of dynamic
systems, which is a huge area.

In the case of rank at least 2, Theorem 3.4.1 is proved using the result in
Theorem 2.5.2 on Tits buildings. In the case of rank 1, the proof is different and
uses generalizations of quasi-conformal maps on the sphere at infinity X (co). See
Remark 3.4.10 for some brief comments and references.

Since the rank 1 case does not make use of buildings, we will only briefly outline
the proof for the case of higher rank. The proof in [Mos1] proceeds in the following
steps:

1. Since X, X’ are contractible, '\ X and I\ X’ are K(I",1)-spaces. The iso-
morphism between I and I induces a homotopy equivalence

P :T\X — I\ X/, (3.4.1)
which induces a I'-equivariant quasi-isometry

0: X = X (3.4.2)

2. Let Xy, X be the maximal Furstenberg boundaries sitting in the boundary of

. . . =S 5 .
the maximal Satake compactifications X, and X’ .. The quasi-isometry
¢ induces a homeomorphism

©o - XQ — Xé,
which is called the boundary value map of ¢.

3. The same proof as in (2) shows that ¢ induces an isomorphism between the
spherical Tits buildings A(G) and A(G').

4. Apply Theorem 2.5.2 to conclude G = G’ as abstract groups. Combining
with (2), it implies that G and G’ are isomorphic as Lie groups.

Recall that a map ¢ : X — X' is called a quasi-isometry if there exist positive
constants L, C' such that for all 1,25 € X,

L7 Yd(zy,20) — C < d'(o(21), 0(22)) < Ld(21,22) + C, (3.4.3)
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where d,d’ are the distance functions of X and X’ respectively, and for every
7 e X/,
d(z',o(X)) <C. (3.4.4)

Then Step (1) basically follows from the assumption that I'\X and I"\X' are
compact and X, X’ are contractible.
The proof of Step (2) depends on the identification of the maximal Furstenberg
boundary A with the set of equivalence classes of Weyl chambers in flats F in X.
Specifically, for any basepoint o € X, any flat F' in X passing through x is
of the form e®xo, where a is a maximal abelian subalgebra in p,,, where p;, is the
component invariant under 6y in the Cartan decomposition g = €,, + p,, where
0y is the Cartan involution 6y associated with xg. The connected components
of the complement of the root hyperplanes in a are called Weyl chambers. For
any chamber C of a, the image e“zy in X is called a chamber in X, which is
also denoted, for simplicity, by C. Two chambers Cq,Cs are called equivalent (or
asymptotic) if
dH(Cl,C2) < 400, (3.4.5)

where dy is the Hausdorff distance on subsets of X. For each chamber C, denote
its equivalence class by [C]. Then the set of equivalence classes of Weyl chambers
[C] can naturally be identified with the maximal Furstenberg boundary Xy [Mos,
Lemma 4.1]. The identification comes from the following facts:

1. For any chamber C in X and a sequence x; in C' which diverges to infinity
and its distance to the chamber walls also goes to infinity, then x; converges
to a point & € Xy. Hence, there is a unique point in Xy corresponding to
each chamber C.

2. If two chambers are equivalent, then they correspond to the same point.

To prove the existence of the boundary value map g, it suffices to show that for
any chamber C in X, there is a chamber C’ in X and hence a unique equivalence
class [C’] of chambers such that

du(C’,p(C)) < 4oc. (3.4.6)
Then we define the map ¢ by
o([C]) = [C].

For this purpose, a crucial role is played by behaviors of flats under quasi-
isometries. First we note that the rank of X can be characterized algebraically in
terms of I [Mos, Lemma 11.3].

Proposition 3.4.3. Under the assumption of Theorem 8.4.1, the rank of G and
hence of X is equal to the mazimal rank of abelian subgroups of I'. Hence, the
rank of X is equal to the rank of X'.

Let F’ be the set of flats in X’.
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Proposition 3.4.4. Let ¢ : X — X' be the T, T”-equivariant quasi-isometry con-
structed in Equation 3.4.2. Then for any flat F € F, there is a unique flat F' € F'
such that

dH(F/, @(F)) < +o00.

Define the map
p:F—=F, FwF.

Then © is a homeomorphism.

This is proved in [Mos, Lemma 14.1]. To apply this proposition to prove the
chamber approximation in Equation 3.4.6, we need to characterize chambers in
X in terms of asymptotic intersection of flats in the geodesic compactification
X U X(00). In fact, Mostow introduced splices in [Mos, p. 107] in terms of
asymptotic intersection of flats Fy N, F' [Mos, p. 56|, where z € F' and

Fyn,F = U{ rays in F starting from z( and contained in a bounded neighborhood of Fy}.

It can be seen that Weyl chambers and their faces are splices. Then he introduced
the notion of irreducible splices and showed that they are given by chambers and
chamber faces.

Remark 3.4.5. By definition, Fy N, F' clearly depends on the choice of the base-
point z. On the other hand, its boundary points in the geodesic compactification
X U X(00), i.e., the intersection

Ty Na F N X (00)

is independent of x, where Fjy N, F' is the closure of FyNy, F in X U X (00). Further-
more, this intersection with X (c0) can be shown to be equal to the intersection

FyNnFNX(c0),

and determines FyN, F'. For this reason, we call FyN, F' the asymptotic intersection
of the flats Fj; and F.

Combining Proposition 3.4.4 with the observation that Weyl chambers and
their faces are given by irreducible splices, Mostow proved [Mos, Theorem 15.2]
the following result.

Proposition 3.4.6. Given any chamber C in X, there exists a chamber C' in X’
such that
dH(O/a QO(O)) < 00,

and hence there is a well-defined map
wo: F— F [C]—[C],
which can be shown to be a homeomorphism.

In fact, the same proof works for chamber faces and show that
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Proposition 3.4.7. For any Weyl chamber face ¢ in X, there exists a chamber
face ocr of the same dimension in X' such that

dr(oc, p(oc)) < +oo.

As in the case of chambers, we can also define an equivalence relation on
chamber faces. Two chamber faces 01,09 in X are called equivalent if

dH(O'l,O'Q) < +00.

Clearly two equivalent chamber faces have the same dimension. Define an inci-
dence relation on the set of equivalence classes of chamber faces [o] as follows:
an equivalence class [o7] is called a face of [og] if there are are representatives
o1 € [o1] and o9 € [02] such that oy is a face of o5.

It can be shown that the simplicial complex with simplexes corresponding to
the equivalence classes of chamber faces and the incidence relation defined here is
the spherical Tits building A(G). Then an immediate corollary is the following:

Corollary 3.4.8. The equivariant map ¢ : X — X' induces an isomorphism
between A(G) — A(G").

To finish the proof of Theorem 3.4.1, there are two cases to consider depending
on whether G has any simple factor of rank equal to 1 or not.

Suppose that G has no simple factor of rank 1. Then Theorem 2.5.2 implies
that G and G’ are isomorphic as abstract groups. Since the maximal Furstenberg
boundaries Xy, X} are included canonically in A(G) and A(G’) and are stable
under the action of G and G’ respectively and the maps G — Aut(Xp), G' —
Aut (X)) are injective, we can use the fact that g : Xp — X{ is a homeomorphism
(Proposition 3.4.6) to show that G and G’ are isomorphic as Lie groups, which
proves Theorem 3.4.1 in this case.

In the second case, G is reducible and contains simple factors of rank 1. The
last part of the arguments is different from above and given in [Mos, §18, Corollary
18.2]. The basic idea is as follows. Suppose G has two simple factors, G = G1 X Gs.
Then the isomorphism of the Tits buildings in Proposition 3.4.8 implies that G’
has a similar decomposition G’ = G| x G5. Let m; : G — G; be the projection
to the factors, ¢ = 1,2. Since T is irreducible, m;(T") is dense in G;, and hence
the isomorphism of m;(T") and 7;(I) via the restriction ¢; of ¢g implies that G;
is isomorphic to G} as Lie groups, which completes the proof of Theorem 3.4.1 in
this case.

Remark 3.4.9. In both cases, the existence of the boundary value map g and
the fact that it is a homeomorphism is crucial in the proof of Theorem 3.4.1. In
this case, the homeomorphism (or rather isomorphism) ¢ is induced from the
quasi-isometry ¢. This confirms the philosophy that when one goes to infinity,
finite (or small) ambiguities are smoothed out (or ignored) and one gets nicer
maps.

In the proof both the fact that ¢ induces an isomorphism of the Tits buildings
and the fact that the boundary value map ¢q is a homeomorphism are used. If one
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uses the topological spherical buildings of the Lie groups G' and G’, then ¢ induces
an isomorphism of the topological spherical buildings, and arguments similar to
those in [BuS2] should imply G and G’ are isomorphic as Lie groups as in Theorem
2.5.2.

Remark 3.4.10. The proof of the Mostow strong rigidity when the rank of X is
equal to 1 is very different from the higher rank case. The reason why we could
not use the spherical Tits building is that there is no rigidity result for spherical
Tits buildings of rank 1. Besides the original proof in [Mosl], there is at least
another different proof for the rank 1 symmetric space X and one more further
proof when X is a real hyperbolic space:

1. When X is of rank 1, there is a proof in [BCG1] [BCG2] using a characteri-
zation of locally symmetric spaces by the minimal entropy property and the
notion of barycenter map.

2. When X is the real hyperbolic space, there is another proof due to Gromov
using computation of simplicial volume of hyperbolic manifolds [BeP].

In order to mention some generalizations and simplifications of the original
proof of Mostow strong rigidity for hyperbolic spaces [Mos1] [Mos2], we mention
the main steps. For more details, see [GP] [Sp2]. Let T\H" and I'"\H™ be two
compact hyperbolic manifolds, and let ¢ : T\H" — I'"\H™ be an homotopy equiv-
alence which is induced from the isomorphism on I' 2 I, Let ¢ : H* — H™ a
I-equivariant quasi-isometry, and its extension to H"(o0) — H™(o0) is denoted
by @. The boundaries H"(c0) and H™(co0) have a canonical conformal structure.

1. The map ¢ : H” — H™ is a quasi-conformal I'-equivariant map and hence
m = n. (This step can also be proved by computing the cohomological
dimension of T" and I” from the hyperbolic manifolds T\H" and I"\H™.)

2. The action of " on H"(c0) is ergodic. Together with the quasi-conformality
of @, it follows that the distortion of ¢ is equal to 1 and hence @ is a conformal
map.

3. Any I'-equivariant conformal map H"(oc0) — H"(c0) extends to a I'-equivariant
isometry of H", which induces an isometry T'\H" — I"\H" = I'"\H™.

After this proof, there have been several generalizations and improvements
which show that under suitable conditions I'-equivariant homeomorphisms H" (co) —
H"(o0) are given by Md&bius transformations, where I' is not necessarily a lattice
of Isom(H") (see [Tul] [Tu2] [Iv] and the references there).

3.5 Rank rigidity of manifolds of nonpositive curvature

In a list of open problems in [Yau2]|, Yau raised the following question, Problem
65 (only a part of the problem is stated here in a slightly modified form):

Define the rank of manifolds of nonpositive curvature so that it agrees with
the standard one for locally symmetric spaces and describe the rigidity of such
nonpositively curved manifolds when the rank is at least two.



36 Lizhen Ji

This question has generated a lot of work on nonpositively curved manifolds
and was solved by Ballmann, and Burns & Spatzier (see [Ball] [BuS1] [Bal3]
[BBE] [BBS], and [Leb] [Heb] for some generalizations). The solution in [BuS1]
uses classification of topological Tits buildings in Theorem 3.3.6. We briefly recall
the precise formulation of the problem and its proof in [BuS1].

Let M be a complete Riemannian manifold of nonpositive (sectional) curvature.
Let SM be the unit sphere subbundle in the tangent bundle of M. For each
v € SM, let v, be the geodesic in M which has the initial velocity vector v.
Define the rank of v, denoted by rank(v), to be the dimension of the space of
parallel Jacobi fields along the geodesic 7,. We remark that rank(v) measures the
maximal dimension of infinitesimal flat containing -,. In fact, the variation of a
family of geodesics gives a Jacobi field. If the family of geodesics is parallel, the
Jacobi field is parallel.

Define

rank(M) = min{rank(v) | v € SM}.

For any v € SM, the tangent vector of ~, is a parallel Jacobi field, and hence
rank(v) > 1, which implies that

rank(M) > 1.

Let M be the universal covering space of M. If M is a symmetric space of
noncompact type of rank r, then M is nonpositively curved. It can be shown that
the rank(M) as defined here is also equal to r. In fact, it is realized when v is a
regular tangent vector. Hence, the definition of rank here is a correct generalization
for all nonpositively curved manifolds, and solves the first part of Yau’s problem.

The second part of Yau’s problem on the rank rigidity was solved in [Bal3] and
[BuS1].

Theorem 3.5.1. Suppose that M is nonpositively curved and has finite volume.
Then its universal covering space M is a space of rank 1, or a symmetric space of
noncompact type, or a Fuclidean space, or a product of such spaces.

The manifold M is called irreducible if there is no finite cover of M which splits
isometrically as a nontrivial product. This is related to the notion of irreducible
lattices introduced before Theorem 3.4.1. It should be emphasized that M could
split isometrically as a product.

A corollary of the above theorem is the following.

Corollary 3.5.2. Suppose that M is nonpositively curved and has finite volume.
If M is irreducible and rank(M) > 2, then M is a locally symmetric space of
noncompact type.

The basic idea of the proof in [BuS1] is as follows. Weyl simplexes in M are
introduced using notions of regular tangent vectors. Basically, a vector is regular
if it is tangent to a unique r-dimensional flat, where r = rank(M). A related
weaker notion of p-regular was also introduced [BBS, Definition 2.1] and ¢-regular
in [BuS1, §2]. Then Weyl simplexes at infinity are defined [BuS1, Definition 2.2]
and are shown to form a compact, metric, locally connected topological spherical
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Tits building of rank equal to rank(M), denoted by A(M) [BuS1, Proposition
3.12]. (Note that the dimension of A(M) is equal to rank(M) — 1.) Furthermore,
it is Moufang [BuS1, Proposition 3.15]. If M is irreducible, the building A(]\;I) is
also irreducible [BuS1, Theorem 4.1].

To prove Theorem 3.5.1, it suffices to consider the case that M is irreducible
and rank(M) > 2. There are two cases depending on if M is irreducible.

If M is reducible, the rigidity was proved in [Eb2, proposition 4.1]. If M irre-
ducible, then the topological building is irreducible, and hence by Theorem 3.3.6,
the identity component G° of the topological automorphism of the topological
building is a simple Lie group. Let A(G®) be the associated topological spherical
Tits building. Then it is isomorphic to the building A(M).

This isomorphism was used to define a map

d: M- X =GK,

where K C G is a maximal compact subgroup [BuS1, p. 56]. In fact, for any
p € M, the geodesic symmetry op of M at p defines a topological automorphism
of A(M), which in turn gives an involutive isomorphism 6,, of G°. Tt can be shown
that 6, induces an isometry of X and has a unique fixed point ¢ € X. Then define

®(p) =q.

This idea was used earlier in the proof of a generalization of the strong Mostow
rigidity by Gromov in [BGS, Chap. 4]. The last step is to show that ® is an
isometry up to a suitable multiple.

3.6 Rank rigidity for CAT(0)-spaces and CAT(0)-groups

In this section, we formulate some conjectures on how to characterize compact
locally symmetric spaces and compact quotients of Euclidean buildings among
CAT(0)-spaces and to characterize lattices of semisimple real and p-adic Lie groups
among CAT(0)-groups. All the new results and conjectures in this subsection are
based on joint work and discussion with Ralf Spatzier.

The rank rigidity of nonpositively curved manifolds in the previous subsec-
tion gave a geometric characterizaton of higher rank irreducible locally symmetric
spaces of finite volume among all nonpositively curved completeRiemannian man-
ifolds.

If M is a compact nonpositively curved Riemannian manifold, then its universal
covering space M is a Hadamard manifold, i.e., a simply connected nonpositively
curved Riemannian manifold. In particular, it is a CAT(0)-space. In fact, a metric
space is called a geodesic metric space if every two points are connected by a
distance minizing (or embedded) geodesic segment. A CAT(0)-space is a geodesic
metric space such that every triangle in it is thinner than a corresponding triangle
in R? with the same side lengths. Two most important examples of CAT(0)-spaces
are symmetric spaces of noncompact type and Euclidean buildings.

A natural problem is to generalize the rank rigidity to compact quotients of
CAT(0)-spaces, i.e., to characterize compact quotients of symmetric spaces and
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Euclidean buildings among all compact quotients of CAT(0)-spaces. Another nat-
ural problem is to characterize lattices of seimsimple Lie groups among CAT(0)-
groups, which are defined to be groups that act isometrically and cocompactly on
CAT(0)-spaces.

To formulate conjectures, we recall several notions. A geodesic metric space is
called geodesically complete if every geodesic segment can be extended infinitely in
both directions. We note that every convex subspace of R" or of any CAT(0)-space
is also a CAT(0)-space but any such bounded convex subspace is not geodesically
complete. A metric space is called irreducible if no finite covering space splits as
a product isometrically.

To generalize the rank rigidity to CAT(0)-spaces, the first problem is to define
the notion of rank. As explained in [Ball, Problem 1 in Introduction], “assume
that X is a geodesically complete and locally compact Hadamard space”, which
is equivalent to that X is a geodesically complete locally compact CAT(0)-space,
Problem 1 is to define the rank of X in such a way that under the assumption that
the isometry group of X satisfies the duality condition, then

1. the rank k of X is greater than or equal to 2 if and only if every geodesic of
X is contained in a k-flat.

2. therank k of X = 1 implies some (non-uniform) hyperbolicity of the geodesic
flow.

Problems 2 and 3 of [Ball, Introduction] are closely related and are stated as
follows:

1. Problem 2. Assume that X is irreducible and that the group of isometries
of X satisfies the duality condition. Show that X is a symmetric space or a
Euclidean building if every geodesic of X is contained in a k-flat, k£ > 2.

2. Problem 3. Assume that I' is a cocompact and properly discontinuous group
of isometries of X. Show that I" satisfies the duality condition.

There have seen several different candidates for definition of the rank. Accord-
ing to [BaB1, p. 873], the condition that X has rank greater than or equal to 2
could mean one of the following:

1. every geodesic belongs to a flat plane;

2. every geodesic bounds a flat half plane;

3. every geodesic is a side of a flat strip;

4. every finite geodesic segment is a side of a flat strip.

Clearly, the condition becomes weaker down the list. In [BaB1], under the
weakest of the above conditions, it was shown that if X is a simply connected,
geodesically complete 3-dimensional Euclidean polyhedron of nonpositive curva-
ture of rank at least 2 and admits a compact quotient, then X is either a Rie-
mannian product or a thick Euclidean building of type Ajs of By. A similar result
holds for 2-dimensional case too [BaB2] [Bar].
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In [BaBu], the rank of a geodesic in X is defined to be 1 if it does not bound
a half plane, and hence that a geodesic is of rank at least 2 if it bounds a flat half
plane.

The purpose of this subsection is to define a slightly different notion of rank
and formulate two rigidity conjectures.

Given a geodesic metric space M whose universal covering space M is a CAT(0)-
space. We define its rank of M, also called the rank of M, to be the maxi-
mum of integer r such that for every geodesic v in M, there exists a flat strip
in M whose center is v, i.e., for some € > 0, there exists an isometric embed-
ding vy x (—&,e)""! — M such that v x {(0,---,0)} is equal to 7. Note that
v % (—g,&)" L 2R x (—¢,&)"" L. When r =2, it is a flat strip of dimension 2.

For Riemannian manifolds of nonpositively sectional curvature, the rank is
defined to be the dimension of parallel Jacobian fields, which represent infinites-
imal flat strips around the geodesic. The above definition seems to be a natural
generalization to the setup of CAT(0)-spaces.

Conjecture 3.6.1. Let M be a compact irreducible geodesic metric M satisfying
the conditions:

1. The space M 1is geodesically complete and its rank is at least 2
2. The universal covering space M is a CAT(0)-space.

Then M is isometric to products of symmetric spaces of noncompact and Euclidean
buildings.

Remark 3.6.2. It is clear that this conjecture is a variant of Problems 1, 2 and 3
of [Ball, Introduction] mentioned above. The difference is in the definition of rank.
There is also a rigidity conjecture in [BaBu, Conjecture B] in terms of diameter of
the Tits metric on the geodesic sphere at infinity.

The first observation is that the following result is true.

Proposition 3.6.3. Under the assumption of Conjecture 3.6.1, if the rank of M
is equal to the dimension of M, then every geodesic in M is contained in a r-flat,
where r is the rank of M.

Proof. We prove this by contradiction. If not, there exists a geodesic v in M
such that + is contained in a r-flat strip F' = vx(—¢, )"~ !, where ¢ is the maximum
value. Now we claim that this flat strip can be enlarged under the assumption
that dim M = r. For every geodesic 7/ on the boundary of the strip vy x (—¢,¢)" !
that is parallel to 7, 7' is contained in a r-flat stript F' =+’ x (—¢’,¢’)" 1. Take
a geodesic 7" in v/ x (—¢’,&’)"~! different from ~’ but is parallel to 4'. Then the
distance between v and " is bounded and hence they are parallel and contained
in a flat 2-dimensional strip F” since M is a CAT(0)-space. Since the dimension
of M is equal to the flat strip and M is a CAT(0)-space, the flat strip F”’ consists
of two pieces, where the first piece F;' is contained in F and the second part
is contained in F’. Furthermore, when ' changes among all possible boundary
geodesics parallel to v, and 7" also changes in the flat strip F’, then the union of
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the first piece F|’ is equal to F. This means that the union of the 2-dimensional
flat strip F is a flat strip that contains F. Since the set of directions at any
point in M (or rather set of geodesic rays in M out of any point) is compact, this
union of F” strictly contains F'. This implies that F is not the maximal flat strip
containing ~y.

Remark 3.6.4. The above proposition supports the conjecture that the assump-
tion that dim M is equal to the rank of M in the proposition can be dropped. If
this is the case, the definition of rank here will give a solution to Problem 1 of
[Ball, Introduction] mentioned before.

The following result is due to Kleiner (see [Bar]).

Proposition 3.6.5. Under the above assumption of M in Conjecture 3.6.1, if the
rank r of M s at least 2 and equal to the dimension of M and every geodesic in
M is contained in ar -flat, then M isa product of Fuclidean buildings.

Corollary 3.6.6. Under the above assumption of M in Conjecture 3.6.1, if the
rank of M is equal to the dimension of M, then M 1is a product of Fuclidean
buildings.

Remark 3.6.7. A natural approach to prove Conjecture 3.6.1 is to use the ap-
proach of [BuS1] and follow the steps:

1. Use the assumption that M is geodesically complete, the rank of M is at
least 2 and M is irreducible to show that the geodesic boundary M (00) has
the structure of a Tits building. To use a construction similar to that in
[Busl], we need the notion of regular geodesics, which seems difficult. The
work in [CL] might be helpful to show that M (co) has the structure of a
Tits building.

