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Abstract. We study some properties of domino insertion, focusing on aspects
related to Fomin’s growth diagrams [3, 4]. We give a self-contained proof of the
semistandard domino-Schensted correspondence given by Shimozono and White
[21], bypassing the connections with mixed insertion entirely. The correspondence
is extended to the case of a nonempty 2-core and we give two dual domino-Schensted
correspondences. We use our results to settle Stanley’s ‘2n/2’ conjecture on sign-
imbalance [25] and to generalise the domino generating series of Kirillov, Lascoux,
Leclerc and Thibon [9] .

1. Introduction

Recently in [21] Shimozono and White described a semistandard generalisation of
Barbasch and Vogan’s domino insertion [1], relating domino insertion to Haiman’s
mixed insertion [8]. This semistandard domino Schensted algorithm establishes a
bijection between colored biwords and pairs of semistandard domino tableaux of
the same shape. That such a bijection exists can already be seen by combining
Littlewood’s p-quotient construction [17] with the usual Robinson-Schensted-Knuth
algorithm. Shimozono and White’s key observation is that Barbasch-Vogan domino
insertion has a color-to-spin property. This property appears to have been used earlier
by Kirillov, Lascoux, Leclerc and Thibon [9] for some special colored involutions.

Earlier, van Leeuwen [15] had described domino insertion in terms of Fomin’s
growth diagrams. He connected Barbasch and Vogan’s left-right insertion description
[1] with Garfinkle’s traditional bumping description [6]. He also defines insertion in
the presence of a 2-core.

Our first aim in this paper is to give a self contained proof of the semistandard
domino-Schensted correspondence, using elementary growth diagram calculations to
prove all the main properties of the bijection which we also extend to the nonempty
2-core case. Thus our approach allows us to avoid mention of mixed insertion com-
pletely. We also describe two dual domino-Schensted bijections. These are bijections
between multiplicity-free sets of biletters and pairs of semistandard domino tableaux
which have conjugate shapes. All three bijections are essentially the same on the set
of hyperoctahedral permutations. In fact we will make clear that the most important
difference is that different notions of ‘standardisation’ of a set or multiset of biletters
are used. Finally, we perform a detailed analysis of symmetric growth diagrams for
domino insertion.
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The study of growth diagrams leads us to a number of applications. These include a
number of enumerative results for domino tableaux, an application to sign-imbalance,
and a collection of product expansions for generating series of domino functions.

The sign sign(T ) of a standard Young tableau T is the sign (as a permutation) of
its reading word obtained by reading the tableau from left to right along the rows,
starting from the top row. The sign imbalance of a shape λ is defined as

∑

SY T T : sh(T )=λ

sign(T ).

That sign-imbalance is related to domino tableaux has been made explicit in work of
White [27] and Stanley [25]. In particular, White gives a formula for the sign of the
Young tableau T (D) associated to a domino tableau D:

sign(T ) = (−1)ev(D)

where ev(D) is the number of vertical dominoes in even columns of D. Domino
tableaux are in bijection with hyperoctahedral involutions and we prove that in fact
ev(D) is equal to the number of barred two-cycles of π, where D = Pd(π) is the
insertion tableau of π. This allows us to prove Stanley’s conjecture on sign-imbalance,
our Theorem 23, which is a 4-parameter generalisation of the following elegant result:

∑

SY T T :sh(T )`m

sign(T ) = 2bm/2c.

Recently, another proof of Stanley’s conjecture has appeared which uses the usual
Schensted correspondence, due to Astrid Reifegerste [19] and Jonas Sjöstrand [23].

Carré and Leclerc [2] and Kirillov, Lascoux, Leclerc and Thibon [9] have stud-
ied certain generating functions Hλ(X; q) for domino tableaux which we loosely call
domino functions. More general domino functions Gλ(X; q) were developed also in

[11], where they were connected with the Fock space representation of Uq(ŝl2). These
are defined as

Gλ(X; q) =
∑

D

qsp(D)xD

where the sum is over all semistandard domino tableaux of shape λ. The Hλ are
defined by Hλ(X; q) = G2λ(X; q). Product expansions of the sums

∑
Hλ(X; q) and∑

Hλ∨λ(X; q) were given in [9].
By studying colored involutions we give a product expansion for a 3-parameter gen-

eralisation of the sum
∑

λ Gλ(X; q). When the parameters of this sum is specialised,
we obtain both of the product expansions of [9].

A generalisation of the functions Gλ(X; q) from dominoes to p-ribbons is given by
Lascoux, Leclerc and Thibon in [11] and the connection with representation theory
further explored in [13, 14, 12]. The study of ribbon tableaux appears to be even
more interesting, though considerably harder, than that of domino tableaux, inspiring
much recent work. A Schensted-correspondence for ribbon tableaux has been given
by van Leeuwen [16], though the correspondence cannot be described in terms of
insertion. Descriptions of the spin of a ribbon tableau in terms of the p-quotient have
been given by Schilling, Shimozono and White [20], and also by Haglund, Haiman,
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Loehr, Remmel and Ulyanov [7]. In [10], we study these ribbon functions in analogy
with Schur functions, by proving ribbon Cauchy, Pieri and Murnaghan-Nakayama
formulae.