2. Once we have Step 1, then the characterization of symmetric spaces and
Euclidean buildings in terms of a Tits building structure of the geodesic
boundary in [Leb] finishes the proof.

Remark 3.6.8. The rank rigidity for nonpositively curved manifolds holds for fi-
nite volume Riemannian manifolds. On the other hand, in Conjecture 3.6.1 above,
the assumption that M is compact is probably necessary in view of the example
mentioned in [BaB1, Theorem 1.2], which states that there exists a 3-dimensional
geodesically complete simply connected Euclidean polyhedron of nonpositive cur-
vature in which every geodesic is contained in a flat plane but which is not a thick
Euclidean building. By [BaB1, Theorem 1.1], such a space does not admit any
compact quotient under a discrete isometry group.

Recall that a group I' is said to be irreducible if no finite index subgroup is
isomorphic to product of two infinite groups. As recalled earlier, a CAT(0)-group
is a group that acts properly and isometrically on a CAT(0)-space with a compact
quotient. Since symmetric spaces of noncompact type are nonpositively curved
and simply connected, they are CAT(0)-spaces. As mentioned before, Euclidean
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buildings are also CAT(0)-spaces. It follows that lattices acting cocompactly on
symmetric spaces of noncompact type or Euclidean buildings are CAT(0)-groups.
It is also clear that the fundamental group of any compact nonpositively curved
Riemannian manifold is a CAT(0)-group. See [BH] for examples and references.

Motivated by the rigidity results for nonpositively curved spaces, the following
conjecture seems reasonable. This problem of characterizing lattices acting on
symmetric spaces and buildings among CAT(0)-groups is certainly natural and
important.

Conjecture 3.6.9. Assume that T is an irreducible torsion-free CAT(0)-group
such that every nontrivial element of I is contained in an abelian subgroup of rank
at least 2. Then T" is isomorphic to a lattice in the isometry group of symmetric
spaces, Fuclidean buildings, or their products.

3.7 Classification of isoparametric submanifolds

Another application of the topological spherical Tits buildings to differential ge-
ometry concerns isoparametric submanifolds in Euclidean spaces [Tho2] [Terl].

Isoparametric hypersurfaces in R"*! were introduced by E.Cartan and defined
to be hypersurfaces in R™*! whose principal curvatures are constant. Clearly,
affine n-planes and n-spheres in R™*! are isoparametric. He showed that any
connected isoparametric hypersurface is contained an affine n-plane, or n-sphere,
or the product of a k-sphere with an affine (n — k)-plane.

Isoparametric submanifolds of higher codimension were introduced by Terng,
motivated by the problem of finding submanifolds with simple local invariants.
They turn out to be related to Coxeter groups and spherical Tits buildings, which
reflect their global symmetries.

Definition 3.7.1. A submanifold in R"*" of codimension r is called isoparametric
if its mormal bundle is flat and the principal curvatures in the direction of any
parallel normal vector field are constant.

See [Terl] [Thol] and the references there for the history and more motivations.
(There is a thorough discussion about the origin of isoparametric hypersurfaces
and related topics in [Thol].)

It is known that any compact isoparametric submanifold is contained in some
sphere, and hence the only compact isoparametric hypersurfaces are spheres.

Isoparametric submanifolds can be defined explicitly in terms of isoparametric
maps and the associated foliation (or disjoint decomposition) as follows.

Definition 3.7.2. A smooth map f = (f1, -+, fr) : R*" — R" is called isopara-
metric if

1. f has a reqular value,

2. foranyi,j,k=1,---,r, <<7fi,Vf; > and Afy, are constants on all fibers
of the map,

3. foranyi,j=1,---,r, on each fiber of f, [/ fi, 7 f;] is a linear combination
of 7 f1, -,/ fr with constant coefficients.
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For any isoparametric map f, the fibers of f give a disjoint decomposition,
called an isoparametric foliation, of R™*". It is known that the fiber over a regular
value in R” is an isoparametric submanifold of R"*". Conversely, it is also known
[Ter2] that every isoparametric submanifold occurs as a leaf in an isoparametric
foliation.

An isoparametric submanifold is called full if it is not contained in a proper
affine subspace, and irreducible if it is not the product of two isoparametric sub-
manifolds. Since a complete isoparametric submanifold is the product of a compact
isoparametric submanifold with a Euclidean space, we will only discuss compact,
full, and irreducible isoparametric submanifolds.

Another important class of isoparametric submanifolds arises from group spheres
in the theory of symmetric spaces. Specifically, let G be a noncompact semisim-
ple Lie group and K C G a maximal compact subgroup. Let X = G/K be the
associated symmetric space, and r be the rank of X. Let

g=t+p

be the Cartan decomposition of g determined by the Cartan involution 6 corre-
sponding to K. Then the tangent space T,,X of X at the basepoint xg = K can
be identified with p. Since the adjoint action of K preserves the Cartan decompo-
sition, it restricts to the subspace p. This action of K on p = T, X preserves the
inner product and is called the isotropy representation of the symmetric space X.
The K-orbits in p give an isoparametric foliation, and the principal K-orbits, i.e.,
the orbits of maximal dimension, are isoparametric submanifolds. They are called
flag manifolds. See [Terl] for detailed discussion of their geometry as submanifolds
of p.

Remark 3.7.3. When the rank r of X is equal to 1, every nontrivial K-orbit is a
principal orbit and is a sphere. In general, the principal K-orbits are of codimen-
sion 7. Since the exponential map exp : p — X is a K-equivariant diffeomorphism,
these K-orbits in p can be looked upon as submanifolds in X. Then they are called
group spheres in [GJT] for the following reason. Harmonic functions on R™ are
characterized by the property that the average value on any sphere is equal to
the value at the center. For the symmetric space, a function is called strongly
harmonic if it is a joint eigenfunction of all invariant differential operators, which
form a ring with r generators. A strongly harmonic function on X is characterized
by the property that its average value over any group sphere is equal to its value at
the center. The principal K-orbits can also be identified with the Poisson bound-
ary of X, which is crucial for the generalization of the Poisson integral formula by
Furstenberg [Ful].

The principal orbits of the isotropy representations of symmetric spaces are
the main sources of isoparametric submanifolds in Euclidean spaces.

Proposition 3.7.4. Any homogeneous isoparametric submanifold in a Fuclidean
space is a principal K-orbit of the isotropy representation of a symmetric space
X =G/K.
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This result was proved by Palais and Terng [PT]. The next result of Thorbergs-
son [Tho2] removed the homogeneity assumption when the codimension is greater
than or equal to 3.

Theorem 3.7.5. Any compact irreducible, full isoparametric submanifold in a
Euclidean space of codimension at least 3 is a principal orbit of the isotropy rep-
resentation of a symmetric space.

It should be pointed out that the assumption on the codimension being at
least 3 is necessary. There are many inhomogeneous examples of isoparametric
submanifolds in Euclidean spaces of codimension 2. As pointed out earlier, in
the case of dimension 1, compact isoparametric submanifolds are spheres. So the
classification is only open in the case of codimension 2 (see [FKM], and also [Kr1]
for recent progress on this problem). Theorem 3.7.5 has later been proved without
using buildings in [HeL], [Ol] and [EsH] (see also [Escl] [Esc2]). But the connection
with the building is beautiful and fits in well with the themes of this survey.

The idea of the proof of Theorem 3.7.5 is as follows. Let M™ be a compact, full
and irreducible isoparametric submanifold in R™**", where r > 3. Assume without
loss of generality that M is contained in the unit sphere S"*"~! (with center at
the origin).

1. Associate a simplicial complex A(M) of dimension r to M whose underlying
space is the unit sphere S™+7—1,

2. Show that the simplicial complex A(M) is a spherical Tits building of rank

r, which is then a topological spherical building due to its realization in
Sn+r71'

3. Apply Theorem 3.3.6 on classification of topological Tits buildings to show
that A(M) is the topological building associated with a simple Lie group G.
In fact, the assumption r > 3 implies that the building is Moufang.

4. The symmetry of R"*" with respect to the origin picks out a maximal com-
pact subgroup K of G. Define an action of K on R™*" using the fact that
the underlying space of A(M) is the unit sphere S"*"~1.

5. Show that the action of K on R™"7 is the isotropy representation of the sym-
metric space G/K and its principal orbits are isometric to the isoparametric
submanifold M up to scaling.

In this proof, the use of the topological building, rather than the usual building,
is important to get Lie groups G and K. The building is also crucial to get the
desired action of K on R™*".

To motivate the construction of the simplicial complex A(M) in Step (1), we
explain a construction of the spherical Tits building A(G) using the geometry of
a principal K-orbit in the isotropy representation.

Let H € p be a regular unit vector, i.e., a unit vector contained in a unique
maximal abelian subspace in p. Then the orbit K - H is a principal orbit, denoted
by O. Let NO be its normal bundle in p. Then for any p € O, there exists a
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unique maximal abelian subalgebra a in p which contains p. Furthermore, a can
be identified with the fiber IV,O in such a way such that the origin of the vector
space IN,O corresponds to p € a. In fact, since O is contained in the unit sphere
in p, p is contained in N,O; the Cartan decomposition G = K exp aK implies that
X = Kexpa-xg, where xg = K € X, and hence the codimension of O is equal to
dim a, the rank of G or X.

The Lie algebra g decomposes into root spaces

g=g0+ Y. Ga

aeX(g,a)

where
go={Y €g|[HY]=a(H)Y,H € a},

and X(g,a) = {a € a* | go # 0}. Each root o € ¥(g, a) defines a root hyperplane
H,, and the root hyperplanes divide a into Weyl chambers and chamber faces.
The intersection of the unit sphere S”*"~! with these chambers and chamber
faces determines a finite simplicial complex, the Coxeter complex associated with
G. When p € O changes, a changes, and these Coxeter complexes fit together into
the spherical Tits building A(G).

The crucial observation here is that these Coxeter complexes can be constructed
from the geometry of O as a submanifold. In fact, the root hyperplanes H,, in a
are exactly the intersection of a with the set of focal points of O € p, i.e., the set
of critical values of the exponential map restricted to the normal bundle NO. In
the case of rank 1, for example, G = SO(2,1), O is the unit sphere, and the only
focal point is the origin; each maximal abelian subspace a has dimension 1, and
the only root hyperplane is the origin. This example also explains the need for the
shift in identifying a with N,O above. (To get a less trivial but explicit example,
think of the product SO(2,1) x SO(2,1). The Weyl chamber decomposition is
given by the coordinate quadrants.)

Now the construction of the simplicial complex A(M) in Step (1) is similar. Let
NM be the normal bundle of M in R™*". For each point p € M, the intersection
of the set of focal points of M in R™" with the fiber N, M, which is identified
with a subspace of R**" by shifting by p, gives a collection of hyperplanes. They
divide N, M into chambers and chamber faces, whose intersections with the unit
sphere S"1t7~! give a finite simplicial complex. When p € M changes, these finite
complexes form the simplicial complex A(M).

To show that A(M) is a building is not easy. In fact, in the above construction
of A(G) using the principal K-orbit O, a corresponds to a maximal totally geodesic
subspace in X passing through the basepoint xg = K, and its Coxeter complex
is an apartment in A(G). They form a system of apartments in A(G) which
is invariant under K but not under G. This causes some difficulties in showing
A(G) satisfies the axioms of buildings, for example, that any two chambers are
contained in an apartment. In general, given two chambers in A(G), apartments
containing the two chambers are not an apartment corresponding to a flat in X
passing through x, or corresponding to a.

This shows that A(M) is defined as the union of special apartments. Proving
that A(M) is a spherical Tits building in Step (2) is not easy. In fact, it is the
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major part of the paper [Tho2], which depends on a local approach of Tits on
constructing buildings.

Remark 3.7.6. Though isoparametric submanifolds of codimension 2 have not
been classified, many known examples are connected to rank-2 buildings. In fact,
in [FKM], an isoparametric hypersurface in a sphere with precisely four princi-
pal curvatures was constructed for every real representation of a Clifford algebra.
It is proved in [Tho3| that each of these hypersurfaces is the flag manifold of a
(differentiable) polar plane, i.e., a building of type Cs, also called a generalized
quadrangle. Most of these polar planes are not Moufang buildings, and hence The-
orem 3.3.6 does not apply. In fact, they do not come from isotropy representations
of symmetric spaces. See [Krl] for related results on isoparametric submanifolds of
codimension 2. Together with Theorem 3.7.5, this result shows that all presently
known isoparametric submanifolds are associated with buildings.

Remark 3.7.7. Recently, topological buildings have been used in independent,
closely related works of Lytchak and of Fang, Grove and Thorbergsson to classify
isoparametric foliation of non-negatively curved compact symmetric spaces and
positively curved Riemannian manifolds. More specifically, the result of Lytchak
can be stated as follows: Let M be a non-negatively curved irreducible symmetric
space. Let F be a polar foliation on M (also called isoparametric foliation, or sin-
gular Riemannian foliation with sections). Then either the foliation is hyperpolar
(i.e. the sections are flat), or the symmelric space has rank 1, or, possibly, the
codimension of the foliation is two. The result of Fang, Grove and Thorbergsson
can be stated as follows: Let M be a simply connected positively curved Rieman-
nian manifold, and let G be a compact Lie group acting on M in a polar fashion.
If the cohomogeneity of the action is at least 3, then M is equivariantly diffeo-
morphic to a linear polar G-action on a rank one symmetric space, i.e., sphere,
complex or quaternionic projective spaces.

3.8 Spherical buildings and compactifications of locally sym-
metric spaces

Let G C GL(n,C) be a linear semisimple algebraic group defined over Q, G =
G(R) its real locus, a Lie group with finitely many components. Let K C G be a
maximal compact subgroup as usual, and X = G/K the associated Riemannian
symmetric space of noncompact type.

Let I' € G(Q) be an arithmetic subgroup, i,e., a subgroup commensurable to
G(Q)NGL(n,Z). For simplicity, assume that T is torsion free or even neat in the
following (see [Bo] for the definition of a neat arithmetic subgroup). Then I'\ X is
a locally symmetric space of finite volume.

Let 7 be the Q-rank of G, which is defined to be the maximal dimension of
Q-split tori contained in G. It is known that I'\ X is non-compact if and only if
the Q-rank r of G is positive. In the following, we assume that r > 0, and hence
'\ X is noncompact.

Remark 3.8.1. A good example to keep in mind is G = SL(n), G = SL(n,R),
K = S0O(n), and X = SL(n,R)/SO(n) is the space of positive definite quadratic
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forms of determinant 1. The Q-rank of G = SL(n) is equal to n — 1, and finite
index subgroups I' C SL(n,Z) are arithmetic subgroups of SL(n,Q).

Let Ag(G) be the spherical Tits building of the algebraic group G defined
over Q, i.e., its simplexes correspond to Q-parabolic subgroups. In this building,
apartments can be described as follows. For any maximal Q-split torus T C, there
are only finitely many Q-parabolic subgroups of G that contain T. The simplexes
corresponding to them form an apartment, and any apartment is of this form.

Then G(Q) and hence I acts simplicially on Ag(G). Note that for any element
g € G(Q) and = € Ag(G), if ¢ fixes z, then g acts as the identity map on the
unique simplex which contains z as an interior point. By the reduction theory of
arithmetic groups (see [Bo| [BJ1] and references there), there are only finitely many
I'-conjugacy classes of Q-parabolic subgroups and I' acts, the quotient I'\Ag(G)
is a finite simplicial complex.

The basic theme of this and the next subsection is that the geometry at infinity
and compactifications of I'\ X are closely related to Ag(G) and I'\Ag(G). For
example, when r = 1, I'\Ag(G) consists of finitely many points, which are in
canonical one-to-one correspondence with the ends of T'\ X.

Borel-Serre compactification

A well-known compactification of I'\ X is the Borel-Serre compactification in
[BoS2]. The compactification has also been discussed in many papers, for example,
[GHM] [RS] [Ro2] [Gral] [Gra2] [JM] [BJ1] [BJ2]. We will outline the modified
approach in [JM] [BJ1] [BJ2].

It is constructed in the following three steps:

1. For every Q-parabolic subgroup P of G, choose a boundary component e(P).

2. Attach all the boundary components e(P) to X at infinity to form a partial
compactification® X U] [p e(P).

3. Show that the I'-action on X extends to a continuous action on X U] [p e(P)
with a compact quotient T\X U] e(P).

In this general approach, the Langlands decomposition of Q-parabolic sub-
groups and the induced horospherical decomposition of X play a fundamental
role.

For each Q-parabolic subgroup P, let P = P(R) be its real locus. Let Np be
the unipotent radical of P. Let 6 be the Cartan involution associated with the
maximal compact subgroup K. Then there are two subgroups Ap and Mp of P
which are stable under 6 and

Mp = Nyexq@ {9 € G [ Ix(9)| = 1},
where Xg(G) is the set of characters of G defined over Q, such that
P = NPAPMP = Np X Ap X Mp. (381)

8By a partial compactification of X, we mean any space Y which contains X as an open dense
subset. The reason is that Y is obtained by compactifying X in some directions or parts. Some
other names for such spaces are bodifications and enlargements.
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The component Ap is diffeomorphic to its Lie algebra and called the Q-split com-
ponent. The product Ap Mp is the Levi component of P. The decomposition of P
in Equation 3.8.1 is called the Q-Langlands decomposition of P = P(R), since it
depends on the Q-structure of P. In general, it is different from the (R-)Langlands
decomposition of P recalled in Equation 3.2.1. In fact, Ap C Ap in general.
Define
Xp = MP/K N Mp,

called the Q-boundary symmetric space of P. Since P acts transitively on X, then
the Q-Langlands decomposition of P induces the Q-horospherical decomposition

XZNPXAPXXP.

Let Xp be the R-boundary symmetric space in Equation 3.2.2. Then Xp is in
general the product of Xp, which is a symmetric space of noncompact type, with
a Euclidean space.

Now the Borel-Serre compactification of I'\X can be constructed as follows.
For each Q-parabolic subgroup P, define its boundary component e(P) by

G(P) = Np X XP.

It is attached at the infinity of X using the Q-horospherical decomposition with
respect to P. In fact, the attachment is achieved when the Ap-component goes to
infinity through the positive chamber and stays further and further away from its
walls. s

Then the Borel-Serre partial compactification X~ of X is defined to be

YBS:XUHprXP
P

with a suitable topology. In fact, as mentioned above, the convergence of interior
points to the boundary points in Xp is described in terms of the Q-horospherical
decomposition of X with respect to P. For any two Q-parabolic subgroups P
and Q, e(P) is contained in the closure of e(Q) if and only if P C Q; and the
convergence sequences of points in e(Q) to points is described in terms of a relative
Q-horospherical decomposition.

. . . —BS .
The I'-action on X extends to a continuous action on X . Since the boundary
components e(P) are sufficiently large, I' N P acts properly on e(P), and T" also

acts properly on X7 Using the reduction theory of arithmetic groups, it can be
shown that the quotient F\YBS is a compact Hausdorff space, which is defined to
be the Borel-Serre compactification of T\ X, also denoted by 1\735.

If T is torsion-free, then I' acts freely on YBS, and the quotient F\iXBS is a

compact real analytic manifold with corners.
When G = SL(2), T\ X is a Riemann surface with finitely many cusps, and

———BS
MXx B is obtained by adding one (horo)-circle to each cusp of I'\ X. In this case,

——BS
X  is a real analytic manifold with boundary, adding one circle at each end
of T\ X.
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An important property of I‘\iXBS is that when T is torsion-free, the inclusion
Nx — I‘\iXBS is a homotopy equivalence. In fact, I‘\iXBS is a manifold with
corners with the interior equal to T\ X. Since I'\ X is a K (T, 1)-space, F\iXBS isa
also K(T', 1)-space in this case. Since F\YBS is a compact real analytic manifold

———BS
with corners and hence admits a finite triangulation, it follows that I'\X  is a
finite K (I, 1)-space. Equivalently, we have the following result.

Proposition 3.8.2. The partial Borel-Serre compactification YBS is contractible
—BS

and is a model of ET' when I is torsion-free. The boundary axX "% s homotopy

equivalent to the Tits building Ag(G) and hence is equivalent to a bouquet of

spheres of dimension r — 1, where r is the Q-rank of G.

Proof. The contractibility follows from the fact that X7% is a manifold with
corners and the interior equal to X and the contractibility of X. Since I' acts
properly on YBS and I' is torsion-free, it follows that YBS is a model of ET.
Since the boundary components e(P) are contractible and satisfies the inclusion
relation e(P) C ¢(Q) if and only if P C Q, i.e., the inclusion relation is the
opposite of the inclusion relation in the Tits building Ag(G), it follows that the

boundary ax"" is homotopy equivalent to the Tits building Ag(G).

The Borel-Serre compactification 1“\7XBS is important in studying the coho-
mology groups of I'. Its applications to the cohomology groups of I" have been
discussed in many articles and surveys [Se2] [RS] [Brl] [Br3] [Ro2], and we will
not discuss them except mentioning that the cohomological dimension of I is equal
to dimT\X — r, where r is the Q-rank of G. In proving this result, the fact that

the boundary 8YBS is a cell complex homotopy equivalent to the Tits building
Ag(G) was used.

Tits compactification

In [JM], the general approach outlined above to compactify T\ X was used
—T
to construct a partial compactification X  whose boundary is exactly the Tits

building Ag(G), and the quotient F\YT is a compactification whose boundary is
the finite simplicial complex I'\Ag(G). Due to the relation to the Tits building
Ag(G), this compactification of I'\ X was called the Tits compactification in [JM].

Briefly, the Tits compactification is constructed as follows. Let G be a linear
semisimple algebraic group defined over Q as above. For each QQ-parabolic sub-
group P, let ap be the Lie algebra of Ap. The parabolic subgroup P determines

a positive chamber aj5. Let af;(co) be the set of unit vectors in ag,

ap(00) = {H € af | [|H|| =1},

where || - || is the restriction of the Killing form to ap. Clearly aj(cc) is an open
simplex. Define the boundary component e(P) by

e(P) = ap(00).
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We also attach the boundary components alﬁ(oo) to the infinity of X through
the Q-horospherical decomposition associated with P, and obtain the partial Tits
compactification

X' =X U a(c0).
P

It can be checked easily that aj5(co) is the interior of the simplex in the spherical
Tits building Ag(G), and hence [[p a5 (cc) can identified with Ag(G), and hence

X' = X UAQ(G).

It can be shown that I' acts continuously with a compact quotient 1"\YT7 which
——T
is also denoted by I'\ X and whose building is T'\Ag(G).

3.9 Geodesic compactification, Gromov compactification and
large scale geometry

—T
The Tits compactification I'\X s closely related to the structure of geodesics
in M\ X and the large scale geometry of I'\X. In fact, it is homeomorphic to the

geodesic compactification I'\ X UI"\ X (c0) and the Gromov compactification 1“\7)((;7
and its boundary I'\Ag(G) is also the base of the cone of the tangent space at
infinity TooI'\X. Furthermore, the cone over I'\Ag(G) is within a finite Gromov-
Hausdorff distance of '\ X, and this result is closely related to a conjecture of
Siegel.

Geodesic compactification T\ X UT\ X (c0)

In the rest of this subsection, X denotes the symmetric space G/K of non-
compact type, and a general Riemannian manifold is denoted by M. As pointed
out earlier, X is simply connected and nonpositively curved, and hence the set of
equivalence classes of geodesics defines the sphere at infinity X (co), which is the
boundary of the geodesic compactification X U X (c0).

On the other hand, since I'\ X is noncompact, there are geodesics which are
bounded, or geodesics which are unbounded but do not go to infinity. It is neces-
sary to choose a suitable class of geodesics. In [JM], EDM geodesics were used to
define the geodesic compactification '\ X U I\ X (00).

Specifically, a (unit speed, directed) geodesic v(t) in T'\X is called eventually
distance minimizing (EDM) if for all ¢, 3 > 0,

d(v(t1),v(t2)) = [tr — t2.

Clearly, every EDM geodesic y(t) goes to infinity of T\ X, i.e., leaves every compact
subset of I'\ X, as ¢ — 4o00. For ¢y > 0, the restriction 7 : [tg, +00) — '\ X is an
isometric embedding and is sometimes called a ray in '\ X. Two EDM geodesics
Y1, 72 are called equivalent if

lim sup d(y1(¢), v2(t)) < +o0.

t—+4oo
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Let I'\ X (c0) be the set of equivalence classes of EDM geodesics in I'\ X.

EDM geodesics were studied in [Hal] [Ha2] [Le2], and were completely classified
in [JM]. In particular, I'\ X (c0) was canonically identified with I'\Ag(G).

In [JM], a general procedure was given to compactify a complete (not neces-
sarily simply connected) Riemannian manifold which satisfies certain conditions
by adding the set of equivalence classes of EDM geodesics. It was then shown that
these conditions were satisfied by I'\ X, and hence the geodesic compactification
MX UT\X (00) exists. Since I'\ X (00) = I'\Ag(G), the geodesic compactification

is the same as the Tits compactification T\ X .
Gromov compactification

In [BGS], Gromov introduced a compactification of any complete Riemannian
manifold M using the distance functions. Let C°(M) be the space of continuous
functions on M, and C°(M) be the quotient of C°(M) by the space of constant
functions. Define a map

ig: M — COM), =z~ [d(z,)],

where d(z, ) is the distance from z, and [d(x,-)] its image in C°(M). It can be
shown that the map ig is an embedding, and the closure of ig(X) in C°(M) is
compact and called the Gromov compactification and denoted by MG.

When M is a symmetric space X of noncompact type, it was shown in [BGS]

— G _

that X 2 XUX (o). When M = T\ X, it was shown in [JM] that T\X = T\X
and hence

I = M\ X UT\ X (c0).

Tangent cone at infinity

For any Riemannian manifold (M, g), and a point p € M, the tangent space
T,M can be obtained as the Gromov-Hausdorff limit of (M,eg) with the fixed
point p as ¢ — 0. On the other hand, if the Gromov-Hausdorff limit of (M, %g)
exists as ¢ — 0, it called the tangent space of M at infinity, denoted by T, M
(For general manifolds, we need to take ultralimits in order to get existence of the
tangent cone. See §4 below about how the tangent cone of symmetric spaces leads
to R-trees and R-Euclidean buildings). Clearly, it is independent of the choice
of the point p and only depends on the quasi-isometry class of the metric g, and
hence describes the geometry at infinity. It was shown in [JM] that T, I'\ X exists
and is equal to a cone C(I'\Ag(G)), a metric cone with a homothety section given
by I\ Ag(G).

In [J3], it was shown that the Gromov-Hausdorfl distance between I'\X and
C(T\Ag(G)) is finite. This is closely related to a conjecture of Siegel which
compares metrics of X and I'\X on Siegel sets. See [J3] for details.

3.10 Cohomology of arithmetic groups

Given any discrete group I', the homology and cohomology groups of I' are im-
portant homological invariants of I'. For any ZI'-module E, there are cohomology
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and homology groups H*(T', E), H;(T', E). Usually, they are defined in terms of
projective resolutions of £, F : --- — F, — F; — Fy — E. The homology is
defined by

H;(T,E) = Hy(F @r E), (3.10.1)

where F ®r F is the complex given by F; @ E = F; ® E/ ~, and the relation ~
is defined by f @ m ~ vf @ ym, for f € F;,m € E,v € I'. The cohomology is
defined by

HYT,E) = H (Homr(F, E)). (3.10.2)

See [Br3, Chap. III] for more details.

They can also be defined topologically in terms of the classifying space BI' of
I'. Recall that the classifying space BI' is a CW-complex which is characterized
unique up to homotopy equivalence by the following conditions:

m(BT) =T, m(BT)={1} i>2.

The universal covering space ET' = BT is characterized by the following con-
ditions:

1. T acts properly and fixed point freely on ET'.
2. ET is contractible.

The projection ET' — BT is a principal I’-bundle over BT', and I'-principal
bundles over any topological space B correspond to maps B — BI', and hence BT’
is the classifying space for I'-principal bundles.

Then for the trivial ZI'-module Z,

H'T,7Z) = HY(BT,Z), HT,Z)= H;(BT,Z).

For a general ZI'-module E, there is a local system on ET' ® E over BT, still
denoted by FE, and

HYT',E)= H'(BT,E), H;(I',E)= H;BI,E).

For more details, see [J7]. The cohomological dimension of I', denoted by cd
I, is defined by

cd ' =sup{i € Z | H(T, E) # 0 for some ZI' — module E}.

If there exists a finite dimensional BT'-space, (or strictly speaking, a model of
BT'-space), then
c¢d I" < dim BT

Another finiteness condition of a model of BI'-space is that it is a finite CW-
complex. Such a BI'-space is called a finite BI'-space. Existence of a finite BI'-
space implies that in every degree H'(I',Z) and H;(I',Z) are finitely generated.

From these discussions, it is clear that a good model of BT is important for
understanding cohomological properties of T, for example, in computing H*(T', Z)
and H,;(T',Z).
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It is known that if I' contains nontrivial torsion elements, then ¢d I' = +oo,
and hence there does not exist any finite dimensional models of BI'-spaces (or
ET-spaces).

If T' contains a finite index torsion-free subgroup I, then cd IV is indepen-
dently of the choice of I, and the common dimension cd IV is called the virtual
cohomological dimension of I', denoted by ved T.

For groups I' containing torsion elements, a more natural replacement for ET is
the universal space for proper actions of I', denoted by ET', which is characterized
by the following conditions:

1. T acts properly on ET'.

2. For every finite subgroup F' C T, the set of fixed point (EI')¥" is nonempty
and contractible. In particular, when F' is the trivial subgroup, ET is con-
tractible.

Of course, when I is torsion-free, ET is reduced to ET'. When ET is a I-CW
complex and the quotient I'\ ET is a finite CW-complex, then it is called a cofinite
ET-space. The existence of a cofinite ET" implies that I' contains only finitely
many conjugacy classes of finite subgroups.

One effective method to compute the cohomological dimension cd T is to show
that I" is a duality group (or a generalized Poincaré duality group).

Recall that if BT is given by a compact connected oriented manifold M of di-
mension n, then the Poincaré duality property for M implies that the cohomology
and homology groups of I' satisfy the following duality property: for any ¢ > 0,

H'T,E)= H,_;(T,E). (3.10.3)

Motivated by this, we define that if the group I' acts on Z, i.e., Z is a ZI'-
module, and satisfies the above condition in Equation (3.10.3) for all ZI'-module
E, then I is called a Poincaré duality group of dimension n. If the action of " on
Z is trivial, then Z® E = E, and T is called an orientable Poincaré duality group.
Otherwise, I' is a non-orientable Poincaré duality group.

More generally, a group T is called a duality group (or a generalized Poincaré
duality group) of dimension n if there exists a ZI'-module D such that for every
t > 0 and every ZI'-module E, there exists an isomorphism

H(,E)=H, ;(T,D®E). (3.10.4)

In this case, the module D is called the dualizing module of I'. It is known that
under the assumption that I is of type F' P, if D is finitely generated abelian group,
then D must be isomorphic to Z which is regarded as a I'-module, and hence I' is
a Poincaré duality group of dimension n.

A group I is called a virtual Poincaré duality group if there exists a subgroup
of finite index IV which is a Poincaré duality group. The notion of virtual duality
groups can be defined similarly.
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Proposition 3.10.1. IfT is a duality group of dimension n, then T is of type F'P,
and the cohomological dimension of T' is equal to n; in particular, T is torsion-
free. If T is a virtual duality group of dimension n, then the virtual cohomological
dimension of I is equal to n.

The existence of a good model of BT is often the key to showing that I is a
duality group. As mentioned before, if a group I' admits a BI'-space given by a
compact manifold M without boundary, then I' is a Poincaré duality group.

If the compactness condition on BI' is dropped, or BT is given by a compact
manifold with nonempty boundary, then it is not obvious if I" is a Poincaré duality
group or even a duality group. For example, if I' is a torsion-free non-uniform
arithmetic subgroup of a semisimple linear algebraic group, such as a torsion-free
subgroup of SL(2,Z) of finite index, then there are BT-spaces given by compact
manifold with boundary but IT" is not a Poincaré duality group.

A useful algebraic criterion for duality is the following one.

Proposition 3.10.2. Let I' be a group of type FP. Then I is a duality group of
dimension n if and only if one of the following equivalent conditions holds:

1. HY(T,ZT') = 0 for i # n, and H™(T',ZT") is a torsion-free abelian group.

2. for every abelian group E, the cohomology group H'(U,ZI' @ E) = 0 for
If the above conditions are satisfied, then H™(T,ZT) is the dualizing module D of
I'. As an abelian group, D is either isomorphic to Z or infinitely generated.

On the other hand, the following more geometrical (or topological) result is
very useful in studying the duality of I'.

Proposition 3.10.3. Suppose that a BI'-space is given by a finite CW-complex.
Let ET' = BT be the universal covering space of BI'. Then

HY(D,ZT') = H'(ET,Z).

In particular, if T' is a Poincaré duality group of dimension n, then its dualizing
module is equal to H(ET,Z).

Suppose that a BI'-space is given by an n-dimensional smooth compact man-
ifold with nonempty boundary. Then its universal covering space ETI' is a con-
tractible manifold with boundary. Fix an orientation of ET.

Proposition 3.10.4. Assume that ' admits a BI'-space given by an n-dimensional
smooth compact manifold with nonempty boundary as above. If the boundary OET
is homotopy equivalent to a bouquet of spheres S™~1 of dimension r — 1 (i.e., a
wedge product of S™™1), then T is a duality group of dimension n—r, and the dual-
izing module is equal to the reduced homology of OET in degree r—1. Furthermore,
if the bouquet contains at least one but only finitely many spheres S™', then it
must contain exactly one sphere, and T' is a Poincaré duality group in this case;
otherwise, the bouquet contains infinitely many spheres and T is not a Poincaré
duality group.
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Proof. By the Poincaré duality for manifolds with boundary,
HYET,Z) = H,_;(ET,0ET, 7).
By the long exact sequence for the pair ET, 0ET, we obtain that
H(ET,Z) = H,_; 1(JET,Z).

Then the assumption on the homotopy type of ET implies that H!(ET', Z) is equal
to 0 for ¢ # n —r and is free for n —r, and hence T is a duality group of dimension
n — r by Proposition 3.10.2.

In the above proposition, if BT' is a closed manifold, the boundary OFT is
empty and hence of dimension —1, i.e., » = 0. This implies that I' is a duality
group of dimension n.

Remark 3.10.5. Note that every smooth compact manifold with corners is home-
omorphic to a smooth manifold with boundary by smoothing out the corners, and
we can also assume the BI'-space in the above proposition is a compact manifold
with corners.

A related result on cohomological dimension is the following [Br3, Proposition
8.1, p. 210].

Proposition 3.10.6. Suppose that a BT'-space is a compact manifold with non-
empty boundary. Then cd I' < dim BI' — 1.

For general discrete groups I', it is usually difficult to compute its virtual
cohomological dimension and to decide whether it is a duality group. When T'
is an arithmetic subgroup of a linear algebraic group G over G, then all these
questions can be answered by making use of the Borel-Serre compactification of
locally symmetric spaces and the Solomon-Tits theorem.

Note that a manifold with corners can be deformed to a manifold with boundary

by smoothing out corners. Therefore, by Proposition 3.8.2, YBS is a model of ET
satisfies all the conditions of Proposition 3.10.4. Since every arithmetic subgroup
I' ¢ G(Q) contains a finite index torsion-free subgroup, we have the following
important result from [BoS2].

Proposition 3.10.7. Let I' C G(Q) be an arithmetic subgroup of a semisimple
linear algebraic group G as above. Then T is a virtual duality group of dimension
n—r, wheren =dim X = G/K, and r is the Q-rank of G. The dualizing module
is equal to the reduced homology of the Tits building Ag(G) in degree r — 1, which
is usually called the Steinberg module. In particular, the virtual cohomological
dimension of I is equal to n — r.

See [AbB, Chapter 13] [Ro2| for more details and references.
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3.11 Vanishing of simplicial volume of high rank locally
symmetric spaces

In this subsection, we explain another application of the Borel-Serre compactifica-
tion and the Solomon-Tits Theorem to vanishing of simplicial volumes of locally
symmetric spaces of Q-rank at least 3.

The simplicial volume is an important homotopy invariant of manifolds intro-
duced by Gromov [Gr2]. It is defined as follows. Suppose that M is a connected
oriented compact manifold of dimension n, let [M] be the fundamental class in
H,(M,R), or rather the image of the fundamental class in H,(M,Z) under the
natural map H,,(M,Z) — H,(M,R). For each n-chain ¢ = ) _a,0, where o are
n-singular simplices, define the simplicial ¢!-norm

llellr =" lol-
o

Then the simplicial volume of M, denoted by ||M||, is defined by
[|M|| = inf{||¢||1 | ¢ is an n-chain in the fundamental class [M]}.

If M is a connected non-orientable manifold, then let M be its double cover
and define ||M|| = %||]\~4 ||. If M is an oriented orbifold, then it has a fundamental
class and hence the usual notion of simplicial volume. If M admits a finite smooth
cover N, then it also has the orbifold simplicial volume ||M||ors = ||N||/d, where
d is the degree of the covering N — M. It is known that

||M||orb > HMH»

and the strict inequality can occur.

Assume that M is a connected orientable noncompact manifold of dimension
n. Let HE(M,R) be the locally finite homology group of M. Let [M]" be the
fundamental class in HYf (M, R). For any locally finite n-chain ¢ = 3 _ a0, define
the simplicial norm ||¢|[y = }__ |o| as above. Recall that a chain is locally finite
means that every compact subset of M only meets the images of finitely many
singular simplices o in the chain. Hence, ||c||; could be equal to infinity.

The simplicial volume ||M]|| of a noncompact manifold M is defined by

||[M|| = inf{||c||; | ¢ is a locally finite n-chain in the fundamental class [M]"}.

One of the motivations of Gromov to introduce the simplicial volume is to give
a lower bound on the minimal volume of a manifold M. Consider all complete
Riemannian metrics g on M whose sectional curvature K (g) satisfies the bound
|K(g)| <1 at all points. Let Vol(M, g) denote the volume of M with respect to
the metric g. Then the minimal volume of M is defined by

Min-Vol(M) = inf(Vol(M, g) | all complete metrics g, |K(g)| < 1}.

Another major application of the simplicial volume is a different proof by Gro-
mov of Mostow strong rigidity for compact hyperbolic spaces of dimension at least
3 as mentioned above. See [BeP] [Rat] for detailed discussions.
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A basic result in [Gr2, §0.5] states that there exists a universal constant C,,
only depending on the dimension n such that

Min-Vol(M) > C.,||M]|.

Therefore, a natural problem is to understand when the simplicial volume || M|
is equal to zero.

It is known that if a compact manifold M admits a self-map of degree greater
than or equal to 2, then its simplicial volume ||M|| = 0. If a noncompact manifold
M admits a proper self-map of degree greater than or equal to 2, then ||M]| =0
or ||[M|| = +o0. As a consequence, the simplicial volumes of spheres and tori are
equal to zero. It is also known that the simplicial volume of R"™ is equal to 0.

For spaces related to locally symmetric spaces, the following results on simpli-
cial volume are known:

Proposition 3.11.1. If M is a complete hyperbolic manifold of finite volume, then
[|M]|| > 0. More generally, if M admits a complete metric such that its sectional
curvature K is bounded between two negative constants uniformly, then ||M]| > 0.

This is a a result due to Thurston [Gr2, §0.3]).

Proposition 3.11.2. If M =T'\X is a compact locally symmetric space of non-
compact type, then ||M|| > 0.

This was conjectured by Gromov [Gr2, p. 11] and proved in [LaS] and [BuK].

Proposition 3.11.3. If M = T'\X is an arithmetic locally symmetric space whose
Q-rank, denoted by ro(G), is greater than or equal to 3, then ||M|| = 0.

The vanishing result was proved in [LoS2]. In the proof, a vanishing criterion
[Gr2, p. 58] was applied. In order to apply this, a suitable covering of T\ X
with multiplicity at most dim '\ X is needed. For this purpose, the conditions
that the map 7f°(T"\X) = m; (WBS) - m(T\X) =m (I‘\iXBS) is injective and
that the virtual cohomological dimension of I' is at most dim I'\ X — 2 are needed.
Since the virtual cohomological dimension of I' is equal to dimI'\ X — rq¢(G), the
condition that rg(G) > 3 is more than enough. The assumption that ro(G) > 3

is needed to show that the boundary 8@7357 which is homotopy equivalent to a
bouquet of spheres S™(&)~1 by Proposition 3.8.2, is simply connected. From this
brief outline, it is clear that the Solomon-Tits Theorem for the spherical building
Ag(G) is used crucially.

If ro(G) = 1, this vanishing result does not hold in general. For example, it
was proved in [LoS1] that if M is a Hilbert modular variety, then ||M]|| > 0. Note
that Hilbert modular varieties are important examples of locally symmetric spaces
of Q-rank 1. If the rank of X is equal to 1 and I'\ X is noncompact, which implies
that rg(G) = 1, then the sectional curvature of I'\ X is bounded by two negative
constants and hence the simplicial volume of I'\ X is positive [Gr2, §0.3].
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3.12 Generalizations of buildings: curve complexes and ap-
plications

As discussed in the previous subsection, spherical buildings of semisimple algebraic
groups defined over QQ give natural parameter spaces of the boundary components
of the Borel-Serre partial compactifications of symmetric spaces, and the topology
of the buildings, i.e., the Solomon-Tits theorem, has played an important role in
understanding the topology of compactifications of locally symmetric spaces and
cohomological properties of arithmetic groups.

Motivated by the Borel-Serre compactification of locally symmetric spaces,
Harvey introduced curve complexes of surfaces, which are infinite simplicial com-
plexes and parametrize boundary components of an analogue of the Borel-Serre
partial compactification of the Teichmuller spaces. The curve complexes have
turned out to have important applications to cohomology properties of mapping
class groups in a similar way as spherical Tits buildings are used for symmetric
spaces and arithmetic groups.

We mention some definitions, basic properties and applications. For detailed
discussions and references of definitions and results stated here, see [J8]. For
simplicity, we only deal with compact surfaces. Let S; be a compact oriented
surface of genus g,

The curve complex C(Sy) is a simplicial complex whose vertices correspond to
homotopy equivalence classes of simple closed curves. Homotopy classes of simple
closed curves [c1], -+, [ck+1] form the vertices of a k-simplex if and only if they
admit disjoint representatives. By assigning each edge length 1, C(S,) becomes a
metric space.

Proposition 3.12.1. The curve complex C(Sy) has infinite diameter and is a
Gromov hyperbolic space.

The analogue of the Solomon-Tits Theorem also holds.

Proposition 3.12.2. The curve complex C(Sy) is homotopy equivalent to a bou-
quet of infinitely many spheres of dimension 2g — 2.

Let 74 be the Teichmiiller space of marked complex structures on S,. It is a
complex manifold and diffeomorphic to R%~3. Let Mod, = Diff*(S,)/Diff’(S,)
be the mapping class group of S, where Diff (Sq) is the group of orientation
preserving diffeomorphisms of Sy, and Diff’ (Sg) is the identity component of
Diff* (Sg). Then Mod, acts holomorphically and properly on 7, and the quotient
Mod,\T, is the moduli space of Riemann surfaces of genus g and is noncompact.

Instead of partially compactifying 7, to get a compact quotient by Mod,, we
can consider the thick part 7g4(¢). Assume that g > 2. Then every compact
Riemann surface of genus g admits a unique hyperbolic metric conformal to the
complex structure. For small ¢ > 0, the thick part 7,4(e) consists of marked
Riemann surfaces that do not contain any simple closed geodesic of length less
than e.

It is clear that Mod, acts on T,4(e). The following results can be proved.
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Proposition 3.12.3. When ¢ is sufficiently small, the thick part Ty(e) is a man-
ifold with corners and is contractible, and the quotient Modg\Ty(e) is compact.
The boundary faces (or components) of Ty(e) are contractible and parametrized by
simplices of the curve complex C(Sy), and hence the boundary 0T4(e) is homotopy
equivalent to a bouquet of spheres of dimension 2g —2. T,(e) is a cofinite model
of the universal space EMody for proper actions of Mod,.

It is known that the mapping class group Mod,, is virtually torsion-free, i.e.,
admits torsion-free finite index subgroups. As a consequence of the above results,
by following the arguments in [BoS2] (see Proposition 3.10.7), we have the following
result of Harer.

Proposition 3.12.4. Mod, is a virtual duality group of dimension 4g — 5, and
the dualizing module is equal to the reduced homology of C(Sy) in degree 2g — 2.

4 Euclidean buildings

In this section, we discuss Euclidean reflection groups and Euclidean buildings,
and construct the Bruhat-Tits buildings of semisimple simply connected algebraic
groups defined over a field with discrete valuation. The key point is that instead
of parabolic subgroups, we use parahoric subgroups to parametrize simplexes of
the buildings. Then we discuss choices of BN-pairs and buildings for non-simply
connected algebraic groups and a concrete realization of the Bruhat-Tits building
of the group SL(n).

For applications to S-arithmetic subgroups, we need to compactify Euclidean
buildings by spherical Tits buildings. We also discuss some Satake type compact-
ifications of Euclidean buildings.