We now briefly describe the organisation of this paper. In Section 2 we give some
notation and definitions for domino tableaux and multisets of biletters. We also give
a description of domino insertion bumping in an informal manner, following mostly
[21]. In Section 3, we introduce and study growth diagrams. This is followed by a
proof of the semistandard domino-Schensted correspondence and a description of the
dual domino-Schensted correspondences. The section ends with a study of symmetric
growth diagrams and some enumerative results. In Section 4, we apply the results
of Section 3 to sign-imbalance. In Section 5, we combine the results of Section 3
with a study of the standardisation of colored involutions. These lead to a number of
product expansions for generating series of domino functions. In Section 6, we give
some final remarks concerning possible generalisations to longer ribbons.

Acknowledgements I am indebted to my advisor, Richard Stanley, for introduc-
ing the subjects of domino tableaux and sign-imbalance to me and for suggesting his
conjecture for study. My work on generating series of domino functions was inspired
by the sum

∑
(−1)ev(λ)Gλ(X;−1), where ev(λ) is the maximum number of vertical

dominoes in even columns in some domino tiling of λ, which he suggested to me. I
would also like to thank Marc van Leeuwen, and two anonymous referees who made
many helpful comments on an earlier version of this paper.

2. Preliminaries

2.1. Domino Tableaux. We will let [n] = {1, 2, . . . , n} throughout.
Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λl(λ) > 0) be a partition of n. We will often not

distinguish between a partition λ and its diagram (often called D(λ)) but the meaning
will always be clear from the context. The partition λ ∪ µ is obtained by taking the
union of the parts of λ and µ (and reordering to form a partition). We denote by

λ̃ and (λ(0), λ(1)) the 2-core and 2-quotient of λ respectively (see [18]). Every 2-core
has the shape of a staircase δr = (r, r − 1, . . . , 0) for some integer r ≥ 0. As usual,
when λ and µ are partitions satisfying µ ⊂ λ we will use λ/µ to denote the shape
corresponding to the set-difference of the diagrams of λ and µ.

We denote the set of partitions by P and the set of partitions with 2-core δr by
Pr. The set of all partitions λ satisfying the two conditions:

λ̃ = δr

|λ| = δr + 2n

will be denoted Pr(n). Note that P = ∪r,nPr(n).

A (standard) domino tableau (SDT) D of shape λ consists of a tiling of the shape

λ/λ̃ by dominoes and a filling of each domino with an integer in [n] so that the

numbers are increasing when read along either the rows or columns. Here, n is 1
2
|λ/λ̃|.

A domino is any 2× 1 or 1× 2 shape, or equivalently, two adjacent squares sharing a
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common edge. The value of a domino is the number written inside it. We will write
domi to indicate the domino with the value i inside. We will also write sh(D) = λ. An
alternative way of describing a standard domino tableau of shape λ is by a sequence

of partitions
{
λ̃ = λ0 ⊂ λ1 ⊂ . . . ⊂ λn = λ

}
, where sh(domi) = λi/λi−1.

A semistandard domino tableau (SSDT) D of shape λ consists of a tiling of the

shape λ/λ̃ by dominoes and a filling of each domino with an integer, so that the
numbers are non-decreasing when read along the rows and increasing when read
along the columns. The weight of such a tableau D is the composition wt(D) =
(µ1, µ2, . . .) where there are µi occurrences of i’s in D. Let v(D) be the number of
vertical dominoes in a domino tableau D. The spin sp(D), is defined as v(D)/2.
The standardisation of a semistandard domino tableau D of weight µ is a standard
domino tableau Dst obtained from D by replacing the dominoes containing 1’s with
1, 2, . . . , µ1 from left to right, the dominoes containing 2’s by µ1+1, µ1+2, . . . , µ1+µ2,
and so on.

D =

4

3 4

1
2 2

1 1

Dst =

7

6 8

1
4 5

2 3

Figure 1. A domino tableau D with shape (5, 5, 4, 1, 1) and weight
(3, 2, 1, 2) and its standardisation Dst.

More general skew (semi)standard domino tableaux are defined in a similar manner.

We should remark that Littlewood’s 2-quotient map [17] gives a bijection between
semistandard domino tableaux of shape λ and pairs of semistandard Young tableaux
of shapes λ(0) and λ(1).

2.2. Biletters and Colored Words. The definitions in this section are essentially
those of [21] except that we will consider multisets of biletters instead of colored
words, and our definitions of inverse and standardisation will emphasise this point of
view.

A letter will be an integer with possibly a bar over it. If x and y are letters, we
will say x < y if

(1) x < y as integers and both are unbarred,
(2) x > y as integers and both are barred, or
(3) x is barred and y is unbarred.

A colored word is a word made of letters. A colored word w is a colored permutation
if each integer of [n] is used exactly once, for some n. Such a word will also be called
a hyperoctahedral permutation or a signed permutation. The set (in fact group) of
all such words will be denoted Bn. The weight of a word is defined in the usual way,
with the bars ignored. The operation ev removes the bars from a colored word. Thus
if w = (231) then wev = (231).
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A biletter l is an ordered pair of letters, denoted
(

x
y

)
such that x is unbarred and y

may be barred or not. The inverse linv =
(

y
x

)
of l =

(
x
y

)
is the biletter obtained from

l by swapping the pair of integers preserving the barred-ness of the lower letter.
There is a (total) ordering < on biletters defined by

(
x
y

)
<
(

k
l

)
if

(1) x < k, or
(2) x = k and y < l as letters.

Let m be a multiset of biletters. The length of m is simply its size as a multiset.
The top or upper weight of m is the weight (in the usual sense) of the multiset of top
letters, and similarly for the bottom or lower weight. The inverse minv of m is the

multiset
{(

x
y

)inv
|
(

x
y

)
∈ m

}
.

The total color of a multiset of biletters m or a colored word w, denoted tc(m) or
tc(w), is the number of barred letters in the multiset or word.

Standardisation st is defined as follows for a multiset of biletters m. It will send a
multiset of biletters to a hyperoctahedral permutation mst = π = π1π2 · · ·πn where
n is the size of m. We set πi = j if the ith smallest biletter l =

(
x
y

)
in m under <

becomes the jth smallest biletter in minv under <. We then make j barred if and
only if y is barred. Ties are broken as follows. Suppose l =

(
x
y

)
occurs k times in m.

Let the first occurrence of l in m, ordered by <, be its i-th letter, and let the first
occurrence of linv in minv be its j-th letter. Then

(1) If y is unbarred, we set πi = j, πi+1 = j + 1, . . .πi+k−1 = j + k − 1.
(2) If y is barred, we set πi = j + k − 1, πi+1 = j + k − 2, . . .πi+k−1 = j.

It is immediate from the definitions that standardisation and inverse commute.
One may check that these definitions agree with those of [21] by identifying a

multiset of biletters with a colored biword by ordering the biletters canonically via
<. We also note the following property of standardisation which we will need later.
If in m, ordered by <, the biletters with a fixed number y as lower letter (barred or
not) occur at indices i1 < . . . < il, then in π = mst one has πi1 < · · · < πil as letters.

For example, let m be the multiset of biletters

m =

{(
1

2

)
,

(
1

3

)
,

(
2

4

)
,

(
3

1

)
,

(
3

1

)}
.

Then m has top weight (2, 2, 1) and bottom weight (2, 1, 1, 1). Its inverse minv is
given by

minv =

{(
2

1

)
,

(
3

1

)
,

(
4

2

)
,

(
1

3

)
,

(
1

3

)}
.

Its standardisation mst is

mst = 34521.

Lemma 1. A multiset of biletters m is uniquely determined by its standardisation
mst and its top and bottom weights.

Proof. This is easy to check directly from the definitions, but can also be derived
from results in [21]. �
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We will occassionally identify a colored word w or a hyperoctahedral permutation
π with a multiset of biletters obtained by filling the top row with {1, 2, . . . , n} from
left to right, and splitting into biletters. We note that under this identification, the
inverse for multisets of biletters is compatible with the usual inverse of Bn.

2.3. Domino insertion. The normal Robinson-Schensted algorithm gives a bijec-
tion between permutations of Sn and pairs (P, Q) of standard Young tableaux (SYT)
of size n and the same shape. A semistandard generalisation of this was given by
Knuth. This is a bijection between certain matrices with non-negative integer entries
(or alternatively multisets of unbarred biletters) and pairs of semistandard Young
Tableaux of the same shape. We refer the reader to [5, 24] for further details. Hence-
forth, familiarity with usual Robinson-Schensted insertion will be assumed.

In this section we describe the corresponding bijection for domino tableaux in a
traditional insertion ‘bumping’ procedure. We will follow the description given by
Shimozono and White [21] for the rest of this section where more details may be
found. As the whole theory will be developed completely from the growth diagram
point of view in Section 3, we will not be completely formal. The reader is referred
to [6], [21], [15] for full details.

Let D be a domino tableau with sh(D) = λ, no values repeated, and i a value which
does not occur in D. We will describe how to insert both a vertical and horizontal
domino with value i into D. Let A ⊂ D be the sub-domino tableau containing values
less than i. If λ has a 2-core λ = λ̃, then we will always assume that λ̃ ⊂ sh(A). We
set B to be the domino tableau containing A and an additional vertical domino in
the first column or an additional horizontal domino in the first row labelled i. Let
C = D/D′ be the skew domino tableau containing values greater than i. Now we
recursively define a bumping procedure as follows.

Let (B, C) be a pair of domino tableau (with no values repeated) overlapping in
at most a domino. The combined shape of B and C must be a valid skew shape
and the values of C larger than those of B. Let λ be the shape of B and j be the
largest value of C respectively. Denote the corresponding domino by domj. We now
distinguish four cases:

(1) If λ∩domj = ∅ do not touch, then we set B ′ = B∪domj and C ′ = C−domj.
(2) If λ ∩ domj = (k, l) is exactly one square, then we add a domino containing

j to B to obtain a tableau B ′ which has shape λ ∪ domj ∪ (k + 1, l + 1). We
set C ′ = C − domj.

(3) If λ∩domj = domj and domj is horizontal, then we ‘bump’ the domino domj to
the next row, by setting B ′ to be the union of B with an additional (horizontal)
domino with value j one row below that of domj. We set C ′ = C − domj.

(4) If λ ∩ domj = domj and domj is vertical, then we ‘bump’ the domino domj

to the next column, by setting B ′ to be the union of B with an additional
(vertical) domino with value j one column to the right of domj. We set
C ′ = C − domj.