4.1 Definitions and basic properties

Let V be a Euclidean space. An affine reflection group W on V is a group of affine
isometries generated by reflections with respect to affine hyperplanes such that
the set ‘H of affine hyperplanes fixed by reflections in W is locally finite. Clearly,
a finite reflection group is an affine reflection group.

The linear parts of the affine transformations in W define a finite (linear)
reflection group W. W is called essential if WW is essential.

The hyperplanes in H divide V into chambers, and W acts simply transitively
on the set of chambers. Let C' be a chamber. Then W is generated by the
reflections of the walls of C.

Proposition 4.1.1. Assume that W is essential and irreducible. Then

1. either W is finite and has a fized point, and hence becomes a finite reflection
group when the point becomes the origin. In this case, C is a simplicial cone;

2. or W is infinite and C' is a simplex.
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See [Brl, Chap VL., §1] for a proof of this proposition. An essential infinite
affine reflection group is called a Euclidean reflection group. The chambers and
their faces form a simplicial complex, which is called a Fuclidean Coxeter complex.
A typical example of a Euclidean reflection group is the affine Weyl group of a
simple Lie algebra over C.

Definition 4.1.2. A chamber complex A is called a Euclidean building if it sat-
isfies all the conditions in Definition 2.1.4 except that all the apartments are Eu-
clidean Cozeter complexes.

Since the underlying space of each Euclidean Coxeter complex is a Euclidean
space, it has a metric. Fix a Euclidean metric on every apartment such that all
apartments are isometric. Then the compatibility conditions on apartments shows
that these metrics can be glued into a metric on A which is a geodesic space, i.e.,
the distance between any two points is realized by a geodesic connecting them
[BH1] (see also [Brl, Chap. VI, §3]).

Proposition 4.1.3. Any FEuclidean building A as a metric space is a CAT(0)-
space, and hence has nonpositive curvature and is contractible. In particular, it is
simply connected.

Recall that a CAT(0)-space M is a length space such that every triangle in
M is thinner than a corresponding triangle in R? of the same side lengths [BH].
When A is an Euclidean building of rank 1, i.e., a tree, then it is clear that it is a
CAT(0)-space.

This proposition has important application to understanding compact sub-
groups of semisimple p-adic groups.

4.2 Semisimple p-adic groups and Euclidean buildings

Next we consider some examples of Euclidean buildings constructed from linear
semisimple algebraic groups defined over local fields.

Let G be a linear connected semisimple algebraic group defined over a field
complete with respect to a discrete valuation. An important class of such fields
F consists of non-archimedean local fields F, i.e., locally compact fields complete
with respect to a discrete valuation, which is equivalent to the condition that the
residue field f of F'is finite. For example, we can take F' = Q,,, where p is a finite
prime, and the residue field is f = IF,,. We also assume that G is absolutely almost
simple, i.e., over any field extension of F';, G has no proper normal subgroup of
strictly positive dimension.

In the first part, we assume that G is simply connected, i.e., there is no non-
trivial isogeny G’ — G over K. (Recall that an isogeny G’ — G is a surjective
homomorphism f which has finite kernel, and which is also a morphism in the sense
of algebraic varieties.) Examples include G = SL(n), Sp(n). In the second part,
we consider the non-simply connected case. Then we conclude this subsection with
the example of the Bruhat-Tits building of SL(n).

Simply connected semisimple algebraic groups
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In §2.2, for any linear semisimple algebraic group G defined over any field F',
we can associate a spherical Tits building A(G), whose simplexes correspond to
parabolic subgroups of G which are defined over F'. When the parabolic subgroups
are replaced by parahoric subgroups of G(F'), we obtain a Euclidean building
ABT(G), called the Bruhat-Tits building of G.

As recalled in §2.2, parabolic subgroups P of G can be defined simply as
subgroups such that G/P is a projective variety. On the other hand, there is no
such simple characterization of parahoric subgroups of G(F’) for general reductive
group G (see [BT2, Definition 5.2.6] and also [BT1, p.31]).

Fortunately, under our assumption that G is simply connected and absolutely
almost simple which means G does not contain any nontrivial connected normal
subgroups over the algebraic closure of F', there is a direct definition of parahoric
subgroups. A minimal parahoric subgroup of G(F) is called an Iwahori subgroup
and is equal to the normalizer of any maximal pro-p-subgroup of G(F'), where p is
the characteristic of the residue field f, and a pro-p-subgroup is the projective limit
of a sequence of p-subgroups. Such minimal parahoric subgroups are conjugate
under G(F'). Then any proper subgroup of G(F') containing an Iwahori subgroup
is called a parahoric subgroup of G(F').

When G = SL(n), examples of Iwahori and parahoric subgroups are described
explicitly in [Brl, Chap. V, §8] (see below).

The relations between the parahoric subgroups are similar to those of parabolic
subgroups.

Proposition 4.2.1. Under the above assumptions on G, all minimal parahoric
subgroups of G(F) are conjugate. Fix any minimal parahoric subgroup B. Let
r be the rank of G over F. Then there are exactly r + 1 mazimal parahoric

subgroups Pi,--- , Pry1 which contain B, and P, N --- N Py, are exactly all the
parahoric subgroups which contain B when {iy, - i} runs over non-empty sub-
sets of {1,--+ ,r + 1}. In particular, any parahoric subgroup is conjugate to such

an intersection.

Parahoric subgroups are basically related to bounded subgroups and compact
open subgroups of G(F).

Definition 4.2.2. A subgroup K C G(F) is called bounded if it satisfies one of
the following equivalent conditions:

1. There exists a faithful finite dimensional rational representation p : G(F) —
GL(n,F) defined over F such that the coordinates of the elements p(g),
g € K, are uniformly bounded with respect to the natural metric of F.

2. For any finite dimensional rational representation p : G(F) — GL(n, F), the
coordinates of the elements p(g), g € K, are uniformly bounded with respect
to the natural metric of F.

3. For any finite dimensional rational representation p : G(F) — GL(n,F),
there exists a lattice A in F™ such that p(g)A = A, g € K.
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By (3), any bounded subgroup is contained in a compact open subgroup of
G(F). When G is simply connected, any maximal open compact subgroup of
G(F) is a maximal parahoric subgroup, and the converse is also true.

Remark 4.2.3. To emphasize the similarities between the parabolic subgroups
and parahoric subgroups, we point out that when G is split over F', then the
minimal parahoric subgroups, i.e., the Iwahori subgroups, are lifted from the Borel
subgroups of the reduction modulo the prime ideal of some integral model of G
(see [IM] [Iw] and the example of G = SL(n) in [Brl, p. 130]). In this split case,
the minimal parabolic subgroups of G are given by the Borel subgroups, i.e., the
maximal connected solvable subgroups.

The Bruhat-Tits building ABT(G) is defined to be the simplicial complex
whose simplexes correspond to parahoric subgroups such that

1. The maximal parahoric subgroups correspond to vertices.

2. The inclusion relation is the opposite of the inclusion relation of the parahoric
subgroups. In particular, for any parahoric subgroup P, the vertices of its
simplex correspond to the maximal parahoric subgroups which contain P.

The apartments in ABT(G) are also similarly described as in the case of the
spherical Tits building A(G). Let Op be the ring of valuation. Then for any
maximal F-split torus T of G, the set of parahoric subgroups which contain T(OF)
form an apartment in A®7(G) and is isomorphic to a Euclidean Coxeter complex.

As pointed out in §2.3, buildings can also be described in terms of BN-pairs.
In this case, B is a minimal parahoric subgroup, and T is a maximal F-split torus
such that T(F') is contained in B. Let N be the normalizer of T(F') in G(F'). Then
B and N form a BN-pair, i.e., they satisfy the axioms in Definition 2.3.1. The
intersection B N N is a maximal compact subgroup of the centralizer of T(F') in
G(F),and W = N/(BNN) is a Euclidean Coxeter group whose Coxeter complex
is isomorphic to the apartments in ABT(G). In fact, W is the extension of a finite
Coxeter group by a free abelian group of rank equal to the F-rank of G. Such a
Weyl group is called an affine Weyl group.

Since G(F) acts on the set of parahoric subgroups by conjugation, it acts
simplically on ABT(G) such that the stabilizers of the vertices are the maximal
parahoric subgroups.

Remark 4.2.4. When G is absolutely almost simple and simply connected over
F = Q, or more general local fields, the existence of BN-pairs with affine Weyl
groups in G(F) is proved in [Hij]. Such BN-pairs with affine Weyl groups are
unique up to conjugation. On the other hand, for a general reductive linear group
G defined over a local field, the Bruhat-Tits buildings are constructed first using
valued root data, and then parahoric subgroups are defined in terms of stabilizers
of facets in Bruhat-Tits buildings, different from the procedure described above.

Remark 4.2.5. The basic idea in the approach using valued root data is to start
with the structure of an apartment and to use the group action to obtain other
apartments and hence the buildings. Roughly, let A be an apartment. Then the
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Bruhat-Tits building AP (G) is defined as a quotient of G x A. Such an idea of
passing from an apartment to the whole buildings was also used in constructing
compactifications of Bruhat-Tits buildings in [Lan2]. It is also needed to construct
non-discrete R-Euclidean buildings discussed in §4 below.

A related idea of passing from a totally geodesic maximal flat subspace of a
symmetric space X of noncompact type to the symmetric space has been used to
understand compactifications of symmetric spaces in [Os] and [GJT, Chap. III].

Remark 4.2.6. For a semisimple algebraic group G as in the above Remark,
besides the BN-pair which gives the Bruhat-Tits building, there is also a BN-pair
in §2.3 which leads to the spherical Tits building corresponding to the parabolic
subgroups. The first BN-pair depends on the structure of the local fields, while
the second depends on the structure of the algebraic group G.

Non-simply connected semisimple groups

Let G be a connected, non-simply connected linear semisimple algebraic group
defined over a non-archimedean local field F. Let G be its universal covering.
Then G is a simply connected semisimple linear algebraic group defined over F’,
and hence its Bruhat-Tits building of ABT(G) is defined as above. Define the
Bruhat-Tits building ABT(G) to be equal to ABT(G). Let 7 : G — G be
the canonical central isogeny. The group G(F) acts on the set of its parahoric
subgroups via conjugation. Since the center of G(F ) clearly acts trivially, this
gives an action of G(F) on the set of parahoric subgroups of G(F) and hence on
the building ABT(G) (see [BoS1, §4.8]).

Ezample: Bruhat-Tits building of SL(n).

For the sake of explicitness, we describe the BN-pair in the case G = SL(n)
over Q,, where p is a finite prime [Brl, Chap. V, §8]. Let SL(n,F,) — SL(n,F,)
be the natural projection. Take B to be the inverse image of the upper triangular
subgroup, and N to be the monomial subgroup of SL(n,Q,), i.e., the subgroup
consisting of all matrices with exactly one non-zero element in every row and every
column.

The simplexes and apartments in ABT(SL(n)) can also be described explicitly
in terms of lattices (see [Rol, pp. 31-32] [Brl, pp. 132-137]). Briefly, two lattices A
and A’ in F™ are equivalent if there exists an element A € F* such that A = AA’.
The stabilizers of equivalent lattices are obviously the same, and they are the
maximal parahoric subgroups. Hence, the equivalence classes of lattices correspond
to vertices of ABT(SL(n)). Two equivalence classes [A] and [A’] form the vertices
of a simplex of dimension 1 if and only if there exist representatives A and A’ such
that

7A DA DA,

where 7 is a uniformizer of the valuation ring of integer of the local field F. The
vertices [A1], - -+ , [Ay] form the vertices of a m-simplex if there are representatives
Ai,---, A, such that

A1 D---DA,, DmA;.
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If a lattice A has a basis vy, -+ ,v,, denote the equivalence class of A by
[v1,--- ,v,]. Let ey, - e, beabasisof F. Then the vertices [e1, - ,e;, €11, -
i =1,---,n, form the vertices of a chamber in ABT(SL(n)), a fundamental do-
main of the Euclidean Coxeter group acting on the Euclidean Coxeter complex.

The equivalence classes [rtey, -+ ,mine,] form the vertices of an apartment
containing the above chamber, and any apartments are obtained from this apart-
ment under the action of SL(n, F).

Remark 4.2.7. See [BT3] [BT4] for concrete realization of the building in terms
of norms for classical groups and [GY1] [GY2] for exceptional groups. See also
[AbN] [Yul] for other concrete realizations. See also [Yu2] for a survey of the
Bruhat-Tits theory.

Remark 4.2.8. In this case, there are n+1 SL(n, F')-conjugacy classes of maximal
parahoric subgroups of SL(n, F'), which are also maximal compact subgroups of
SL(n,F). On the other hand, it is well-known that there is only one SL(n,R)-
conjugacy class of maximal compact subgroups in SL(n,R). To help explain this
difference, we note that if K C SL(n, F) is a maximal compact subgroup, then for
any g € GL(n, F), the conjugate gK g~ is also a maximal subgroup in SL(n, F).
But this conjugation can not always be achieved by elements in SL(n, F'). (This
problem will not arise for SL(n,R) since we can always assume det g > 0 and use
(det g)~%"g € SL(n,R) to get the same conjugated subgroup). In fact, GL(n, F)
acts transitively on the set of lattices in F'™, and hence all the maximal compact
subgroups of SL(n, F') are conjugate under GL(n, F').

When the F-rank of G is equal to 1, ABT(G) is a tree. For a thorough
discussion of trees and their applications to combinatorial group theory, see [Sel].

4.3 Compactification of Euclidean buildings by spherical
buildings

For a connected linear semisimple algebraic group G defined over a non-archimedean
local field F, there are two buildings associated with G: the spherical Tits build-
ing A(G) and the Bruhat-Tits Euclidean building ABT(G). These two buildings
are closely related. In fact, the former with a suitable topology can be used to
compactificatify the latter. This compactification is similar to the geodesic com-
pactification X U X (00) of a symmetric space X of noncompact type in §3.1, and
is very important for applications to the cohomology of S-arithmetic groups in
[BoS1].

The construction was given in [BoS1] and also reviewed in [Brl] and [Ro3]. Here
we recall the compactification, in particular its topology in a slightly different way,
i.e., we view the Euclidean building as a CAT(0)-space [BH] [Pap].

As recalled earlier, a CAT(0)-space is a geodesic metric space whose triangles
are thinner than the corresponding triangles of the same side lengths in R2. A
complete simply connected manifold of nonpositive curvature, i.e., a Hadamard
manifold, is a CAT(0)-space, and CAT(0)-spaces are generalizations of Hadamard
manifolds to the category of metric spaces.

’ ﬂ-en]a
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Let (A,d) be a CAT(0)-space. A ray in A is an isometric embedding v :
[0,4+00) = A. Two rays 71,72 are called equivalent if

lim sup d(v1(t), 72(t)) < +o0.

t——+o0

Let A(oo) be the set of equivalence classes of rays in A.
Define a conic topology on A U A(oo) as follows: Let 0o € A be any basepoint.
It is known that every equivalence class [y] of rays contains a unique ray « which
starts from o, i.e., 7(0) = o. Define y(400) to be the equivalence class [y]. Then
we get an extended ray
v : [0,400] = AU A(0).

For any ray - with 4(0) = o and r > 0 and € > 0, define a neighborhood of y(+o0)
by

U(y(+00),m,6) = {¥'(t) | 7 is a ray,5'(0) = 0,d('(r),v(r)) < &,t € (r,+0c]}.

When r runs over a sequence of numbers going to infinity, and € over a sequence
going to 0, U(y(4+00), r,€) forms a neighborhood basis of y(4+00) in AUA(c0) (see
[BH, pp. 263-264]).

Remark 4.3.1. Let S(o,7) = {x € A | d(x,0) = r} be the sphere of radius r with
center 0. Then y(r),~'(r) € S(o,r). For a Hadamard manifold, the spheres S(o, )
are all diffeomorphic for different values of r. This implies that in this case, we
could only use one fixed r to get a neighborhood basis of y(+0c0). On the other
hand, for a general CAT(0)-space, r needs to run over a sequence of numbers going
to infinity. This can be seen clearly when A is an infinite tree.

In this topology of AUA(00), an unbounded sequence x; converges to a bound-
ary point y(4o0) if and only if the unique ray ;(t) starting from o and passes
through x; converges to v(t) uniformly for ¢ in compact subsets.

Proposition 4.3.2. If A is complete, the space AU A(c0) is contractible.

Proof. Let o € A be a basepoint as above. Then each ray ~ issuing from
o extends continuously to an extended ray « : [0,+00] = A U A(co). When v
runs over all the rays starting from o, the extended ray sweeps out A U A(c0).
Now contract AU A(o0) along such each extended rays to the basepoint o using a
fixed deformation retract of [0,400) to 0. It follows easily from the definition of
the conic topology that they define a deformation retraction of A U A(o0) to the
basepoint o.

Proposition 4.3.3. If a CAT(0)-space A is complete and locally compact, then
A UA(0) is compact, and AU A(0) is called the geodesic compactification.

Proof. Since A is a geodesic space, the local compactness and completeness
imply that it is a proper metric space [Ha, p. 84]. It suffices to show that any
unbounded sequence z; in A has a convergent subsequence. Let «; be the unique
ray from o which passes through z;. The properness of A implies that for any
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r > 0, the closed ball B(o,r) of radius r and center o is compact, which in turn
implies that there is a subsequence of ;(t) which converges to a ray ~(t) uniformly
for ¢ in compact subsets. Then the corresponding subsequence of z; converges to
~¥(+00).

If A is a Euclidean building, then A(co) is the underlying space of a spherical
Tits building. The details are given in [BoS1] (see also [Brl] [Ro3]). We comment
briefly on the construction. First we define the notion of sectors of apartments of
A. Let X be an apartment in A and identify it with R". Let W the Euclidean
Coxeter group, and W be its linear part. Then W is a finite Coxeter group and
divides R™ into finite many simplicial cones and their faces. (In fact, they are the
chambers and chamber faces of the finite Coxeter complex associated with W).
The corresponding subsets in ¥ are called the sectors and sector faces in A.

For each sector C of A, let C be the closure of C'in A U A(oco). Define

C(o0) = 0N X(00).

Then C(00) is a closed simplex. Denote its interior by C/(00), called the simplex
at infinity associated with C. For any sector face C7 of C, we can also define
a simplex at infinity Cr(cc0). Then it is known [Brl, pp. 175-177] that these
simplexes at infinity give a partition of A(oc) and define a spherical Tits building,
denoted by A.

Remark 4.3.4. Another slightly different construction of the spherical Tits build-
ing A, was contained in the proof of the Mostow strong rigidity and can be
described as follows. Two sectors Cy, Cy are called equivalent if the Hausdorff dis-
tance between them is finite. Similarly we can define equivalent sector faces, and
the incidence relation between the equivalence classes of sectors and sector faces.
Then the set of equivalence classes of sectors and sector faces form the spherical
Tits building at infinity A.

If A is the Bruhat-Tits building ABT(G) of a linear connected simply con-
nected algebraic group G defined over a local field kj, then the spherical building
A is exactly the spherical Tits building A(G). In this case, the subset topology
on A(oco) induces a topology on A(G) and is different from the canonical topol-
ogy of A(G) defined by the Tits metric. For example, when the rank of G over
ky is equal to 1, the Tits metric defines the discrete topology on A(G). On the
other hand, the topology on A(oc) is not discrete; in fact, it is a compact space
homeomorphic to the Cantor set.

The topology of A(G) induced from the subset topology of ABT(G)(c0) can be
described as follows. Since G(ky) acts isometrically on ABT(G), it preserves the
equivalence classes of rays and acts continuously on the compactification APT(G)U
A(G), and hence on A(G) as well. Let o be a simplex in A(G) of the top
dimension, i.e., of dimension  — 1. Then the map

G(ky) x 0 — A(G)

is surjective. The subset topology of ¢ is clearly equal to the one given by the
simplicial structure. In [BoSl1], the topology of A(G) is given by the quotient
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topology of G(k,) x o under the above map and is shown to be compact and
Hausdorff. The above discussions show that this topology is as fine as the topology
induced from ABT(c0). Since both topologies are compact and Hausdorff, they
agree.

Remark 4.3.5. The topology on A(G) naturally makes it a topological building
according to Definition 3.3.1. In fact, the set A; of the vertices is equal to the
disjoint union of G(ky)/P,(kp), m = 1,--- ,r, each is given with the quotient
topology and is a compact Hausdorff space, where Py, --- , P, are representatives
of conjugacy classes of maximal parabolic subgroups. For any s = 2,--- ,r, Ag is
a finite union of G(ky)/P(ky), where P run over some representatives of conju-
gacy classes of parabolic subgroups of G of rank s. With the quotient topology,
G(kp)/P(ky) is clearly compact and Hausdorff. Since the map Ay — (Aq)® is
continuous and injective, and all the spaces are compact and Hausdorff, it is clear
that the image is closed. This gives the structure of a topological building on
A(G).

4.4 Satake compactifications of Bruhat-Tits buildings

One of the basic points of this paper is that Euclidean buildings are analogues
of symmetric spaces of noncompact type. For a symmetric space X = G/K of
noncompact type, we have discussed two kinds of compactifications: the geodesic
compactification and the Satake compactifications. There are many other com-
pactifications of symmetric spaces. See [BJ1] for details.

For the Bruhat-Tits building A®T(G) of a reductive algebraic group over a
local field F', the corresponding Satake compactifications have been constructed
in [ReTW2] [ReTW1] [Wer2] [Wer3] [Wer4].

The paper [GuR] compactifies the set of vertices of the Bruhat-Tits building
ABT(G) using the space of compact subgroups of G(F). This interpretation of
boundary points in terms of closed subgroups is satisfying because it provides a
virtual geometric parametrization of maximal amenable subgroups. On the other
hand, this does not give a compactification of the whole building ABT(G).

The paper [ReTW1] constructs a family of finitely many compactifications of
ABT(G) by using Berkovich analytic geometry over complete non-Archimedean
fields, and the paper [ReTW2] uses irreducible representations of the algebraic
group G to construct compactifications of APT(G). These compactifications are
similar to the family of finitely many Satake compactifications of symmetric spaces
of noncompact type. For example, the boundary can be decomposed into pieces
which are Bruhat-Tits buildings of smaller algebraic groups.

The construction in [Wer2] is also similar to the Satake compactifications of
symmetric spaces. Compactifications of some special buildings were treated in
[Wer3] and [Wer4].

s

The boundary X, of the maximal Satake compactification is naturally de-
composed into symmetric spaces of noncompact type of smaller dimension, which
are naturally parametrized by proper parabolic subgroups of G, where X = G/K,
or by simplices of the Tits building A(X). Since each boundary symmetric space
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. . S C
is a cell, this shows that the boundary 0.X ., has a natural cell structure which is

dual to the Tits building. See [GJT]. The boundary 8Yiax can also be constructed
in this way by adding these boundary components using the idea of the Borel-Serre
compactification of locally symmetric spaces. See [BJ1]. For Bruhat-Tits build-
ings, a similar construction should also work. For the Bruhat-Tits building of
PGL(n) over a local compact field, such a construction has been carried out in

[Wer2].