This procedure is repeated with (B, C) replaced by (B ′, C ′) until the (skew) domino
tableau C becomes empty.
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The resulting B tableau will be denoted by D ← i for the insertion of a horizontal
domino and D ← i for a vertical domino.

Let w = w1w2 · · ·wn be a colored permutation and δr be a 2-core assumed to be
fixed throughout. Then the insertion tableau P r

d (w) is defined as ((. . . ((δr ← w1)←
w2) · · · ) ← wn). The sequence of shapes obtained in the process defines another
standard domino tableau called the recording tableau Qr

d(w).
As an example, the domino tableau P 0

d (3421) is constructed as in Figure 2.

3 3
4 2

3
4 1 2

3

4

Figure 2. Insertion of w = 3421 into ∅.

The following theorem will be proven in Section 3.

Theorem 2. Fix r ≥ 0. The above algorithm defines a bijection between signed
permutations π ∈ Bn and pairs of standard domino tableaux (P, Q) of the same shape
λ ∈ Pr(n). This bijection satisfies the equality

tc(π) = sp(Pd(π)) + sp(Qd(π)).

The insertion algorithm is due to Barbasch and Vogan [1] in a different form, and
can be implemented by performing multiple (usual) Schensted algorithms. For ex-
ample, to calculate the tableau P 0

d (3421) of Figure 2, we would start with the word
[1,−2,−4, 3,−3, 4, 2,−1]. One computes the shapes of the different tableaux ob-
tained by Schensted insertion, applied to the successive words obtained by erasing
(4,−4), (3,−3), . . . in succession. This sequence of shapes differs by single domi-
noes, and give the domino tableau P 0

d (3421). The insertion described here in terms
of bumping is essentially that of Garfinkle [6]. Van Leeuwen [15] proves that the
Barbasch-Vogan algorithm is the same as the bumping description, and also shows
that the bijection holds in the presence of a 2-core. That this algorithm sends total
color to the sum of spins seems to have been first used by Kirillov, Lascoux, Leclerc
and Thibon in [9] for certain hyperoctahedral involutions, though no details or proofs
are present. More recently, the color-to-spin property is made explicit by Shimozono
and White in [21].

Shimozono and White [21] only prove the color-to-spin property in the absence of
a 2-core. However, the color-to-spin property is proven by studying the spin change
for all the ‘bumps’ in the insertion and these are unaffected by the presence of a
2-core. Thus the generalisation of the domino insertion bijection to the 2-core case
is immediate. Shimozono and White also give a semistandard generalisation of this
bijection which is the case r = 0 of the following theorem. Their theory of domino
insertion is developed in conjunction with other combinatorial algorithms including
Haiman’s mixed insertion and left-right insertion.
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Theorem 3. Fix a 2-core δr. There is a bijection between mutlisets of biletters m of
length n and pairs (P r

d (m), Qr
d(m)) of semistandard domino tableaux with the same

shape λ ∈ Pr(n) with the following properties:

(1) The bijection has the color-to-spin property:

tc(m) = sp(P r
d (m)) + sp(Qr

d(m)).

(2) The weight of P r
d (m) is the upper weight of m. The weight of Qr

d(m) is the
lower weight of m.

(3) The bijection commutes with standardisation in the following sense:

P r
d (m)st = P r

d (mst).

Qr
d(m)st = Qr

d(m
st).

The proof of this will be left until the next section, where we give an alternative
description of domino insertion in terms of growth diagrams.

3. Growth Diagrams and Domino Insertion

3.1. Properties of Growth Diagrams. The insertion algorithm of subsection 2.3
can also be phrased in terms of Fomin’s growth diagrams [3, 4] (also known as the
poset-theoretic description, or language of shapes). This was first made explicit by
van Leeuwen [15]. We will show how growth diagrams are relevant to the semistan-
dard generalisation of domino insertion of [21]. Thus our aim will be to give a short,
stand-alone proof of Theorem 3 using elementary considerations of growth diagrams
only, bypassing the connection with mixed insertion used by Shimozono and White.
Thus their lemma [21, Lemma 33] is replaced by our Lemma 9. The use of growth
diagrams makes the generalisation to the case of nonempty 2-core immediate. In fact
one could use growth diagrams to define the entire correspondence and develop the
theory beginning from that.

Let M(i, j) be a n×n matrix taking values from {0, 1,−1} thought of as the matrix
representing a hyperoctahedral permutation. Thus it has one non-zero value in each
row or column. We will take the row and column indices to lie in [n].

The growth diagram (of M(i, j)) is an array of partitions λ(i,j) for 1 ≤ i, j ≤ n+1.
Two ‘adjacent’ partitions λ(i,j) and λ(i+1,j) or λ(i,j) and λ(i,j+1) are either identical
or differ by exactly one domino. Initially, all the partitions λ(1,j) and λ(i,1) are set
to the same partition µ. For our purposes this will usually be a partition satisfying
µ = µ̃. The remainder of the growth diagram will be determined from µ and the
data M(i, j) according to the following local rules.

Let λ = λ(i,j), µ = λ(i+1,j), ν = λ(i,j+1), ρ = λ(i+1,j+1) be the corners of a ‘square’.
Assume (inductively) that λ, µ and ν are known. Then ρ is determined as follows:

(1) If M(i, j) = 1 then it must be the case that λ = µ = ν. Obtain ρ from λ by
adding two to the first row.

(2) If M(i, j) = −1 then it must be the case that λ = µ = ν. Obtain ρ from λ
by adding two to the first column.

(3) If M(i, j) = 0 and λ = µ or λ = ν (or both) then ρ is set to the largest of the
three partitions.
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(4) Otherwise M(i, j) = 0 and ν and µ differ from λ by dominoes γ and γ ′. If
γ and γ′ do not intersect then ρ is set to be the union λ ∪ γ ∪ γ ′. If γ ∩ γ′

is a single square (k, l), then ρ is the union of λ ∪ γ ∪ γ ′ ∪ (k + 1, l + 1). If
γ = γ′ is a vertical domino then ρ is obtained from λ ∪ γ by adding two to
the column immediately to the right of γ. If γ = γ ′ is a horizontal domino
then ρ is obtained from λ∪ γ by adding two to the row immediately below γ.

We will call these rules the local rules of the growth diagram.

Proposition 4. The above algorithm is well defined. The growth diagram models the
insertion of the colored permutation π corresponding to M(i, j) into a 2-core δr (in
fact more generally any initial partition) .

The partition λ(i,j) is the shape of the tableau obtained after the first i insertions and

restricted to values less than j. Thus
{
λ(n+1,j) : j ∈ [n + 1]

}
is a chain of partitions

determining P r
d (π) and

{
λ(i,n+1) : i ∈ [n + 1]

}
is a chain of partitions determining

Qr
d(π).

Proof. This is proven via induction, by comparing domino insertion with the local
rules of the growth diagram. The details can be found in [15]. �

For example, Figure 3 is the growth diagram corresponding to the insertion proce-
dure of Figure 2.

Lemma 5. The local rules of a growth diagram are reversible in the following sense.
Let λ = λ(i,j), µ = λ(i+1,j), ν = λ(i,j+1), ρ = λ(i+1,j+1) be the corners of a ‘square’ of
the growth diagram. Then ρ, µ and ν determine λ and M(i, j).

Proof. This is a simple verification of the local rules. �

Note, that there can be two legitimate standard domino tableaux corresponding to{
λ(i,n+1) : i ∈ [n + 1]

}
and

{
λ(n+1,j) : j ∈ [n + 1]

}
which do not give a growth diagram

corresponding to an insertion procedure. For example if λ(1,2) = (2) = λ(2,1) and
λ(2,2) = (2, 2) then λ(1,1) must be ∅. This is not a valid growth diagram for insertion
as λ(1,1) 6= λ(2,1).

Lemma 6. The correspondence

π → (P r
d (π), Qr

d(π))

is a bijection between π ∈ Bn and pairs of standard domino tableaux of the same
shape λ ∈ Pr(n).

Proof. The previous Lemma implies that this correspondence is injective. As no
dominoes can be removed from δr, the ‘initial’ row and column of the growth dia-
gram (λ(1,j) and λ(i,1)) will consist completely of partitions equal to δr. Thus setting
λ(i,n+1) : i ∈ [n + 1] and λ(n+1,j) : j ∈ [n + 1] to two tableaux of the shape λ ∈ Pr(n)
will give a growth diagram corresponding to the insertion of some hyperoctahedral
permutation π. �

Lemma 7. Let π be a hyperoctahedral permutation. Domino insertion possesses the
symmetry property

P r
d (π) = Qr

d(π
inv).
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∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

3

1

3

3

2

21

32 342

321

34

3421

Figure 3. Growth diagram for the insertion of w = 3421 into ∅.
The colored word whose insertion tableau corresponds to each shape is
written next to the shape.

Proof. This is a consequence of the fact that the growth diagram local rules are
symmetric. �

Lemma 8. Domino insertion for hyperoctahedral permutations π possesses the color-
to-spin property:

tc(π) = sp(P r
d (π)) + sp(Qr

d(π)).

Proof. Let λ = λ(i,j), µ = λ(i+1,j), ν = λ(i,j+1), ρ = λ(i+1,j+1) be the corners of a
square of the growth diagram. Then the Lemma follows from the observation that

sp(ρ/µ) + sp(ρ/ν) = sp(µ/λ) + sp(ν/λ) +

{
1 if M(i, j) = −1

0 otherwise.

This can be checked by considering the local rules case by case. �

Lemma 9. Let π = π1 · · ·πn be a colored permutation. Then πi < πi+1 if and only if
domi lies to the left of domi+1 in Qr

d(π).

Proof. The main idea is to analyze a 1 × 2 rectangle of the growth diagram. Let
λ0 = λ(i,j), λ1 = λ(i+1,j), λ2 = λ(i+2,j), µ0 = λ(i,j+1), µ1 = λ(i+1,j+1) and µ2 = λ(i+2,j+1)
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be the corners of a 1 × 2 rectangle of the growth diagram. We will call the two
squares of the 1× 2 rectangle the first and second squares. We further assume that
M(i, j) = M(i + 1, j) = 0.

Now suppose that α0 = λ1/λ0 and α1 = λ2/λ1 are both dominoes so that α0 lies
to the left of α1. Then it is easy to check that β0 = µ1/µ0 and β1 = µ2/µ1 are both
dominoes since M(i, j) = M(i + 1, j) = 0. We claim that in fact β0 lies to the left
of β1. If λ0 = µ0 this is trivial and most of the cases of the local rules are a simple
verification.