5 Applications of Euclidean buildings

In this section, we discuss applications of Euclidean buildings to super-rigidity
of discrete subgroups of co-finite volume in the isometry groups of the quater-
nionic hyperbolic spaces and the Cayley hyperbolic plane, and integral Novikov
conjectures for S-arithmetic groups.

The first concerns the proof by Garland of a conjecture of Serre on vanishing
of certain cohomology groups of uniform discrete subgroups of p-adic Lie groups.

The second is the proof by Gromov and Schoen of the non-archimedean super-
rigidity of cofinite discrete subgroups of Sp(1,n) and Fj_sp). To motivate this,
we recall the Margulis super-rigidity in the higher rank case. Since the latter part
of the arguments in [GS] follows the proof in [Col, we briefly outline the proof in
[Co] for archimedean super-rigidity of the cofinite discrete subgroups of Sp(1,n)
and Fy(_s0), and comment on their differences which lead to the boundedness of
the image of the representation.

We conclude this section by an application to the integral Novikov conjectures
for S-arithmetic subgroups.

5.1 p-adic curvature and vanishing of cohomology of lattices

In [Kaz], Kazhdan introduced the important notion of Property (T) for a locally
compact and second countable group G. Briefly, a group G has the Property (T)
if every unitary representation of G which almost has invariant vectors does have
nontrivial invariant vectors, i.e., the trivial representation is isolated in the unitary
dual of G.

The Property (T) has been very useful for many different problems, in par-
ticular for problems around rigidity of discrete subgroups of Lie groups. See [Zi,
Chap. 7] for the precise definition and applications.

In [Wal], Wang showed that if G has property (T) and 7 is a unitary represen-
tation of G, then H'(G,7) = 0.

In [Kaz], Kazhdan proved that connected semisimple Lie groups with finite
center and no simple factor of rank 1 have Property (T). Furthermore, any lattice
subgroups I'; i.e., discrete subgroups of finite covolume, of such Lie groups have
Property (T) as well. In particular, for such lattice subgroups, H*(I', ) = 0 for
any unitary representation 7 of I'. This vanishing of H(T', 7) is closely related to
the (infinitesimal) rigidity of T', or rather the associated locally symmetric space
IN\X, where X = G/K, K being a maximal compact subgroup of G (see [Mos,
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p.5] for a history of results leading to Theorem 3.4.1 in §3.4, and results in [Wel]
[We2] [We3] [CV] [Matl] [Mat2] [Ral] [Ra2] [JoM] which are related to the first
cohomology of T').

Let k£ be either a number field or a function field of an algebraic curve over a
finite field, and k, the completion at a finite place. Then kj, is a local field.

Let G be a simple linear algebraic group defined over k,, and I' C G(k,) a
torsion free discrete and cocompact subgroup.

Remark 5.1.1. It should be pointed out that when the characteristic of &, is
equal to zero, then any co-finite discrete subgroup I' of G(k,) is uniform. In
fact, if not, it will contain a nontrivial unipotent element, which will generate a
non-discrete subgroup. The assumption on the characteristic of k, is necessary.

Assume that the ky-rank 7 of G is at least 2, then it is also known that I" has
Property (T) (see [Mar, Chap. III, Theorem 5.3] [HV]); in particular,

HYT,7)=0 (5.1.1)

for any unitary representation m of G.
Motivated by this and his computations about signs of the Euler characteristic
of T in [Se2], Serre conjectured that for any 4, 0 < i < r,

HYT,R) =0.

When the rank r = 2, this is reduced to Equation 5.1.1.

In [Garl], Garland proved this conjecture by using the Bruhat-Tits building
ABT | (In [Garl], the cardinality of the residue field was assumed to be sufficiently
large. This additional assumption was removed by Casselman in [Cas]). We will
very briefly outline the idea of the proof.

Recall that for any group I' (with discrete topology), its K (T, 1)-space is defined
to be a connected CW-space such that

(KT, 1) =T, m(K([T,1)={1}, i>2.

Then it is known that _ _
H'(T,R) = H'(K(T,1),R). (5.1.2)

Since it is often difficult to compute H*(T', R) directly from the definition, it is
crucial to find a good model of K (T, 1).

If T acts freely on some contractible space Y, then T'\Y is a K(T', 1)-space.

Assume that I is a torsion free discrete subgroup of a connected semisimple Lie
group G. Let K be a maximal compact subgroup of G, and X = G/K the associ-
ated symmetric space of noncompact type, which is diffeomorphic to a Euclidean
space and hence contractible. Then G acts on X by the left multiplication, and
the stabilizer in G of every point in X is a compact subgroup of GG. This implies
that T\ X is a K (T, 1)-space.

In the case under consideration, G(k,) is a non-archimedean Lie group, and
there is more than one conjugacy class of maximal compact subgroups K; and for
each of them, the quotient G(k,)/K is certainly not contractible. On the other
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hand, the Bruhat-Tits building ABT(G) is a contractible simplicial complex, and
G (ky) acts simplicially on it such that the stabilizer in G(k,) of every point is a
compact subgroup. By assumption, I' is a disctere, cocompact subgroup of G(ky).
This implies that I' acts freely on ABT(G) if T' is torsion free and discrete, and
hence I'\ABT(G) is a K (T, 1)-space. Furthermore, since the quotient of ABT(G)
by G(ky) consists of a closed chamber, it follows that I'\AP?(G) is a finite CW-
complex, which gives a so-called finite K (T, 1)-space.

So the conjecture of Serre is reduced to proving vanishing of H*(I'\ABT(G),R),
0 < i < r. In [Garl], Garland introduced a scalar product on the finite dimensional
cochain complex, and the associated Laplace operator and hence the harmonic co-
cycles. The analogue of the Hodge decomposition shows that H*(I'\AZT(G),R)
is isomorphic to the space of harmonic cocycles. The vanishing of these har-
monic cocycles depends on lower bounds of eigenvalues of certain quadratic forms.
This approach was suggested by the modification of the Bochner identity by Mat-
sushima in [Matl]. Since a corresponding quadratic form in [Matl] depends on
the curvature operator of the symmetric space, Garland called his operator p-adic
curvature.

5.2 Super-rigidity and harmonic maps into Euclidean build-
ings

There have been several important generalizations of the Mostow strong rigidity.
One is the Margulis super-rigidity [Mar], and another is for more general, not
necessarily locally symmetric spaces by the approach of using harmonic maps and
Bochner type formulas, which was initially suggested by S.T.Yau [Yaul, p. 37]
to study both rigidity of discrete subgroups and complex structures of certain
manifolds.

In fact, the Mostow rigidity was used by Yau to prove his rigidity of complex
structures on CP? as a corollary of his celebrated solution of Calabi’s conjecture
[Yaud, Theorem 6].

Theorem 5.2.1. Let N be a compact quotient of the unit ball in C? by a (uniform)
lattice in SU(1,2). Then any complex surface homotopy equivalent to N preserving
the canonical orientations induced from the complex structures is biholomorphic to
N.

In the proof of this theorem, the Mostow strong rigidity was used. This is the
first instance where the Mostow rigidity for locally symmetric spaces is combined
with the rigidity of complex structures of Kahler manifolds (see also [Yau4, Remark
after Theorem 5] on rigidity of the complex structure of CP"™).

Motivated by these results, Yau suggested the idea of using harmonic maps to
study both the rigidity of discrete subgroups and the rigidity of complex structures
of Kéhler manifolds with negative curvature [Yaul, p. 37] [Yau3] [JY3]. In [Siu2]
[Siul], Siu carried out this approach for the rigidity of the complex structures with
a slightly stronger condition on negativity of the curvature.

The Siu-Yau method of using harmonic maps is very elegant and has also
turned out to be extremely powerful for both Mostow type rigidity of lattices
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of Lie groups and the rigidity of geometric structures (see [JY1] [JY3] [MSY]
[Mok1] [Mok2] and the references there). In fact, it can be used to reprove the
Mostow strong rigidity and the Margulis super-rigidity in many cases ([MSY] [JY1]
[JZ]). More importantly, it can be used to prove new cases of super-rigidity, i.e.,
the super-rigidity of lattices acting on the quaternionic hyperbolic spaces and
the Cayley hyperbolic plane, which can not be proved by other methods. More
specifically, Corlette proved the archimedean super-rigidity of such lattices in [Co],
and Gromov and Schoen developed a theory of harmonic maps to the Bruhat-Tits
buildings and used it to prove the non-archimedean super-rigidity of these lattices
in [GS].

Remark 5.2.2. The generalization of the Mostow strong rigidity to p-adic Lie
groups and lattices is given in [Pr2]. Another generalization of rigidity for lattices
in PGL(d, k), where k is a local non-Archimedean field, is given in [Berl]. A
generalization to graphs, in particular to quotients of Bruhat-Tits trees, of the
entropy rigidity of rank 1 locally symmetric spaces in [BCG1] is given in [Lim].

Remark 5.2.3. Some other versions of rigidity of lattices in PU(1, 2), for example,
the super-rigidity of lattices satisfying some cohomological conditions and integral-
ity of lattice subgroups, are given in [Kligl] and [Yel] [Ye2]. More precisely, let
G C GL(n) be an algebraic group defined over Q. A subgroup I' C G(R) is called
integral if it contains a subgroup I" of finite index such that IV € G(Q)NGL(n,Z).
If I is also of finite index in G(Q) N GL(n,Z), then I is an arithmetic subgroup.
The symmetric space of noncompact type X = PU(1,2)/U(2) can be identified
with the complex unit ball BZ in C2. One result in [Yel] says that if a ball quotient
I'\BZ has the first Betti number equal to 1 and the Picard number equal to 1,
then T is integral. Under other conditions, the results in [Ye2] and [Kligl] show
that I' is arithmetic. In the proofs of these results, Bruhat-Tits buildings played
an important role. See also [PYel] [PYe3] [CaS1] for applications of Bruhat-Tits
buildings in classifying fake projective planes, where a fake projective plane is a
smooth compact complex surface which is not the complex projective plane but
has the same first and second Betti numbers as the complex projective plane. See
also [PYe2] for related results on fake P* spaces.

Remark 5.2.4. The idea of using harmonic maps is very fruitful. Besides the
applications in [Co] and [GS], it has also been used by Sampson [Sa], Simpson
[Sim], Carlson-Toledo [CT] and others. As well-known, the Mostow strong rigidity
fails for hyperbolic Riemann surfaces. On the other hand, the theory of harmonic
maps between Riemann surfaces of negative curvature developed by Schoen and
Yau [SY] [Yau3] has been very useful in studying the Teichmiiller spaces and
related problems [Woll] [Wol2] [Ru] [DDW].

In this subsection, we briefly discuss the results in [Co] and [GS]. First, the
Mostow strong rigidity in Theorem 3.4.1 can be restated as follows.

Proposition 5.2.5. Let G, G’ be two connected semisimple Lie groups with trivial
center and mo compact simple factors. Suppose that ' C G, IV C G’ are uniform
lattices, T is irreducible. Suppose furthermore that if G is of rank one, then G is not
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equal to SL(2,R), or equivalently diim G > 4. Then any isomorphism 7w : T — T
extends to an isomorphism 7 : G — G'.

The super-rigidity removes the assumption that the image 7 (I") is a uniform
lattice in G’ [Zi, Theorem 5.1.2] [Mar, Theorems 2 and 3, pp. 2-3].

Theorem 5.2.6. Let G be a connected linear semisimple algebraic group defined
over R with R-rank at least 2. Assume that the identity component G(R)® has
no compact factors. Suppose that ky, is a local field of characteristic 0, and H
a connected linear algebraic group defined and simple over k,. Assume that 7 :
I' - H(ky) is a homomorphism with w(T') Zariski dense in H. Then one of the
following alternatives hold:

1. If ky =R and H(R) is not compact, then © extends to a rational homomor-
phism G — H defined over R.

2. If ky, = C, then either (a) the closure of ©(T') in the ordinary topology is
compact, or (b) w extends to a rational homomorphism 7 : G — H.

3. If ky is totally disconnected (i.e., non-archimedean), then m(I') is bounded
in H(ky) , i.e., its closure with respect to the natural Hausdorff topology of
H(ky) is compact.

An important consequence of this theorem is the celebrated arithmeticity the-
orem of irreducible lattices of rank 2 (see [Zi, Theorem 6.1.2] [Mar, Theorem 1,
p. 2, Theorem (1’), p. 4]), which together with a result of Prasad [Pr3] show
that Proposition 5.2.5 holds when T',T" are only assumed to be lattices, but not
necessarily co-compact. It should be pointed out that if G(R) is the real locus of a
linear connected semisimple algebraic group defined over R and G has no compact
simple factors, then the Borel density [Zi, Theorem 3.2.5] says that any lattice T’
in G(R) is Zariski dense in G, i.e., ' is dense in G with respect to the Zariski
topology. So the assumption on the Zariski density in Theorem 5.2.6 is natural.

Since the strong Mostow rigidity in Proposition 5.2.5 holds in the rank one
case with one exception, it is natural to ask if the super-rigidity holds for lattices
in some rank one Lie groups as well.

According to the classification of symmetric spaces of (R-)rank 1 (see [Mos,
§19]), there are four types:

1. the real hyperbolic spaces HE = SO°(1,n)/SO(n), n > 2;

2. the complex hyperbolic spaces HE = SU(1,n)/U(n), n > 2;

3. the quaternionic hyperbolic spaces Hj} = Sp(1,n)/Sp(n), n > 2;
4. the (exceptional) Cayley hyperbolic plane H3 = Fy(—20)/Spin(9).

It is known [Co, p.166] that the super-rigidity for lattices I' acting on the real
and complex hyperbolic spaces, I' € SO°(1,n) or SU(1,n), does not hold due
to existence of non-arithmetic lattices. In [Co], it is shown that the archimedean
super-rigidity, i.e., k, = R,C, holds for lattices in Sp(1,n) and Fy_zg). It uses
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the method of harmonic maps initiated in [Si2] (see [JY1] for a survey of the
Bochner-Matsushima type formulas and [Mat1] [Ye3]).

The proof of the Mostow strong rigidity theorem using harmonic maps goes in
two steps:

1. Let ¢ be the map in the Equation 3.4.1. Using the nonpositive curvature
of the target manifold, show that there exists a unique harmonic map ¥ :
X — I'\X' in the homotopy equivalence class of the map .

2. Using a Bochner type formula, show the vanishing of certain derivatives of
¥ and hence that W is totally geodesic, which in turn implies that ¥ is an
isometry up to suitable scaling.

Since the harmonic map ¥ is deformed from ¢ (or rather the equivariant quasi-
isometry (), this gives explicitly an isomorphism between the Lie groups G and
G’ in Theorem 3.4.1. The arguments in the other cases are similar, replacing the
harmonic maps between I'\X and I'\ X’ by equivariant maps. We briefly outline
the arguments in [Co|] and indicate where the assumption that the Lie groups are
Sp(1,n) or Fy_s) is used.

Let G = Sp(1,n) or Fy_sg), and I' C G a lattice. Let G’ be a simple noncom-
pact Lie group with trivial center, and p : ' — G’ a homomorphism with a Zariski
dense image. We need to show that p extends to a homorphism p : G — G’. There
are three steps:

1. There is a finite-energy, p-equivariant map from X = G/K to X' = G'/K’,
where K C G and K’ C G’ are maximal compact subgroups.

2. Show that the finite-energy equivariant map can be modified into a finite-
energy p-equivariant harmonic map f: X — X'.

3. On X, there exists a parallel differential form w such that its annihilator in
End(T,X) consists of only skew-symmetric endomorphisms, where T,X is
the tangent space to X at o € X.

4. The harmonic map f is totally geodesic and the Zariski density of the image
of T implies that f is an isometry between X and X', which in turn implies
that p extends to a homomorphism from G to G'.

Step (1) follows from [Co, Proposition 2.3] and depends on the fact that the
root spaces have sufficiently large dimensions, which is satisfied by Sp(1,n) and
Fy(_20). Step (2) is given in [Co, Theorem 2.1] and works for other groups as well.
Step (3) is proved in [Co, Propositions 1.2 and 1.4], and also works for some other
higher rank groups [Co, p. 166]. Step (4) is given in [Co, Proposition 3.3] and
depends crucially on Step (3) and a new Bochner-type formula, i.e., D*(df Aw) =0
in [Co, Theorem 3.2].

The arguments in [GS] are similar to the arguments in [Co| once the theory
of harmonic maps into Euclidean buildings (or rather F-connected complexes) is
established. We indicate briefly why in this case the image of the representation
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of T is bounded, while in [Co], the representation of I" extends to a isomorphism
of the Lie group and hence the image is clearly not bounded.

In fact, let G = Sp(1,n) or Fy_s) and I' C G a lattice as above, and G’
be an almost simple algebraic group defined over a non-archimedean local field
ky,. Let p: I' = G’(ky) be a homomorphism. Then we need to show the image
p(T') is a bounded subgroup in G'(ky). Let ABT(G’) be the Bruhat-Tits building
associated with G’ (or rather to its simply connected covering group) in §4.2.

The proof in [GS] follows several steps:

1. The homomorphism p induces a finite-energy Lipschitz p-equivariant map
from X = G/K to ABT(G").

2. There is a finite-energy Lipschitz p-equivariant map of least energy v : X —
ABT(G') whose restriction to small balls at any point is also minimizing,
which implies that u is a harmonic map.

3. The map u is called differentiable (or non-singular) at a point p € X if
the local images of u around p are contained in an apartment of ABT(G/).
Show that the set of singular points of v has Hausdorff dimension at most
dim X — 2.

4. Show that the harmonic map w is constant around the differentiable points
and is hence constant.

5. Let p be the unique point in the image u(X). Then the image p(T') is
contained in the stabilizer in G/(k,) of the point p € ABT(G’), and is hence
contained in a parahoric subgroup of G’(k,), which is a bounded subgroup.

Step (1) is proved in [GS, Lemma 8.1] and uses dim X > 8. Step (2) is proved
in [GS, Theorem 7.1]. Step (3) is proved in [GS, Theorem 6.4], which works for
more general F-connected complexes.

Step (4) is given in [GS, Theorem 7.4] and is a new feature not present in [Co.
In fact, since the local image is contained in an apartment which can be identified
with R", where 7 is the ky-rank of G’, the coordinates of the harmonic map u give
parallel 1-forms. If they are not zero, they will give local isometric splitting of
X with R as a factor. Since this is impossible, it implies that v must be locally
constant.

Remark 5.2.7. The philosophical differences between the original approach of
Mostow and the approach here are interesting. In the former case, the quasi-
isometry ¢, the lift of 1, is pushed to infinity in X and X’ to get precise maps,
i.e., an isomorphism of the spherical Tits buildings, and a homeomorphism of the
maximal Furstenberg boundaries. On the other hand, in the latter case, the quasi-
isometry ¢ is deformed locally into an isometry via the theory of harmonic maps.
In a sense, the former is a global argument, and the latter is local and does not
depend on the theory of spherical Tits buildings. It is also instructive to point out
that the idea in §4 is to scale down or shrink symmetric spaces infinitely to get
R-Euclidean buildings. This is another type of global geometry. These remarks
confirm the point of view that buildings reflect the global geometry in more than
one way.
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Remark 5.2.8. After the success of [GS] in applying the theory of harmonic
maps into Euclidean buildings, the theory has been generalized to CAT(0)-metric
spaces. See [KS1] [KS2] [Jo3] [Ball] [JZ].

Remark 5.2.9. The Mostow strong rigidity deals with uniform lattices in semisim-
ple Lie groups. Its generalization to lattices in semisimple p-adic Lie groups is given
by Prasad in [Pr2]. The proof followed the method of [Mos1]. Instead of realizing
the spherical Tits building using the geometry at infinity of the symmetric spaces
of noncompact type, Euclidean buildings were used to obtain spherical buildings
at infinity, which will be explained in the next subsection.

Remark 5.2.10. In [Mar], lattice subgroups in products of real and p-adic groups,
in particular, S-arithmetic subgroups, are studied, and hence the archimedean
and non-archimedean places are studied at the same time. Basically, irreducible
S-arithmetic subgroups of semisimple algebraic groups of total rank greater than
or equal to 2 are super-rigid.

Remark 5.2.11. There is also a version of Mostow strong rigidity for non-
Archimedean uniformization in [IsK].

5.3 Applications to S-arithmetic groups

In this subsection, we briefly recall two applications of the Bruhat-Tits buildings
to S-arithmetic groups. The first concerns the cohomology groups, and the second
one the integral Novikov conjectures.

First we define S-arithmetic subgroups. Let k£ be a global field, i.e., either a
number field, a finite extension of QQ, or the function field of a smooth projective
curve over a finite field, for example [F,,(t), where p is a prime.

Let S be a finite set of places of k including the set S, of all infinite places.
Let Sy = S — S« be the subset of finite places. For each finite place p, let v, be
the corresponding valuation. Define the ring Og of S-integers in k by

Os={ze€k]|vy(x)>0,p&S}.

Let G C GL(n) be a linear algebraic group defined over k. A subgroup I' of
G(k) is called an S-arithmetic subgroup if it is commensurable with G(Og) =
G(k) N GL(n, k).

Assume that G is semisimple. Then I' is a co-finite discrete subgroup in

GS = H G(kp)v

peS

where for p € Sy, k;, is the completion of k with respect to the norm associated
with the valuation vy, and for p € S, k;, is the completion of k with respect to
the associated archmedean norm. It is also known that I' is uniform if and only if
the k-rank r of G is equal to 0.

Proposition 5.3.1. (1) When k is a number field, any S-arithmetic subgroup T’
admits a torsion free subgroup of finite index. (2) When k is a function field, if
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the rank r = 0, any S-arithmetic subgroup admits a torsion free subgroup of finite
index; on the other hand, if the rank r > 0, I' does not admit any torsion free
subgroup of finite index.

(1) is proved in [Se2, p. 126, (a3)] (see also [Brl, p. 196]). The first part of (2)
is proved in [Se2, p. 126, Case (b)]. The second part follows from the fact that
any subgroup of finite index of I' contains unipotent elements which are torsion
since the characteristic of k is positive.

An important ingredient in studying cohomology groups and related cohomo-
logical finiteness of discrete subgroups I' is finding or constructing good models of
K(T',1)-spaces (see [Br3])

Remark 5.3.2. In Proposition 5.3.1, when the rank r = 0, S-arithmetic sub-
groups of algebraic groups over functions fields are torsion-free and their infinite
index torsion-free subgroups admit finite classifying spaces. In the rank r > 0,
they do not admit tosion-free finite index subgroups and hence do not admit any
finite classifying spaces, or even finite dimensional classifying spaces.

Recall that a group I is said to be of type F,, if it admits a classifying space
with finite m-skeleton. The finiteness length of I' is the largest integer m such
that T is of type Fi,.

For S-arithmetic subgroups of algebraic groups over function fields of posi-
tive rank, an important problem is to determine the finiteness length. A lot of
important work has been done recently. See [BuGW1] [BuGW2] [BuW] [Bux]
[Abel] [Abe2] [Abrl] [Abr2] for precise statements of results and a history of and
references on this problem.

From now on, we assume that G is semisimple. When S = S, I' is an
arithmetic subgroup, and Gy is a Lie group. Let X, = Gg/K be the associated
symmetric space of noncompact type. Then I" acts properly on X,. If ' is torsion
free, then T\ X, is a K (T, 1)-space.

Otherwise, for every p € Sy, let X, be the Bruhat-Tits building of G when
considered as an algebraic group defined over k,. Denote the symmetric space
associated with So, by X, as before. Set

Xg = Xoo ¥ H X,
peSy

Then T' acts properly on Xg, and hence the stabilizer in I" of any point in Xg is
finite. If I' is torsion free, then I' acts freely on Xg. Since X, and each X, is
contractible, this implies that I'\ Xg is a K (T, 1)-space in this case.

When the rank » > 0, I'\ Xg is not compact and hence is not a finite CW-
complex, i.e., not a finite K (I", 1)-space. If k is a number field, we can enlarge Xg
to

Xo =% % [ Xos
peS;

—BS . . .
where X~ is the Borel-Serre partial compactification in §2.12. (We can use the
functor of restriction of scalars to replace G by an algebraic group defined over Q so
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. . . ~BS .
that the construction in §2.12 applies). Then I'\ X g~ is compact and can be shown

. . . . ~BS
to have the structure of finite CW-complex. Since the inclusion I'\Xg — I'\ X ¢
is a homotopy equivalence, this gives a concrete finite K (I", 1)-space.

The I'-action on Xg and Y?S and their quotients have played an important and
fundamental role in understanding cohomology groups and other related finiteness
properties of I'. The compactification APT(G) U A(G) discussed in the previous
subsection is also crucial in such applications, which are discussed in great detail in
surveys [Se2] [Brl, Chap. VII] [Ro2, §10] [RS] (see also the original paper [BoS1]).

Remark 5.3.3. Cohomological finiteness properties of S-arithmetic subgroups of
algebraic groups defined over a global field depend in an essential way on whether
the field is a number field or a function field, i.e., the function field of a smooth
curve over a finite field. In the latter case, the many different kinds of cohomo-
logical finiteness properties of S-arithmetic subgroups are not well understood.
See [Abel] [Abe2] [AbA] [Behl] [Beh2] [Bux| and [Brl, Chap. VII, §4]. In all
these works, actions on Bruhat-Tits buildings or suitable subcomplexes play an
important role.

Remark 5.3.4. As we pointed out in Remark 4.3.5, the boundary A(G) in the
compactification APT(G) U A(G) is a topological spherical Tits building rather
than a usual spherical Tits building. Besides the application to the problem of
rank rigidity and the rigidity of isoparametric submanifolds, this also confirms
our point of view that in applications to geometry and topology, the topological
buildings are more natural.

In the rest of this subsection, we discuss an application to the integral Novikov
conjectures for S-arithmetic subgroups T'.

To explain this, we start with the original Novikov conjecture on the homotopy
invariance of higher signatures (see [FRR] for precise statements and history of
the Novikov conjectures). The Hirzebruch index theorem says that the signature
of a compact oriented manifold M of dimension 4n is equal to the evaluation of
the Hirzebruch class £j; on the fundamental class, which implies that the latter
is an oriented homotopy invariant. Novikov introduced higher signatures by the
evaluation of £; cupped with some cohomology classes pulled back from a K (7, 1)-
space, where m = 71 (M), which are called higher signatures, and conjectured that
they are homotopy invariant.

This original Novikov conjecture is equivalent to the rational injectivity of the
assembly map in the surgery (or L-) theory, and the (integral) injectivity of the
assembly map in the L-theory is called the integral Novikov conjecture, which
is an important step towards computing the L-groups, the image groups of the
assembly map. Similarly, there are also assembly maps for the (topological) K-
groups of C*-algebras, in particular the reduced group C*-algebras which are the
£2-completions of group algebras C[I'] of groups I, and for the algebraic K-groups
of the group ring Z[I'] of groups I'. In each theory, the rational injectivity of the
assembly map is called the Novikov conjecture, and the injectivity of the assembly
map is called the integral Novikov conjecture in that theory.
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A particularly interesting class of groups I' with discrete topology is the class
of discrete subgroups of Lie groups. For torsion free arithmetic subgroups I' of
linear algebraic groups, the integral Novikov conjectures were proved in [J2] by
showing that arithmetic subgroups have finite asymptotic dimension (see [J2] for a
brief history about the integral Novikov conjectures for such discrete subgroups).
It should be emphasized that the torsion free assumption is in general necessary
for the integral Novikov conjectures.

The next natural and important class of groups is the class of S-arithmetic
subgroups of linear algebraic groups defined over global fields. They are in general
not contained in real Lie groups as discrete subgroups.

To prove the integral Novikov conjecture for them, we use the following general
result of Carlsson and Pedersen [CP].

Proposition 5.3.5. Suppose that T' has o finite K(T',1)-space, denoted by BT,
and the universal cover ET of BI" has a contractible, metrizable I'-compactification
ET such that the action of ' on ET is small at infinity. Then the integral Novikov
conjecture holds for T.

In the above proposition, by a small action at infinity we mean that for any
compact subset K C ET, if g;K has an accumulation near z € JET, then the
whole set g; K is contained in small neighborhoods of z.

A typical example is when I' is the fundamental group of a closed nonpositively
curved manifold M. Then we can take BI' = M, and ET the universal covering
M. Since M is a Hadamard manifold, it admits the geodesic compactification
M U M (o0), and the T-action on M is small.

As discussed before, for a torsion free S-arithmetic subgroup I' of a connected
linear semisimple algebraic group defined over a global field k, we can take I'\ X g
to be a not necessarily finite BI'. When the rank r is equal to zero, it can be shown
to be a finite K (I',1)-space. Now ET' = Xg. Since X, is nonpositively curved
and hence a complete CAT(0)-space, and each Bruhat-Tits building X, is also
a complete CAT(0)-space, this follows that Xg is a complete CAT(0)-space. By
Proposition 3.5.2 and Proposition 4.3.3, Xg admits a contractible compactification
Xs U Xg(00). Since I' acts on the interior Xg with a compact quotient and the
compactification Xg U Xg(00) is defined in terms of equivalence classes of rays, it
can be shown easily that the extended action on Xg U Xg(00) is small at infinity.
By Proposition 5.3.5, we obtain the following result [J1].

Proposition 5.3.6. If the rank r of a semisimple linear algebraic group G over
k is equal to zero, then the integral Novikov conjecture in K-theory and L-theory
holds for any torsion free S-arithmetic subgroup of G.

Perhaps it should be pointed out that the existence of a finite or even finite-
dimensional BI' implies that T' is torsion free. By the earlier discussions in this
subsection, when k is a function field, torsion free S-arithmetic subgroups exist
only in the case when the rank r = 0, and hence the result in the proposition is
optimal in this case.

On the other hand, when k is a number field, the assumption that r = 0 might
be removed. But the general method in Proposition 5.3.5 can not be applied
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directly. In fact, when » > 0, we can take the compactification F\Y?S as a
~BS
finite K(T',1)-space and Xg as ET. To apply Proposition 5.3.5, we need to

construct a small compactification of the partial compactification Y?S. This does
not seem to be possible. We need a generalized version of Proposition 5.3.5 by
Carlsson-Pedersen with weaker conditions on ET. See [Gol] for the statement
of this result and an application to arithmetic subgroups of R-rank 1 semisimple
algebraic groups.

Remarks 5.3.7. After a preliminary version of this paper was written, the author
has proved a generalized integral Novikov conjecture in both L- and K-theories for
all S-arithmetic subgroups, which may contain torsion elements, of G of rank » = 0
over a global field k (see [J1]), using the method in [Rose].

It is also recently proved in [J4] that all torsion-free S-arithmetic groups I' of
a semisimple linear algebraic group G over a number field k, without the rank
zero restriction, has finite asymptotic dimension and finite BI'-spaces; hence the
integral Novikov conjecture in both L- and K-theories holds for them. It is not
known if the generalized integral Novikov conjecture holds if the S-arithmetic
groups contain torsion elements.

5.4 Applications to harmonic analysis and representation
theories

For semisimple algebraic groups G over local fields F', construction of the Bruhat-
Tits building AP (G) is only part of the Bruhat-Tits theory for G, which describes
in detail various subgroups and decompositions and associated integral algebraic
group schemes. In fact, the geometry of the Bruhat-Tits buildings allows one to
construct various filtrations of subgroups and to understand geometrically (or visu-
ally) and better relations between these subgroups subgroups. These structures on
subgroups of G(F), their subgroups and the associated algebraic group schemes
are fundamental to harmonic analysis and representation theory of G(F'). To
summarize, the Bruhat-Tits theory is about structure and properties of semisimple
(or more general) reductive algebraic groups G over local fields, their subgroups
and related integral algebraic schemes, while the Bruhat-Tits building is only the
underlying geometric or topological part of the Bruhat-Tits theory.

One important difference between the Bruhat-Tits building ABT(A) and the
spherical Tits building A(G) of a semisimple algebraic group over a field k is that
A(G) gives a reformulation of structures and properties of parabolic subgroups of
G defined over k. But structures and properties of subgroups of G(F') over local
fields are developed simultaneously with the Bruhat-Tits building AT (G). In
this sense, the Bruhat-Tits building is an integral part of the Bruhat-Tits theory.

There are many applications of the Bruhat-Tits theory, in particular the Bruhat-
Tits building to harmonic analysis and representation theories. See [Yu2] for a
survey and introduction to the Bruhat-Tits theory, [Yul] for an explicit introduc-
tion to the Bruhat-Tits theory, [Ra] for an explicit description of the Bruhat-Tits
building of a simply connected Chevalley group and application to classification of
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depth-zero super-cuspidal representations, and the book [Mal] on spherical har-
monic analysis on p-adic groups and [Ma2] for related affine Hecke algebras.

Due to lack of knowledge of the author, we will make a list of applications with
references.

10.

11.

12.

The Prasad-Moy filtration of parahoric subgroups of reductive algebraic
groups over local fields and existence of refined minimal type via the filtration
for irreducible admissible representation of G(F) [MP1], and classification
of depth zero representation [MP2].

Constructing and understanding representation of G(F') via sheaves and
cohomology theories of the Bruhat-Tits building APT(G) [SS1].

Relations to p-adic symmetric spaces, and the role of the Bruhat-Tits build-
ings in understanding cohomology of Drinfeld’s generalized upper halfplane
and its quotients by cocompact discrete groups [SS2], and applications to
representation theories of p-adic groups.

Proof of Howe’s conjecture on restriction of invariant distributions on the
Hecke algebra using the geodesic convexity of the displacement function on
the Bruhat-Tits building, which is related to the fact that the Bruhat-Tits
building is a CAT(0)-space [BaM] [Moy].

Construction and completeness of supercuspidal representations [Yu3] [Kim]
and other properties of supercuspidal representations [DeR1] [DeR2] [HaM].

Parametrization of nilpotent orbits [Del] and of conjugacy classes of maximal
unramified tori [De3] via the Bruhat-Tits theory. See also [De2]. The papers
[Ded] [Deb] give more expository discussions of these results.

Expansion of the character of an irreducible admissible representation [KiM]
and expansion of orbital integral [Rog].

Good orbital integrals in Lie algebra and lifting of the Fundamental Lemma
[CuH].

Formulation and proof of a conjecture on duality for representations of p-adic
and finite reductive groups [Vig].

Topological central extensions of semisimple groups over local fields [PrR1]
[PrR2], which motivated the Moy-Prasad filtration in [MP1].

Computing the volume of S-arithmetic quotients of semisimple algebraic
groups [Prl].

Application to Hasse principle and computation of Shafarevich-Tate group
[Gil].
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Some other results on Bruhat-Tits buildings motivated by the representation
theories are contained in [PYu] [KM].

Another application of Bruhat-Tits buildings to representation theory is given
in [Gal]. Let G be a complex semisimple group, and G" be the Langlands dual of
G. Then the character of finite dimensional highest weight irreducible modules of
GV can be expressed in terms of galleries of the Bruhat-Tits building of the loop
group G(C(())).

Bruhat-Tits buildings have also been used in generalizations of the classical
Horn problem on eigenvalues of Hermitian matrices. Let A, B and C be three
Hermitian matrices satisfying the equation C = A + B. If A, B commute, then
it is clear that the eigenvalues of C' are equal to the sum of eigenvalues of A
and B. Otherwise, the eigenvalues of C' are bounded by linear inequalities of the
eigenvalues of A and B. The Horn problem is to find a minimal set of explicit
inequalities for the eigenvalues of C'. This problem turned out to be related to many
other problems in geometric invariant theory, Schubert calculus, representation
theories, and geometry of symmetric spaces and Bruhat-Tits buildings. For an
introduction of this problem and related results, see [Ful].

Hermitian matrices are points of the symmetric space GL(n,C)/U(n), and
the Horn problem and related problem for weights of tensor products of finite
dimensional highest weight representations can be generalized to other reductive
groups, and they are also related to the geometry of triangles in symmetric spaces
and Bruhat-Tits buildings. For some references on this problems after the paper
of [Fu], see [HaKM] [KaLM1] [KaLM2] [BelP1] [BelP2] [Res] [Ram)].

6 R-trees and R-buildings

The Bruhat-Tits buildings of semisimple algebraic groups defined over local fields
are simplicial complexes and locally compact. In this section, we recall R-trees and
R-Euclidean buildings. They are analogues of the Bruhat-Tits buildings for alge-
braic groups over fields with non-discrete valuations but not simplicial complexes
or locally compact topological spaces. They also arise naturally in the study of
global geometry of symmetric spaces of noncompact type and the Euclidean build-
ings. In fact, R-trees have been used crucially in reproofs of some fundamental
results of Thurston’s geometrization program of three dimensional manifolds [Th1]
[Th2] [Th2], and R-Euclidean buildings were used to prove the Margulis conjecture
on quasi-flats in symmetric spaces [KL2].

First we discuss R-trees as metric spaces. Then we show how to construct
them from A-valued metric spaces, where A is an ordered abelian group contained
in R, and SL(2, F) where F is a field with non-discrete valuation. R-trees have
many applications in topology, and we mention only one sample result from [MS2].
R-Euclidean buildings are more complicated and can not be easily described in
terms of BN-pairs; and we follow the method in [BT1, §7.4] to construct them for
algebraic groups. Finally we consider their applications to quasi-isometric rigidity
of symmetric spaces.
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6.1 Definition of R-trees and basic properties

R-trees were first introduced by Tits [Ti2], and a self-contained description was
given in [MS1]. Surveys about R-trees and their applications are given in [Mor1]
[Shn]. We will recall some applications in the next subsection.

Definition 6.1.1. A metric space (T, d) is called an R-tree if every pair of points
p,q € M is connected by a unique arc ¢ : [0,€] — M, where £ = d(p,q), such that
(1) ¢(0) = p, ¢(£) = q; (2) the map c is an isometric embedding.

The image of ¢ in T is called a segment. Clearly, if two segments c1, co only
intersect at one end point, their union is also a segment. The intersection of any
two segments is either a point or a segment. These properties characterize R-trees
among geodesic metric spaces.

Roughly speaking, R-trees have two characteristic properties: (1) they are 1-
dimensional, (2) they don’t contain any loops.

A usual (simplicial) tree with a linear distance function on every edge is clearly
a R-tree. To explain the difference between simplicial trees and general R-trees,
we note if we normalize the edge lengths of a simplicial tree to be equal to 1, then
the set of vertices (or nodes or branch points) of the tree is a discrete subset. On
the other hand, in a general R-tree which arises in topology and geometry, the set
of branch points is dense or even equal to the whole tree.

Since R-trees are not 1-dimensional simplicial complexes in general, we could
not completely describe them usually by specifying vertices and edges between
them. On the other hand, we can start with specifying the collection of vertices
and a distance on them which measures the lengths of the edges connecting them
and hence determines the edges in some sense.

To make this more precise and rigorous, we briefly recall the construction of
R-trees [MS1]. Let A be an ordered abelian group, for example, R, Z and Q.

Definition 6.1.2. A A-metric space is a pair (X,d), where X is a set and d is
a function d : X x X — A satisfying the following conditions: for all xz,y,z € X,
(1) d(z,5) > 0, (2) d(z,y) = 0 if and only if z = y, (3) d(x,y) = d(y, ), and (4)
d(z,z) <d(z,y) + d(y, z).

Clearly, A is a A-metric space with the metric d(z,y) = max(z —y,y — z). A
closed segment in a A-metric space is a subset in X isometric to a closed interval
[)\1,)\2] = {/\ cA | A <A< /\2}

Then a A-tree is defined to be a A-metric space (T, d) satisfying the following
conditions:

1. Every two points in T are the end points of a unique closed segment;

2. if two closed segments in T" have a common endpoint, then their intersection
is a closed segment;

3. for a,b,c € A with a < ¢ <b, if pu: [a,b] — T is a map such that py,  and
plpp,q are parametrized segments and p([a, c]) N p([c, b]) = {p(c)}, then u is
a parametrized segment.
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When A = R, (2) is automatically satisfied [MS1, Lemma II.1.1], and (3)
corresponds to the condition of containing no loops, and hence an R-tree defined
here is also an R-tree in the sense defined earlier.

When A is a subgroup of R, then we can take a A-tree as the set of vertices
and fill in suitable edges to get an R-tree [MS1, Theorem I1.1.9].

Proposition 6.1.3. Assume that A C R. Then every A-tree T' can be embedded
isometrically in a unique R-tree Ty such that (a) Tr is a complete metric space,
(b) the union of all closed segments in T with endpoints in T is a dense subset of
Tr. If A is dense in R, then T is dense in Tg. If A is discrete and generated by
>0, then Tr can be identified with a simplicial tree whose set of vertices is equal
to T and whose edges have a common length .

If A is a dense subset of R, this proposition may give an R-tree which is not a
simplicial tree. To illustrate this, let F' = @ be the algebraic closure of the p-adic
field, where p > 2 is a prime number. The discrete valuation of Q, extends to a
non-discrete valuation of F'. Let A be the subgroup of R generated by the values
of this valuation. Let O be the valuation ring of F'. Then there there is a A-tree
T associated to the simple algebraic group SL(2, F) [MSL, II. 3] (see [Mor4] also
for the higher dimensional case).

In fact, a lattice in F? is a finitely generated O-module in F? which spans F?2.
Two lattices are called equivalent if one is the multiple of another by a nonzero
element of F'. Then points of the A-tree are given by equivalence classes of lattices
in F2. To define a distance between any two such equivalence classes, we note that
for any two lattices L and L, there exists a unique lattice L{, which is equivalent
to L’ and contained in L such that L/L{ is isomorphic to O/BO for some 5 € O
[MS1, Proposition 11.3.5]. Then the distance between the equivalence classes [L]
and [L'] is equal to the valuation of S.

On the other hand, simplicial trees also arise from the construction in this
proposition. For example, take the A-metric space T to be equal to A. Then the
associated R-tree is equal to R.

As will be seen later, R-trees also occur naturally as limit objects in topology
and geometry.

6.2 Applications of R-trees in topology

The original application of the theory of R-trees [MS1] is to give an alternative
proof of compactness of the space of hyperbolic structures of certain three dimen-
sional manifolds in [Thul] (see Theorem 6.2.2 below), which plays an important
role in Thurston’s geometrization program (Theorem 6.2.1). This theory has also
been used in many other problems in topology and geometry.

Let ' be a torsion free finitely generated group. An n-dimensional hyperbolic
structure on I' is a pair (N, ) such that N is an n-dimensional hyperbolic manifold
and ¢ : I' — 71 (V) is an isomorphism. Each hyperbolic structure corresponds to
a faithful representation p : I' — SO°(1,n) with discrete image.

Two hyperbolic structures (N1, 1) and (Na,@2) on I' are equivalent if there
is an isometry between N7, No which commutes with the isomorphisms ¢, po.
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Two representations pi, p2 of I in SO°(1,n) are equivalent if and only if they are
conjugate. This implies that the set H"™(T") of equivalence classes of hyperbolic
structures on I' is naturally identified with the set of conjugacy classes of faithful
representations of I' in SO°(1,n) with discrete images. This identification gives a
natural topology on H™(T).

If T is the fundamental group of an n-dimensional hyperbolic manifold M of
finite volume with n > 3, then the Mostow strong rigidity (Theorem 3.4.1) implies
the hyperbolic structure on M is unique and H"(T') consists of only one point. In
particular, H™(T') is compact. Hence, the compactness of H™(T") is a weak version
of the Mostow rigidity.

It is well-known that for n = 2, H™(I') is noncompact. If T' is the funda-
mental group of a compact hyperbolic surface, then for n > 3, H™(I") contains
#?(T) and is noncompact. In fact, the closure of #*(T") in H"(T) is noncompact
and hence H™(I") is noncompact. The three dimensional hyperbolic manifolds
in H3(I') which belong to the subset H?(T') have infinite volume and have natu-
ral compactifications which are manifolds with nonempty boundaries; in fact, the
boundary consists of two Riemann surfaces. In general, if I' is the fundamental
group of a hyperbolic manifold of infinite volume (of finite geometric type), then
‘H™(T") might be noncompact. As explained below, manifolds with boundary occur
naturally in studying three dimensional topology.

An important result of the Thurston geometrization program is the following
hyperbolization Theorem of Thurston. For simplicity, we state only the version for
closed manifolds (see [Mor3, pp. 51-52] [Kap, Preface| [Ot1] for general results).

Theorem 6.2.1. If M is a compact orientable irreducible atoroidal Haken 3-
manifold without boundary, then M admits a complete hyperbolic structure of finite
volume.

In this theorem, a 3-manifold M is called irreducible if every sphere S? ¢ M
bounds a 3-ball in M. A closed 3-manifold M is called atoroidal if it is irreducible
and every map from the torus 72 to M has a nontrivial kernel on the fundamen-
tal group. A 3-manifold M is called Haken if it contains a properly embedded
incompressible surface S not equal to the two sphere, where by incompressibility,
we mean that the induced map m1(S) — 71 (M) is injective (see [Mor3] and [Kap]
for these definitions in the general case).

In proving this, the following compactness result [Thul, Theorem 1.2] is crucial.

Theorem 6.2.2. IfT is the fundamental group of a three dimensional acylindrical
manifold M, then H™(T") is compact.

In the above theorem, a 3-manifold M is called acylindrical if it does not
contain an incompressible torus or essential annuli.