The only interesting case is when λ1 = µ0 and α0 is a vertical domino. In this case,
β0 has moved to the right when compared to α0. The key observation is that β0 is
placed in the column immediately to the right of α0, so it is either still to the left of
α1 or it overlaps α1. When overlap occurs, β1 will be moved further to the right and
β0 will remain to the left of β1. This proves our claim.

To show (one direction of) our lemma, we just need to check, case by case, that
the initial condition (α0 lying to the left of α1) holds for j = max(πev

i , πev
i+1) + 1. As

adding a new domino to the first column will be furthest to the left, and adding a
new domino to the first row will be the furthest right this is a simple verification.
The claim implies inductively that the same will continue to hold when we get to
λ(i,n+1), λ(i+1,n+1) and λ(i+2,n+1), which give exactly domi and domi+1 of Qr

d(π).
The other direction of the lemma is proven in exactly the same way, or one could

replace ‘left’ by ’above’ and ‘row’ by ‘column’. �

Lemma 10. Let π = π1 · · ·πn be a colored permutation. Then
(
πinv

)
i
<
(
πinv

)
i+1

if

and only if domi lies to the left of domi+1 in P r
d (π).

Proof. This is a consequence of Lemma 9 and Lemma 7. �

We are now ready to prove the semistandard domino-Schensted correspondence.

Proof of Theorem 3. That the correspondence exists for hyperoctahedral permuta-
tions is Lemma 6. Then the color-to-spin property follows from Lemma 8.

For the semistandard case, fix two weights µ and λ and let these be the upper and
lower weights of a multiset of biletters m. We define P r

d (m) by requiring it to have
weight λ and satisfy P r

d (m)st = P r
d (mst). We now show that such a (semistandard)

tableau exists. Let π = mst. Suppose domi lies to the right of domi+1 in P r
d (π) and

j and k satisfy πinv
i = j and πinv

i+1 = k. Then by Lemma 10, j > k as letters. This
means that the ith smallest biletter of minv has a different top letter to the (i + 1)th

smallest biletter minv by the definition of standardisation. So we are never in the
situation where we need to relabel domi and domi+1 with the same integer. Such a
tableau is unique since standardisation is injective for tableaux when the weight is
fixed.

We then define Qr
d(m) by

Qr
d(m) = P r

d (minv).

It is clear that these definitions commute with standardisation.
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Since standardisation is injective (for both multisets of biletters and tableaux)
when the weights µ and λ are fixed, this proves that the correspondence

m→ (P r
d (m), Qr

d(m))

is injective for multisets of biletters with fixed weights for the top and bottom rows.
The color-to-spin property is also a consequence of the standardisation procedure, as

tc(m) = tc(mst) = sp(P r
d (mst)) + sp(Qr

d(m
st)) = sp(P r

d (m)) + sp(Qr
d(m)).

Finally, one can show that correspondence is a surjection as follows. Suppose we are
given a pair (P, Q) of semistandard domino tableaux of shape sh(P ) = sh(Q) ∈ Pr(n)
such that wt(P ) = λ and wt(Q) = µ. Let π be the signed permutation corresponding
to (P st, Qst) by Lemma 6, and let f, g : [n]→ Z be the maps assigning to an entry of
P st (respectively of Qst) the corresponding entry of P (respectively of Q); f and g are
weakly increasing. We claim that the multiset m of biletters, obtained by considering
π as a (multi)set of biletters (adding a top row 1, . . . , n) and then replacing each

pair of integers
(

x
y

)
by
(

g(x)
f(y)

)
while preserving the barred-ness of the bottom letter,

corresponds to (P, Q). Since the top and bottom weights are correct, this amounts
to showing mst = π. The ‘if’ part of Lemma 9 implies that if q is any entry of Q, and
{a, a + 1, a + 2, . . . , b} = g−1(q), then πa < πa+1 < · · · < πb, which means that the
sequence of biletters of m obtained from πa, . . . , πb are in weakly increasing order.
Since among biletters from distinct such sequences order is also preserved due to the
top letter, we see that each biletter

(
i
πi

)
of π gives rise to the ith smallest biletter of

m; since πinv corresponds to (Qst, P st), similar reasoning shows that the biletter
(

j
πinv

j

)

of πinv gives rise to the jth smallest biletter of minv. One checks that the definition of
standardisation (in particular the rule for breaking ties) now ensures that mst = π.

This completes the proof. �

An alternative way of proving the surjectiveness of the correspondence is by enu-
merating both multisets of biletters and pairs of tableaux of the same shape. Little-
wood’s 2-quotient map will accomplish the latter.

For the case r = 0, it is easy to see that the definition used in the proof agrees
with that of Shimozono and White [21].

Corollary 11. The semistandard domino correspondence possesses the symmetry
property:

P r
d (m) = Qr

d(m
inv).

Proof. This is a consequence of the definition used in the proof. �

3.2. Dual domino-Schensted correspondence. In this section we give a descrip-
tion of two dual domino-Schensted correspondences α and β. They are bijections
between (multiplicity-free) sets of biletters and pairs of tableaux of the same shape,
one of which is semistandard and the other is column-semistandard. The definitions
of the three domino-Schensted correspondences differ only in the order on biletters
used to define standardisation.