The proof of Theorem 6.2.1 is basically divided in two cases: (1) the manifold
M contains an incompressible surface which is not a fiber of a fibration over the
circle, (2) the manifold M is a surface bundle over the circle.

In Case (1), let S € M be an incompressible surface that separates M into two
compact manifolds M7, My with boundary. Then S is contained in the boundaries
of My, Ms. Denote the image of S in them by S; and S3. By induction, assume
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that both M;, My have hyperbolic metrics. The problem is to deform the metrics
in the space of hyperbolic metric so that the metrics in neighborhoods of S; and S
match and can be glued into a hyperbolic metric on M. Since the theory of fixed
points of maps on compact spaces is used, the compactess of H"(7(M;)), i = 1,2,
is crucial. See [Kap, Preface] [Mor3] for detailed outline of the arguments.

In Case (2), M is a surface bundle over S' and hence a mapping torus of a
homeomorphism of a surface. In the proof, an important ingredient is the double
limit theorem. After the original proof of Thurston, Otal [Ot2] gave an alternative
proof for the generic case which depends crucially on the theory of group actions
on R-trees developed by Morgan-Shalen and others. To state the double limit
theorem and indicate how R-trees enter, we quote a part of the Review of [Ot2]
by L.Mosher in Math Reviews:

“To state the double limit theorem, consider the space QF (S) of quasi-Fuchsian
representations of 7 (S) into Isom(H?) up to conjugacy (to simplify matters, as-
sume S is closed). A theorem of Ahlfors and Bers parameterizes the space QF(.S)
as the product of two copies of the Teichmiiller space T (S) of S. In order to inves-
tigate what happens to a representation as the parameters in 7(S) go to infinity,
Thurston used a compactification 7(S) = T(S) U PML(S), where PML(S) is
the space of projective classes of measured laminations on S. Consider a sequence
pi = (0 ,0;) in QF(S) such that the sequences (o;"), (¢;7) € T(S) converge, re-
spectively, to the projective classes of two measured geodesic laminations AT, A~
on S. If these two laminations fill up the surface, that is, if each component of
S — (AT UA7) is simply connected, then the double limit theorem says that p; has
a subsequence converging to some representation of 71(S) — Isom(H?).

”To sketch the author’s new proof of the double limit theorem, suppose p; has
no convergent subsequence. Applying a theorem of Morgan and Shalen, from the
degenerating sequence of representations p; one extracts an action of m1(S) on a
real tree T, with small arc stabilizers. By a theorem of Skora [Sk], the action
of m1(S) on T is dual to a measured geodesic lamination A on S. The author
now studies “realizations” of geodesic laminations in real trees, leading to the
conclusion that (essentially) the only geodesic laminations on S which are not
realizable on 7 are those which do not cross A. Since A=, AT fill up S, at least one
of them crosses A, and so is realizable on 7. If, say, A\~ is realizable on 7, then
for simple closed curves v C S that approximate A\~ in PML(S), one obtains an
estimate for [,,(7), the translation length of v with respect to the quasi-Fuchsian
representation p;. This is shown to contradict Ahlfors’ estimate®, which compares
Ly, (77) to lU: (7), the translation length of v with respect to the hyperbolic structure

- »
g, -

For more detailed outlines of the proof and other discussions, see [Ot2] and
also [Kap, Chap. 18].
In a series of three papers by Morgan and Shalen [MS1] [MS2] [MS3], they

gave an alternative proof of Theorem 6.2.2 using R-trees and characterizations of
I'-actions on them. Since the theory works similarly for all n > 3, we discuss the

91t probably should be Bers instead of Ahlfors
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general case of H", n > 3, below.
The basic steps are as follows:

1. If H™(T") is noncompact, then unbounded sequences will lead to some actions
of I' on R-trees.

2. Show that such actions on R-trees will lead to splittings of I'. Therefore, if
such splittings of T are excluded, the space H"(T') is compact.

The R-trees appear in the boundary of the Morgan-Shalen compactification of
H"(T'), which is defined as follows. Let p : ' — SOY(1,n) be a faithful representa-
tion with discrete image. For each v € T', we define a translation length as follows:
if p(vy) is parabolic, define its translation length to be zero; if it is hyperbolic, p(7)
fixes a unique geodesic, called the axis of translation of p(v), in H™ and acts as
translation on it, and define its translation length ¢(p(v)) to be the translation
length on the geodesic invariant under it. Let C be the conjugacy classes in T
Then each p defines a translation length function

o :C—[0,400)¢, v L(p(v)).

Let P(C) = R¢/R* be the projective space based on C. Then ¢, defines a point
in P(C), and this induces a map

0 : H"(T) — P(C),

which can be shown to be an embedding. The closure of ©(H"(T")) is compact

and defines the Morgan-Shalen compactification, denoted by H™(T")

The relation of the boundary points in ’H"(F)MS to the R-treeis that if p; : ' —
SO°(1,n) represent a unbounded sequence of points in H"(T") which converges to
a point {loo(7)}yec € P(C), then there exists an R-tree with a I'-action whose
translation length function projects to the point {/o(7)}yec in P(C) (see [MSI]
and also [Mor2] for a summary).

The construction in [MS1] is purely algebraic and related to compactifications
of affine varieties via the relative growth rates of regular functions at infinity. On
the other hand, a geometric way to see how R-trees with I'-action occur in the
boundary of H"(T") was given in [Bes2] [Paul], which is summarized in [Kap, Chap.
10] [Ot2, Chap. 2]. Briefly, it can be described as follows.

1. Scale down H" to get the tangent cone at infinity T .H™, an R-tree with a
nontrivial I'-action.

2. Take the I'-invariant minimal R-tree contained in T, ,H".

In the following, assume that I' is not an elementary discrete subgroup of the
isometry group of H". Let g1, -, gm be a set of generators of I'.
Let d(-,-) be the distance function on H”. Define a function D;(x) on H" by

D](J,‘) = max{d(x?pj(gl))7 T ?d(xapj(gm))'
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Since the functions d(x, p;(g1)), -+ ,d(x, p;(gm)) are convex and bounded from
below (note that the I'-action is proper), the minimum value of D;(x) is achieved
(see [Kap, p. 240]). Let x; € H™ be such a minimum point. Since the isometry
group of H™ acts transitively on H", by conjugating p; by suitable elements, we
can assume that x; is equal to a fixed basepoint x¢ in H".

In most cases we are interested in, I' is not virtually nilpotent, i.e., does not
contain a nilpotent subgroup of finite index. Then the Margulis Lemma shows
that D; is uniformly bounded away from zero. Since p; is not bounded and hence
does not converge to a faithful discrete representation, D; is not bounded either.
Assume that D; — 4o00. Scale the metric d on H" to Dijd and take the limit of

the sequence of pointed metric spaces (H", D%_d, Zo).

Proposition 6.2.3. As D; — +o0, the sequence of pointed metric spaces (H", Dijd, Zo)

converges to a geodesic metric space (TooH™, doo, o) in the following sense: For
any compact subset K > x, in T.oH", there exists a compact subset K; > g in
H" such that (Kj, D%d) converges to (K,d) in the sense of Gromov-Hausdorff.
The metric space TooH" is called the tangent cone at infinity. It is an R-tree and
branches everywhere. In T H™, every point is the intersection of infinitely many

distinct geodesics, where a geodesic is an isometric embedding of R.

To understand the limit, we note that triangles in H™ with side lengths greater
than D; with center z in the metric d converge under the scaling to a Y-shaped
subset with three segments coming out of the point xy. Changing these triangles
and increasing their side lengths will produce infinitely many geodesics coming out
of the point zy. To see that other points on these rays are also branch points, we
use large triangles centered at other points. Specifically, let y(t),t € (—o0, +0)
be a geodesic with v(0) = z¢. Fix any ¢t > 0. Let z;,y;,2; be the vertices of a
family of triangles whose side Z;7; converges to the geodesic . Choose a point w;
on the side Z;7; such that the sequence w; converges to v(¢). Then triangles in
H" of long sides and with center w; will converge to geodesics intersecting at y(t).
This shows that the tangent cone at infinity T.oH" is an R-tree which branches
infinitely many times at every point.

Remark 6.2.4. The existence of the tangent cone at infinity of H™ is a special
case of the tangent cone at infinity of symmetric spaces in [KL2]. In fact, according
to [KL2, §5, §2.4], one first chooses a non-principal ultrafilter, which is a finitely
additive probability measure w on the collection of subsets of the natural numbers
N such that (1) w(S) = 0 or 1 for any S C N, and (2) w(S) = 0 if S is finite.
Roughly, subsets S with w(S) = 1 are suitable subsequences of N, and ultralimits
are basically limits for some complicated procedure of taking limits over subse-
quences. It is known that any sequence of pointed metric spaces has an ultralimit
associated with the ultrafilter w. In particular, every metric space (M,d) has a
tangent cone at infinity, defined as the ultralimit of (M, Dijd, xg) associated with
w, where Dj; is a sequence going to infinity. For symmetric spaces, it is believed
by many people that the tangent cone at infinity should not depend on the choice
of the ultrafilter w, though there is no written proof of it.
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Remark 6.2.5. The reason for the choice of the scaling constant D; is that for
any element in I'; its translation length in the limit R-tree is finite, and for some
elements, the translation length is not zero. For this purpose, the assumption that
the minimum point z; is equal to (or conjugated to) the fixed basepoint xg is
also important. Basically, zo is not far away from the axes of translation of the
elements g1, -+, gm. Certainly we can modify D; by any positive number. This
corresponds to the factor R* in the projection map R¢ — P(C) = R¢/R* above.

Consider (H", D%_d, xo) as a pointed I'-space through the representation p;.
After passing to a subsequence, it converges to the space To,oH" with an isometric
action of T'. This finishes Step (1).

It should be emphasized that this R-tree T,oH™ with the I'-action is not nec-
essarily the R-tree which appears in the boundary of H™(T'). In fact, let 7 be
the minimal invariant sub-R-tree in T, H", where by a minimal I'-tree, we mean
that that it does not contain any proper I'-invariant subtree. (see [Paul] [Kap,
Theorem 10.12, Theorem 10.24] [Ot2, pp. 28-32]). The translation lengths of the
elements of I' on 7 are finite but not all zero and project to the limit of p; in
P(C). Then T is the R-tree in the boundary of H"(T') to which the sequence p;
converges.

Remark 6.2.6. There are reasons for picking the minimal I'-invariant subtree
T instead of the whole tangent cone T, H™. One reason is that minimal non-
unipotent I'-trees are uniquely determined by their translation length functions
[CM] [Kap, Theorem 10.15]. Since the Morgan-Shalen compactification of H™(T")
is obtained by embedding into the projective space via the translation length
function, it is natural to require that the boundary trees are minimal in order to
get unique ones.

The R-trees with T'-action which appear in the boundary of H™(T') satisfy
the following important property [MS2, Theorem IV.1.2] (see also [Kap, Theorem
10.24] [Mor2, Lemma 6, Addendum 8']):

Proposition 6.2.7. Let T be such an R-tree in the boundary of H™(I'). Then T
has no fixed point on T, and for every nondegenerate segment in T, its stabilizer
I is small, i.e., virtually abelian.

Corollary 6.2.8. Suppose every action of I' on an R-tree with small stabilizers
of edges (nondegenerate segments) has a fixed point, then H™(T') is compact.

The problem is to find conditions under which the I'-action in the corollary
has no fixed point. This is given as follows [MS2, Chap. IV] [Mor2, Theorem 12].

Proposition 6.2.9. Let I' be a finitely generated group isomorphic to the funda-
mental group of a 3-manifold. If I' has an action without fixed points on an R-tree
with small edge stabilizers, then T splits as either (I) T’ = Axc B with C virtually
abelian and C # A, C # B, or (II) T' = Ax¢ with C virtually abelian.

The compactness result of Thurston in Theorem 6.2.2 follows from this result
and Corollary 6.2.8.
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Remark 6.2.10. There are alternative approaches to issues related to the com-
pactness of H™(T'). See [BF] [GLP] [Chi]. Characterizations of certain nice actions
of surface groups on R-trees are given in [Sk] and used crucially in [Ot2]. For other
applications of R-trees to topology, see [KIS] [AS] [Woll] [DDW].

6.3 R-Euclidean buildings

In §6.1, we recalled the definition of R-trees. They are special cases of R-Euclidean
buildings, which will be recalled briefly.

As seen above, an R-tree is not a 1-dimensional simplicial complex. It contains
infinitely many geodesics, which correspond to apartments in rank-1 Euclidean
buildings. In general R-trees, geodesics are also called apartments, but they can
not be decomposed into a locally finite disjoint union of chambers and chamber
faces as in the case of simplicial trees.

Roughly, an R-Euclidean building of rank r > 1 is a metric space which contains
many compatible apartments, each of them is an affine (or Euclidean) space of
dimension n admitting the action of a generalized Weyl group.

More precisely, let W be a finite Coxeter group acting essentially on a vector
space R". Let A be the affine space associated with R”. Define W to be the group
of affine isometries of A whose vector part is W, i.e., W = W-R”. We can also take
a subgroup of W such that its vector part is equal to W but the translation part
is a dense subgroup of R". Using reflections in W, we can define half-apartments,
sectors and sector faces as in the case of Euclidean reflection complexes. (It should
be emphasized that we could not define chambers since the walls, i.e., the faces of
half apartments, are dense in the apartments).

Then an R-Euclidean building modeled on (A, W) is a metric space A to-
gether with a family F of isometric embeddings of A into A, which are called the
apartments in A, satisfying the following conditions:

1. fweWand f € F, then fow e F.

2. If f, f' € F, then S = f~1(f/(A)) is closed and convex in A (this should be
interpreted as the intersection of the two apartments f(A) and f'(A)), and
there exists w € W such that f|s = f' ow|s.

3. Any two points in A lie in a common apartment.

4. Any two sectors contain subsectors which are contained in a common apart-
ment.

5. If Ay, Ay, Az are three apartments such that each of A1 N Ay, A3 N Az and
A N Aj is a half-apartment, then A; N Ay N Az # ().

Remark 6.3.1. We basically follow the definition given in [Ro3, Appendix 3.
Conditions (1)-(4) are reasonable and clearly expected, and (5) can be replaced by
the following: For any apartment f(A) and a point p in it, there exists a retraction
p: A — f(A) such that p~!(p) = p, and the restriction to each apartment is
distance decreasing.
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Remark 6.3.2. There are other definitions of R-Euclidean buildings or affine
R-buildings (and more generally affine A-buildings). The first non-discrete build-
ings were introduced by Bruhat and Tits in [BT1, §7]. The general axioms of
non-discrete buildings were first introduced by Tits in [Ti7]. In [KL2, 4.1.2], R-
Euclidean buildings were defined in a slightly different way. In [Par], Parreau
showed that they are equivalent. See also the survey [KT].

As recalled earlier in §4.2, for any field F' with a non-discrete valuation v :
F* — Rsq, there is a natural R-tree associated with SL(2,F). In [BT1, §7.4],
for a linear connected and simply connected semisimple algebraic group G defined
over such a field F, there is an R-Euclidean building AZ7(G). When the valuation
is discrete, the building is a simplicial complex and can be described by either
specifying the set of simplexes, for example, the vertices and chambers; or using
a BN-pair. In the case of rank 1, i.e., A-trees, we specified the set of vertices and
described the edges using a A-distance. This approach seems to be difficult to
generalize in the higher rank case. Hence, Bruhat and Tits [BT1, §7] used another
construction which also gives an alternative construction of the usual Euclidean
buildings.

To motivate this construction, we consider the Bruhat-Tits building ABT(G)
of a simply connected algebraic group over a local field k,. Then G(k,) acts
transitively on the set of apartments. Fix an apartment 3, which can be identified
with an affine space A. Then there is a surjective map

G(kp) x ¥ — APT(G).

The fibers of this map can be described explicitly in terms of parabolic subgroups.

The construction for the non-discrete case is a generalization of this (see [Ti3,
82] and also [Lan2]). Let T be a maximal split torus in G, and N the normalizer
of T(F) in G(F). Then the group X,(T) = Homp(GL;,T) determines a real
vector space V = X,(T) ® R. Let Z = Z(T(F)) be the centralizer of T(F) in
G(F). There is a natural homorphism v : Z — V. Denote its kernel by Z..
Then A = Z/Z. is a free abelian group, and W = N/Z, is an extension of a finite
Coxeter group by A, and acts isometrically on the affine space A associated with
V (see [Ti3, §1.2]).

In the affine space A, we can define various subgroups associated to subsets,
in particular to points, for example, P,, z € A [BT1, §7.1]. Then the associated
building ABT(G) is defined as a quotient of G(F) x A under the following equiv-
alence relation: Two pairs (g,x) and (h,y) are equivalent if there exists n € N
such that

y=n-z, and g 'hne P,.

6.4 Quasi-isometry rigidity and tangent cones at infinity of
symmetric spaces

As seen in the proof of Mostow strong rigidity in Theorem 3.4.1, quasi-isometries
play an important role. In fact, a crucial step is that under the equivariant quasi-
isometry ¢ in Equation 3.4.2, the image of a flat ' in X lies within a bounded
neighborhood of a flat F/ in X’ (Proposition 3.4.4).
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Gromov initiated a systematic study of global geometry of groups in terms
quasi-isometries (see [Gr]). One problem concerns the rigidity of symmetric spaces
of higher rank under quasi-isometries, a conjecture due to Margulis in late 1970’s,
which was proved by Kleiner and Leeb [KL2, Theorem 1.1.3] and later Eskin and
Farb [EF1]. One result in the proof says that in the above result of Mostow in
Proposition 3.4.4, the equivariance condition on the quasi-isometry can be removed
[KL2, Corollary 7.1.5].

Proposition 6.4.1. Let X, X' be two symmetric spaces of noncompact type with-
out rank one irreducible factors. If they are quasi-isometric, then they are iso-
metric after the metrics on the irreducible factors are suitably scaled, and any
quasi-isometry between them is within a bounded distance of an isometry.

Remark 6.4.2. See [KL1] [Esk] [EF1] [Scrl] [Scr2] [FS] and the review of [Esk]
by L.Mosher for a summary of other results related to classifications of lattices
in semisimple Lie groups up to quasi-isometry. Parts of the proofs in [Esk] follow
the proof of the Mostow strong rigidity and use the spherical Tits buildings in a
substantial way.

The results in [KL2, Theorem 1.1.3] are more general than stated here. The
proof in [KL2] of this result goes as follows:

1. Choose an ultrafilter w and obtain the tangent cones at infinity T, X and
TooX'.

2. Show that T, X and T, X’ are R-Euclidean buildings of rank at least two,
and a quasi-isometry ¢ : X — X’ induces a homeomorphism between the
two R-Euclidean buildings.

3. The homeomorphism maps an apartment in 7., X to an apartment in Tp X'.

4. Let F be a flat in X. Then (F) lies in a bounded distance of a flat F’ of
X',

5. Follow similar steps in the proof of Mostow strong rigidity to prove the result.
For a more detailed outline and summary of the proof, see [KL2, §1.2].

Remark 6.4.3. In the proof of the Mostow strong rigidity, we push things out
to infinity to get an isomorphism of the spherical Tits buildings. In Step (1)
of the proof in [KL2] outlined here, we pull in infinity towards a basepoint to
get the tangent cones at infinity, and the symmetric spaces become R-Euclidean
buildings. Both have the common feature that they ignore finite ambiguities and
turn a quasi-isometry into more precise maps.

7 Twin buildings and Kac-Moody groups

In this section, we briefly introduce twin buildings, Kac-Moody groups and some
geometric group theoretical properties of Kac-Moody groups over finite fields.
Then we also mention other groups in geometric group theory that arise from
actions on buildings and related spaces.
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7.1 Twin buildings

Roughly speaking, a twin building is a pair of buildings of the same type (i.e., the
same Coxeter system for their apartments) with a notion of codistance between
every pair of chambers from this pair of buildings.

More precisely, we follow [AbB, Definition 5.133] and describe buildings as
W-metric spaces.

Definition 7.1.1. Let (W, S) be a Coxeter system, i.e., W be a Coxeter group
and S be a minimal set of generators consisting of elements of order 2. A twin
building of type (W, S) is a triple (C4+,C_, 6*) consisting of two buildings (C4, d)
and (C_,d_) of type (W, S) together with a codistance function

5*I(C+XC_)U(C_XC+)—)W

satisfying the following conditions for each ¢ € {+,—}, any C € C., and any
D e C_., where w = 0*(C, D):

1. §*(C,D) =6*(D,C)~ L.

2. If ¢’ € C. satisfies 6.(C',C) = s with s € S, and {(sw) < ¢(w), then
6*(C", D) = sw.

3. For any s € S, there exists a chamber C’ € C. with §.(C’,C) = s and
0*(C’, D) = sw.

An effective way to construct a Tits building is to use BN-pairs. Similarly, an

effective way to construct a twin building is to use a twin BN-pairs [AbB, §6.3.3].

Definition 7.1.2. Let B, B_ and N be subgroups of a group G such that
By NN = B_NN, which is denoted by T. Assume that T" is a normal subgroup
of N, and set W = N/T. The triple (B4, B_, N) is called a twin BN -pair with
Weyl group W if W admits a set of generators such that the following conditions
hold for all w € W and s € S and each € € {+,—}:

1. (G, B, N,S) is a Tits system.
2. If (sw) < £(w), then B.sB.wB_. = B.swB_..
3. B+S M B, = w

For any twin Tits system (G, By, B_, N, S) with the Weyl group W = N/T,
there is a twin building (C4,C_) with C; = G/By4, C_ = G/B_ and the codistance
function §* given by

6*(gB.,hB_.) = w if and only if g~'h € B.wB_.

for g,h € G,w € W, and € € {4, —}. Note that we have used an analogue of the
Bruhat decomposition, G = B_W By [AbB, Proposition 6.75].

Twin buildings constructed from twin B-pairs have the property that G acts
strongly transitively on the twin building, i.e., G acts transitively on the set
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{(C,D) € C4y xC_ | 6*(C,D) = w} for every w € W. Conversely, given any
twin building, if the automorphism group acts strongly transitively, then it admits
a twin Tits system, and the twin building is the same as the building constructed
from the twin Tits system [AbB, Theorem 6.87].

An effective method to construct a twin Tits system is to construct a group
root datum, called a RGD-system. See [Abrl, pp. 14-15] [CaR3].

7.2 Kac-Moody algebras and Kac-Moody groups

A finite dimensional complex Lie algebra is determined by its Cartan matrix.
Briefly, a Cartan matriz is an integer valued matrix A = (4;;),4,j=1,---,r,
satisfying the following conditions:

1. Ay =2.
2. FOTi;éj, Aij SO
3. Aij =0 if and Only if Aji =0.

4. There exists a diagonal matrix D such that D~ A is symmetric and positive
definite.

Given any finite dimensional simplex complex Lie algebra g, there is a Cartan
matrix associated with it by choosing a set of simple roots aq, - - - a,., where r is
the rank of g, as follows:

Aij _ 2<ai,04j>7
<O‘j7 @ >
where (,) is the Killing form.

On the other hand, given a Cartan matrix, we can construct a finite dimensional
complex Lie algebra by using the Serre relations.

In this correspondence, a complex Lie algebra is simple if and only if the Cartan
matrix is irreducible, i.e., there does not exist a proper subset I C {1,---,r} such
that AijZOfOI‘Z’GI,jQI.

A generalized Cartan matriz is an integer valued matrix A = (4,;) satisfying
all the above conditions for a Cartan matrix except for (4) on the positivity of
DA

Given a generalized Cartan matrix, there is a Kac-Moody algebra using Serre
relations (see [Kac] for details).

For any finite dimensional simple complex Lie algebra I', there is a Chevalley
group G defined over any field k& [Che] (see [Car2] for a detailed exposition).
Similarly, for a Kac-Moody algebra, there is also a Kac-Moody group G over k
[Ti9]. For simplicity, we call the group of k-points of G also the Kac-Moody group
and denote it by G(k).

An important class of Kac-Moody groups consists of affine Kac-Moody groups
such as SL(n, k((t))), where k is any field, and ¢ is variable and k((¢)) is the field
of formal power series, or more generally G(k((t))), where G is a Chevalley group.

The important point here is that for any Kac-Moody group G, there are natural
choices of twin Tits systems and hence twin buildings (C4,C_). Briefly, fix a
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choice of positive roots, and take B, as the subgroup generated by all positive
root groups, and B_ as the subgroup generated by all negative roots. With a
suitable choice of N, they give rise to a twin Tits system (G, By, B_, N, S). See
[Abrl, Proposition 1, p. 16] [Ro4, p. 181] for more details and a precise definition
of N.

Recall that Cy,C_ are buildings defined as W-metric spaces. Denote their
corresponding canonical simplex buildings by Ay, A_. The product space A} x
A _ is also called a twin building associated with the Kac-Moody group.

For more details of the results stated below, see [Re8] and references there.

Proposition 7.2.1. If G(k) is a Kac-Moody group defined over a finite field k,
then it is a finitely generated group and acts properly on the twin building Ay X A_
with finite stabilizers.

When the field & is finite, the buildings A, A_ are locally finite, and their
automorphism groups Aut(A;) x Aut(A_) are locally compact subgroups and
hence admit Haar measures.

Proposition 7.2.2. Assume G(k) is a Kac-Moody group over a finite field k = F,
of q elements and that the Weyl group W of G is infinite. Denote by W (t) =
S wew ) its growth function of W. If W(1/q) < +oo, then G(k) is a lattice
of the locally compact group Aut(Ay) x Aut(A_), and the value W(1/q) is the
volume of G(k)\Aut(Ay) x Aut(A_) with respect to a natural normalization of
the Haar measure.

When W is an affine Weyl group, it grows polynomially and hence the condition
W(1/q) < 400 is automatically satisfied since 1/q < 1.

Affine Kac-Moody groups over finite fields such as SL(n, F,[t,t7!]) are S-
arithmetic subgroups of linear algebraic groups defined over functions fields. They
admit many finite index normal subgroups such as congruence subgroups in the
same way arithmetic subgroups such as SL(n,Z) admit many finite index normal
subgroups.

An important result of [CaR1] is that among Kac-Moody groups, this is essen-
tially the only case where it can happen.

Proposition 7.2.3. Let G(k) be a Kac-Moody group defined over a finite field F,.
Assume that the Weyl group W is infinite and irreducible and W(1/q) < 400, and
the buildings Ay are not Euclidean and G(k) is generated by its root subgroups.
Then G modulo its finite center is a simple group.

This result produces many finitely generated infinite simple groups. Before this
work, there was another family of finitely presented infinite simple groups which
are lattices in the automorphism groups of product of trees in [BuM1].

The above proposition is consistent with nonlinearity result [Re6, Theorem
5.4.4].

Proposition 7.2.4. Let G(F,) be a Kac-Moody group whose twin buildings are
associated with a right-angled Fuchsian group as the Coxeter group. Assume that
any prenilpotent pair of roots not contained in a spherical Toot system leads to a
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trivial commutation of the corresponding root groups. Then for ¢ > 1, the group
G(F,) is not linear over any field.

Remark 7.2.5. Subgroups of Kac-Moody groups G(k) can also produce lattices
in Aut(A4) and Aut(A_). In fact, as mentioned before, G contains a twin Tits
system (G(k), By, B_, N, S). It turns out that when the finite field k is sufficiently
large, B, acts properly on A_ as a lattice, i.e., By is a lattice of Aut(A_), and
B_ also acts on A} as a lattice [CaG1] [Red] [Re6].

Remark 7.2.6. The above proposition is an important example to show that the
building Ay x A_ can be used to construct a natural ambient locally compact
group Aut(A; x A_) which contains the Kac-Moody group G(k). We also note
that By is the stablizer of a chamber in A, and B_ is also the stablizer of a
chamber in A_.

Remark 7.2.7. The completions of G in the group Aut(Ay) are called complete
Kac-Moody groups. For conditions on simplicity of the complete Kac-Moody
groups, see [CaER].

For more discussions and introductions to Kac-Moody groups as lattices and
other properties, see [Rel] [Re2] [Re6] [Re7] [Re8].

7.3 Kac-Moody groups as lattices and groups arising from
buildings in geometric group theory

Besides infinite simple groups coming from Kac-Moody groups in Proposition 7.2.3,
buildings and related spaces such as trees, CAT(0)-simplicial complexes and Davis
complexes can be used to produce many other interesting groups in geometric
group theory. In this subsection, we mention briefly several results.

In [DrJ], the following results on Coxeter groups were proved.

Proposition 7.3.1. FEvery Coxeter group acts amenably on a compact space and
satisfies Property A.

As a corollary, it follows

Corollary 7.3.2. Every Coxeter group satisfies the Novikov conjecture in C*-
algebras and hence the usual Novikov conjecture on homotopy invariance of higher
signatures.

In [DrJ], it was also proved that every Coxeter group has finite asymptotic
dimension. Using the results in [Dal], we can see that every torsion-free finite
index subgroup I' admits a finite classifying space BT, or equivalently a cofinite
ET space, which can be realized as a subspace of the Davis complex. Combining
them together and applying known criterions for integral Novikov conjectures (see
[J4] for example for the formulation of integral Novikov conjecture for groups
containing torsion elements), we observe

Proposition 7.3.3. Fvery Coxeter group satisfies the integral Novikov conjecture.
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In [CaL], for any noncompact building, a combinatorial boundary was con-
structed where the action of Aut(X) on X extends. Assume that X is locally
finite, then the union of X and the combinatorial boundary gives the combinato-
rial compactification of X.

In [Lec], the following result was shown

Proposition 7.3.4. For any locally finite building X and any locally compact sub-
group G of Aut(X) that acts properly on X, the action of G on the combinatorial
compactification is topologically amenable.

Corollary 7.3.5. Let X be any locally finite building. Then any discrete subgroup
of Aut(X) satisfies the Novikov conjecture in C*-algebras and hence the usual
Nowikov conjecture. In particular, Kac-Moody groups over finite fields satisfy the
Nowvikov conjecture in C*-algebras.

Remark 7.3.6. Another method to prove the Novikov conjecture in C*-algebras
for a finitely generated subgroup I' of Aut(X) of a locally finite building X is to
use the following two facts:

1. By [DyS], X has finite asymptotic dimension.

2. Any finitely generated group I' acting properly and isometrically on X also
has finite asymptotic dimension, and hence also satisfies Property A and the
Novikov conjecture in C*-algebras.

Remark 7.3.7. A natural question is whether any Kac-Moody group over a finite
field satisfies the integral Novikov conjecture as formulated in [J4]. Briefly, for a
torsion-free group, the integral Novikov conjecture in each theory (such as L-theory
(or surgery theory), algebraic K-theory) asserts the injectivity of the assembly map
in that theory. (Note that the usual Novikov conjecture for homotopy invariance
of higher signatures corresponds to the injectivity of the rational assembly map
in the L-theory, which is the tensor product of the assembly map with the field
of rational numbers. For groups containing torsion elements, there is an assembly
map for the family of finite subgroups, and the injectivity of the corresponding
assembly map is called the integral Novikov conjecture. Since split Kac-Moody
groups over finite fields are not virtually torsion-free, i.e., do not admit finite
index torsion-free subgroups, this formulation with respect to the family of finite
subgroups is necessary.

Groups acting on Euclidean buildings often enjoy some special properties. For
example, the space of radial functions on finitely generated groups acting simply
transitively on Euclidean buildings of type A, satisfies the Haagerup inequality
[Va] [Sw]. The same result holds for more general lattices acting on buildings [Pe].
For explicit constructions of groups acting simply transitively on Euclidean build-
ings of type A, see [Cartl] [CMSZ1] [CMSZ2]. Such groups are also important
in the problem of determining fake projective planes.

Zeta functions of certain classes of infinite groups are computed by using enu-
meration in Bruhat-Tits buildings [Vo].
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A special and important example of Euclidean buildings are (simplicial) trees.
It is well-known that simplicial trees are fundamental in combinatorial group the-
ory (see [Se2]). For a survey of more recent developments and generalizations,
see the book [BL] and [BuM1] [BuM2|. Many natural discrete subgroups in the
automorphism group of trees have been constructed from Kac-Moody groups and
subgroups. In these studies, the buildings associated to the infinite dimensional
Kac-Moody groups (or algebras) are used. As pointed out in the introduction,
many such buildings are hyperbolic, i.e., the apartments have negative curvature.
This seems to be an active ongoing research area. See [CaG1] [CaG2] [Rel] [Red]
[DJ] [Ja] [Lafl] [Laf2].

Buildings are also used by Deligne in [Del] to compute the homology groups of
hyperplane arrangements.

8 Other applications of buildings

In the previous sections, we have discussed applications of buildings to many prob-
lems in geometry, geometric topology, algebraic topology, representation theory,
harmonic analysis etc. In this last section, we indicate very briefly other applica-
tions.

8.1 Applications in algebraic geometry

Algebraic groups and their parabolic subgroups occur naturally in geometric invari-
ant theory and torus embeddings (or toric varieties) and toroidal compactifications
of Hermitian locally symmetric spaces. Because of this, spherical Tits buildings
have played an important role in these subjects.

Given a reductive algebraic group G and a variety X where G-acts, a basic
problem in geometric invariant theory is to find geometric quotients of suitable
open subsets U of X which are invariant under G and the geometric quotient of U
by G exists. These open subsets U can be defined in terms of notions of stability
and semi-stability of points [Mu3, Chap. I, §4]. Now these stability conditions are
related to the positivity of certain numerical invariants of 1-parameter subgroups
A in G [Mu3, Chap. II, §1, Theorem 2.1]. Considerations of these invariants nat-
urally lead to parabolic subgroups P()\) of A [Mu3, Chap. II, §2]. This connection
with parabolic subgroups gives an equivalence relation on the set of 1-parameter
subgroups of G, which leads to a rational flag complex [Mu3, Chap. II, Defini-
tion 2.5]. The rational flag complex is contained in the spherical Tits building of
G as a dense subset and its completion gives the spherical Tits building A(G)
[Mu3, Chap. II, pp. 59-61]. This embedding in the building A(G) allows one
to define semi-convex subsets and convex subsets of the rational flag complex of
1-parameter subgroups [Mu3, Chap. II, Definition 2.10], which are important in
questions about stability [Mu3, Chap. II, §3].

The 1-parameter subgroups A of G in [Mu3] describe the geometry at infinity
of G. A more explicit relation between the structure at infinity of G and the
spherical Tits building A(G) is given in [KKMS, Chap. IV, §2]. In fact, a toroidal
embedding (or a partial compactification) of a semisimple linear algebraic group G
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over an algebraically closed field k was constructed. The boundary is decomposed
into boundary components whose normalizers are exactly the parabolic subgroups
of G. The inclusion relations between the closures of the boundary components
define a complex which turns out to be exactly the spherical Tits building A(G).
One reason is that the polyhedal cone decomposition for the torus embeddings
involved is exactly the Weyl chamber decomposition [KKMS, p. 185, p. 187].

Simplicial complexes constructed from only a proper subset of the set of all
parabolic subgroups are also important in toroidal compactifications of Hermitian
locally symmetric spaces [Mul] [AMRT] [HKW] [HZ1] [HZ2]. In fact, the theories
in [KKMS] were used in the sequel [AMRT] to explicitly resolve the singularities
of the Baily-Borel compactification [BB] of Hermitian locally symmetric spaces, or
quotients of bounded symmetric domains by arithmetic quotients. The resolutions
are given by the toroidal compactifications. The reason why the Tits buildings or
related complexes come in is the same basically as before. The normalizers of
boundary components of (partial) compactifications of groups and bounded sym-
metric domains are often certain parabolic subgroups, and the inclusion relation
between their closures lead to simplicial complexes which are often closely related
to spherical Tits buildings. For example, in the partial Baily-Borel compactifica-
tion of a bounded symmetric domain, only maximal parabolic subgroups arise as
the normalizer of the boundary components. See [HKW] for detailed discussions
about the (partial) Tits buildings and relations to the Baily-Borel compactifica-
tion, and the toroidal compactifications of the moduli space of abelian surfaces.
The discussions here are related to the point of view in §2.12.

The spherical Tits buildings of dimension 1 are crucial in the important paper
[Mu2] on uniformization of curves over complete local rings by Schottky groups (see
[FvP] for more recent results and applications and also [GvP] [vP], where trees and
currents on trees were used), and the generalization in [Mus|. Related results about
Arakelov intersection of arithmetic varieties are given in [Man], which motivated
[Wer3], where the Bruhat-Tits building of PGL(n) was used to compute certain
Arakelov intersection. As pointed out earlier, Euclidean buildings of dimension 1
are trees. Certain trees, called valuation trees in [FJ], are important in describing
the singularities in complex analysis and algebraic geometry.

The theory of Bruhat-Tits buildings plays an important role in [Ra3] on work
related to a conjecture by Grothendieck and Serre that given any principal bundle
over a smooth connected k-scheme with fiber given by a smooth reductive group
scheme over k, if it is trivial over some nonempty open subset of X, then it is
locally trivial in the Zariski topology. The Bruhat-Tits theory is also used in a
new proof in [GaR] of some results of Bott on the loop space of a compact, simply
connected, simple Lie group and hence of the Bott periodicity for the unitary
group.

Buildings also occur naturally in rigid analytic geometry over local non-Archimedean
fields. An important rigid analytic space is the p-adic symmetric space X,, associ-
ated with the group PGL(n, K), introduced by Drinfeld in [Dr] (see also [BoC] and
[vPV]). There is a well-defined surjective equivariant map from X,, to the Bruhat-
Tits building of PGL(n, K), called the reduction map [Te]. This reduction map
plays an important role in computing the cohomology of X, and its quotients by
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cocompact discrete groups in [SS2] (see also [Te]).

A natural boundary of X,, is the topological spherical Tits building of PGL(n, K).
As recalled in §3.5, this topological Tits building appears naturally as the bound-
ary of the Bruhat-Tits building of PGL(n,K). An important property of this
boundary of X, is that the reduction map extends to an equivariant map to the
boundaries. This plays an important role in [ST], which generalizes the Poisson
integral transformation of Riemannian symmetric spaces.

Buildings are also related to p-adic analytic spaces in the sense of [Ber2]. In
fact, rigid analytic spaces are analog over local non-Archimedean fields of com-
plex analytic spaces but do not have the corresponding topological properties, for
example, local compactness and local arcwise connectedness. To overcome this
problem, p-adic analytic spaces were introduced in [Ber2]. Roughly, to a rigid an-
alytic space X, there is a p-adic analytic space X% which is a kind of completion
(or filling in holes) in a suitable way.

The Bruhat-Tits buildings ABT(G) can be embedded into a suitable Berkovich
analytic space G*" associated with the algebraic group G and this has been used
to construct compactifications of APT(G) in [ReTW1] [ReTW2].

Buildings and trees are related to these spaces in several ways. In fact, one
dimensional quasipolyhedrons were introduced in [Ber2, Definition 4.1]. The sim-
ply connected ones are certain trees. If X is a smooth geometrically connected
projective curve of genus g > 1, then X" is a quasipolyhedron whose Betti num-
ber is at most g [Ber2, Theorem 4.3.2]. When G is a semisimple Chevalley group
over a local non-Archimedean field, then its Bruhat-Tits building APT(G) can be
embedded into G in two ways [Ber2, Theorems 5.4.2 and 5.4.4]. This is impor-
tant in understanding the homotopy type of some p-adic analytic spaces [Ber2,
Chap. 6]. When P is a parabolic subgroup of G, then the Bruhat-Tits build-
ing ABT(G) can also be embedded into G%"/P". Since the latter is compact,
the closure of ABT(G) under this embedding gives a compactification of ABT(G)
[Ber2, Remarks 5.5.2].

The results mentioned above are related to the reductive group PGL(n, K).
See [RaZ] for generalizations of some of these results to some other reductive
groups over local non-Archimedean fields.

8.2 Random walks and the Martin boundary

Random walks on graphs and in particular on trees are natural problems. They
are related to harmonic functions, which are functions on the set of vertices and
satisfy the condition that the value at any point is equal to the average (or weighted
average) of values over nearby points. Closely related problems are to determine
the Poisson boundary and the Martin compactification. These problems have been
solved for trees [An] [Woe].

For Euclidean buildings of rank at least 2, we can also define functions on
the set of vertices, or the set of simplexes of any fixed dimension, and harmonic
functions. The related problems on the Poisson boundary and the Martin com-
pactification have been only partially understood. See [CaW], [Ge], and the papers
and references in [Ko].
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8.3 Finite groups

Spherical Tits buildings or rather BN-pairs have played an important role in un-
derstanding finite groups and their representations [Carl] [Car2] [So]. For example,
the book [TW] on Moufang polygouns, i.e., Moufang spherical buildings of rank 2,
is in the list of background references of the book [AbS].

A particularly important application is a criterion for simplicity of groups with
BN-pairs [Ti8]. We note that this criterion for simplicity applies to both finite
and infinite groups. See [Carl] [Sul] [Su2] [Su3] [Har] for characterization and
classification of finite simple groups of Lie type.

The notion of BN-pairs was motivated by the fundamental work of finite groups
of Lie type [Che].

Tits buildings are important for representation theories of finite groups. For
example, by the Solomon-Tits Theorem, a spherical Tits building is homotopic to
a wedge of sphere and hence has nonzero reduced homology in a unique degree,
which gives the Steinberg module. There are many other applications to characters
and representations of finite groups. See [Car2] [Lus].

8.4 Finite geometry

Buildings are also important in incidence geometry (see the many articles in [Bue]),
finite geometry (see [Hir] [Tha2] and the references there) and coding theory [MS].

A finite geometry is any geometric system that has only a finite number of
points. It can be defined by linear algebra as vector spaces and related structures
such as projective spaces over a finite field, which is called Galois geometry, or
can be defined purely combinatorially. For example, a projective space S can be
defined abstractly as a set P (the set of points), together with a set L of subsets
of P (the set of lines), satisfying these axioms:

1. Every pair of two distinct points are in exactly one line.

2. Veblen’s axiom: If a,b, ¢, d are distinct points and the lines through ab and
cd meet, then so do the lines through ac and bd.

3. Any line has at least 3 points on it.

This is closely related to incidence geometry. For example, an incidence geom-
etry of dimension 2 is a geometry satisfying the conditions:

1. Every pair of distinct points determines a unique line.
2. Every line contains at least two distinct points.
3. For every line, there is at least one point that does not lie on the line.

Finite Tits buildings give finite geometries. Many finite geometries are Galois
geometries, for example, any finite projective space of dimension three or greater is
isomorphic to a projective space over a finite field, but in dimension two there are
combinatorially defined projective planes which are not isomorphic to projective
spaces over finite fields, namely the non-Desarguesian planes, which are projective
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planes that do not satisfy Desargues’s theorem: In a projective space, two triangles
are in perspective axially if and only if they are in perspective centrally.

8.5 Algebraic K-groups

An important conjecture of Bass in algebraic K-theory concerns finite generation
of K-groups associated with a commutative ring which is finitely generated as an
algebra over Z (see [FW, p. 53] for the precise statement). This conjecture has
been proved by Quillen for finite fields [Qu2], the ring of integers of any number
field [Qul] and the ring of regular functions of a smooth affine curve over a finite
field (written up by Grayson in [Gra3]. See also [Ro2, §13]).

In [Qu], the Solomon-Tits theorem that the homotopy type of a spherical Tits
building is a bouquet of spheres was used crucially. In [Gra3], Bruhat-Tits build-
ings of GL(n) over non-archimedean local fields induced from function fields played
an important role.

As pointed out in [Qul], the finiteness result also holds for the ring of S-integers
Og in any number field, by combining the results for finite fields and a localization
result. The result in [Gra3] can also be restated as that the K-groups of rings of
S-integers (see §3.6 for definition) of the function field of a smooth projective curve
over a finite field are finitely generated.

8.6 Algebraic combinatorics

Complexes similar to Coxeter complexes and spherical Tits buildings also occur
naturally in algebraic combinatorics. In fact, they are very important special
examples of these general complexes.

In [Bj], it is shown that Coxeter complexes and Tits buildings are shellable and
Cohen-Macaulay complexes. A generalization of Coxeter complexes for a group
with a minimal set of generators is given in [BaR]. Such complexes and their
homology give useful representations of the group.

Combinatorial flag varieties were introduced in [BGW] using suitable partial
ordering on matroids, and their shellability and other applications are studied in
[BGS]. Semibuildings were introduced in [Her|. Other results related to shellability
are given in [ER] [Was].

Relations between groups and abstract regular polytopes are explained in
[McS]. For generalized polygons, see [Thal].

8.7 Expanders and Ramanujan graphs

Expanders have been used to construct efficient networks. An important class
of expanders consists of the class of Ramanujan graphs. Bruhat-Tits buildings of
dimension 1 have played an important role in studying Ramanujan graphs. Higher
dimensional Bruhat-Tits buildings have also been used to construct hypergraphs.

For a general introduction to Ramanujan graphs and connections to modular
forms, see the book [Li2], surveys [Li3] [Li4]. For constructions of Ramanujan
graphs, see also [LPS] [Mors]; for constructions of Ramanujan hypergraphs or
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hypercomplexes, see [Lil] [LSV1] [LSV2] [CaSZ] [Sar]. See also [ChL1] [ChL2] for
applications of modular forms to Ramanujan graphs.

Construction of Ramanujan graphs is closely related to spectral theory of the
graph. Many natural graphs are obtained as quotients of Bruhat-Tits buildings
by arithmetic groups. For spectral theory of quotients of Bruhat-Tits buildings of
rank 1 (i.e., trees), see [Ef] [Na] [Terrl] [Terr2].
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