For a description of the dual RSK correspondence for Young tableaux see [24].
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A domino tableau D is column-semistandard if its transpose is semistandard.
We define a new order <d on biletters as follows. The biletter

(
x
y

)
<d

(
k
l

)
if

(1) x < k, or
(2) x = k and y > l.

Now we define two new kinds of standardisation stα and stβ. Let m be a set of
biletters of size n. We define mstα = π1π2 · · ·πn as follows. We set πi = j if the ith

largest biletter of m under <d becomes the jth largest biletter of minv under < when
we take inverses. Since m is multiplicity free, we do not need to worry about ties.
Similarly we define mstβ by using < as the order for m and <d as the order for minv.
In both cases the barred-ness of individual biletters is preserved as for the original
standardisation.

The inverse minv of a set of biletters is defined as for multisets of biletters.
We may now define the two dual domino-Schensted correspondences α and β.

Let m be a multiplicity-free set of biletters. We define P r
α(m) to be the unique

semistandard tableau which satisfies P r
α(m)st = P r

d (mstα) and the usual equality of
weights. We define Qr

α(m) to be the unique column-semistandard tableau satisfying
Qr

α(m)st = Qr
d(m

stα).
We define the correspondence β in the same way, replacing stα by stβ, and requiring

that P r
β(m) be column-semistandard and Qr

β(m) be semistandard. That α and β are
unique and well-defined is part of Theorem 12.

Note that both correspondences agree with the usual domino correspondence when
applied to hyperoctahedral permutations.

Theorem 12. Let r ≥ 0 be fixed. The map α

α : m→ (P r
α(m), Qr

α(m))

is a weight preserving bijection between multiplicity-free sets of biletters m of length n
and pairs of tableaux (P, Q) of the same shape λ ∈ Pr(n) such that P is semistandard
and Q is column-semistandard.

The map β
β : m→ (P r

β(m), Qr
β(m))

is a weight preserving bijection between multiplicity-free sets of biletters m of length
n and pairs of tableaux (P, Q) of the same shape λ ∈ Pr(n) such that P is column-
semistandard and Q is semistandard.

These maps satisfy the following properties:

(1) They commute with standardisation (by definition). Thus

(P r
α(m)st, Qr

α(m)st) = (P r
d (mstα), Qr

d(m
stβ))

and similarly for β.
(2) The maps α and β are related by

(Qr
α(m), P r

α(m)) = (P r
β(minv), Qr

β(minv)).

(3) Both maps have the color-to-spin property.

Proof. The proof is analogous to that of Theorem 3, requiring use of Lemmas 9 and
10. �
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P 0
α(m) = 1 1 1 1 Q0

α(m) =
1

1

2

2

P 0
β (m) =

1

1

1

1

Q0
β(m) = 1 1

2 2

P 0
d (m) =

1 1 1
1 Q0

d(m) =
1

1

2

2

Figure 4. The three domino-Schensted correspondences for m =
{(

1
1

)
,
(
1
1

)
,
(
2
1

)
,
(
2
1

)}
.

As an example we have calculated the insertion and recording tableaux for all three
correspondences in Figure 4 for the set of biletters m =

{(
1
1

)
,
(
1
1

)
,
(
2
1

)
,
(
2
1

)}
.

3.3. Statistics on Domino Tableaux. In this subsection we will introduce and
study a number of statistics on partitions and domino tableaux. Let λ be a partition
with 2-core λ̃. Let o(λ) be the number of odd rows of λ . Thus o(λ′) is the number
of odd columns. Let

d(λ) =

l(λ)/2∑

i=1

⌊
λ2i

2

⌋
.

Note that d(λ) = d(λ′) (see for example [25]). Also let

v(λ) =

l(λ′)∑

i=1

⌊
λ′

i

2

⌋
=

l(λ)/2∑

i=1

λ2i.

Now let D be a domino tableau of shape λ. As before v(D) is the number of vertical
dominoes in D and sp(D) = v(D)/2. Let ov(D) and ev(D) be the number of vertical
dominoes in odd and even columns respectively. Thus sp(D) = (ov(D) + ev(D))/2.
Let mspin(λ) be the maximum spin over all domino tableaux of shape λ. Similarly,
let ov(λ) be the maximum of ov(D) over all domino tableau of shape λ. Define ev(λ)
similarly. The cospin of a domino tableau D is cosp(D) = mspin(λ)− sp(D) (and is
always an integer).

The following lemma is a strengthening of a lemma in [27].

Lemma 13. Let D be a domino tableau of shape λ with 2-core λ̃. Then

(1) ov(D)− ev(D) =
o(λ)− o(λ̃)

2
.

Proof. We proceed by induction on the size of λ, while keeping λ̃ fixed. When D has
shape λ̃ then both sides are 0. Now let D have shape λ and suppose the Lemma is
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true for all shapes µ that can be obtained from λ by removing a domino. Let γ be
the domino with the largest value in D. Removing γ from D gives a domino tableau
D′ for which (1) holds. If γ is a horizontal domino then neither side changes. If γ is
a vertical domino in an odd row then both sides decrease by 1 (changing from D to
D′). If γ is a vertical domino in an even row then both sides increase by 1. �

Note that this implies that a domino tableau D which has the maximum spin
(amongst all domino tableaux of shape λ) will also have the most number of odd
vertical and even vertical dominoes. Thus for example, mspin(λ) = ev(λ) + ov(λ).

3.4. Symmetric Growth Diagrams. We now specialise to the case where the ma-
trix Mπ(i, j) corresponds to a hyperoctahedral involution π. Thus Mπ(i, j) is sym-
metric and π satisfies π2 = 1 in the group Bn. The hyperoctahedral involution π
will consist of a number of fixed points, barred fixed points, two-cycles and barred
two-cycles. For example, let π = (1635427). Then π has one fixed point, two barred
fixed points, one two-cycle and one barred two-cycle.

In this case we obtain the following proposition, part of which was first observed
by van Leeuwen [15, p.26].

Proposition 14. Let π ∈ Bn be a hyperoctahedral involution. Suppose π has θ fixed
points, ϑ barred fixed points, ι two-cycles and κ barred two-cycles. Fix a 2-core δr. Let
the insertion tableau P r

d (π) = Qr
d(π) of π into δr have shape λ = sh(P r

d (π)) (which

satisfies λ̃ = δr). Then

sp(P r
d (π)) =

ϑ

2
+ κ

o(λ)− o(δr)

2
= ϑ

o(λ′)− o(δr)

2
= θ

d(λ)− d(δr) = ι + κ.

Proof. Since P r
d (π) = Qr

d(π) for a hyperoctahedral involution by Lemma 7, the first
equation is a consequence of the color-to-spin property of Theorem 2. For the other
statements, note that the symmetry of Mπ(i, j) and of the local rules of the growth
diagram imply that the growth diagram λ(i,j) itself is symmetric. We focus our
attention on the partitions λ(i,i). If Mπ(i, i) = 1 then λ(i+1,i+1) has two boxes added
to its first row, and so o(λ′

(i+1,i+1)) = o(λ′
(i,i)) + 2. Similarly, if Mπ(i, i) = −1 then

o(λ(i+1,i+1)) = o(λ(i,i)) + 2. In both cases d(λ(i,i)) = d(λ(i+1,i+1)).
If Mπ(i, i) = 0 and λ(i+1,i) = λ(i,i) = λ(i,i+1) then λ(i,i) = λ(i+1,i+1). The only

remaining case is if λ(i+1,i) differs from λ(i,i) by a domino, in which case λ(i,i+1) =
λ(i+1,i) as well. This implies that λ(i+1,i+1) differs from λ(i,i) by two dominoes, that
are either in two adjacent columns or in two adjacent rows. Regardless, the number
of odd columns and rows is unchanged while d(λ(i+1,i+1)) = d(λ(i,i)) + 1. �
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Corollary 15. Let D = Pd(π) correspond to a hyperoctahedral involution π with ϑ
barred fixed points and κ barred two-cycles. Then

ev(D) = κ.

ov(D) = ϑ + κ.

Proof. As before, let π have ϑ barred fixed points. Then by Proposition 14,

ev(D) + ov(D) = 2sp(D) = ϑ + 2κ.

Combining Lemma 13 with Proposition 14 again we have,

ov(D)− ev(D) =
o(λ)− o(λ̃)

2
= ϑ.

Subtracting the two equations and dividing by two, we obtain the first result. Sum-
ming the two equations give the second result. �

The significance of this Corollary will become apparent in Section 4.

3.5. Some Enumeration for Domino Tableaux. Let f λ be the number of SYT
of shape λ. The Robinson-Schensted algorithm for standard Young tableaux (SYT)
leads to a number of enumerative results including the following well known result.

Proposition 16. Let n ≥ 1. Then

(2)
∑

λ`n

(fλ)2 = n!.

(3)
∑

λ`n

fλ = t(n).

We can easily generalise these to domino tableaux. Define

fλ
2 (q) =

∑

D

qsp(D)

where the sum is over all standard domino tableaux D of shape λ. It is unlikely
that a ‘hook-length’ formula holds for f λ

2 (q). Note that fλ
2 (q) depends on more than

just the 2-quotient (λ(0), λ(1)) of λ. For example, (3, 1, 1) and (2, 2) have the same

2-quotient but f
(3,1,1)
2 (q) = 2q1/2 and f

(2,2)
2 (q) = 1 + q. A cospin version of fλ

2 (q) for
more general ribbon tableaux was studied by Schilling, Shimozono and White in [20].

We have the following analogue of (2):

Proposition 17. Let n ≥ 1 and r ≥ 0 be fixed. Then
∑

λ

(
fλ

2 (q)
)2

= (1 + q)nn!

where the sum is over all partitions λ ∈ Pr(n).

Proof. This is an immediate consequence of the bijection in Theorem 2. �
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The q = −1 specialisation of Proposition 17 has an interpretation in terms of
sign-imbalance (see Corollary 24).

Now define hr(n) as follows:

hr(n) =
∑

λ∈Pr(n)

a(o(λ)−o(δr))/2b(o(λ′)−o(δr))/2cd(λ)−d(δr)fλ
2 (q).

When a = b = c = q = 1, this is the number of hyperoctahedral involutions in Bn

and thus a domino analogue of t(n).

Proposition 18. The function h(n) = hr(n) does not depend on r. It satisfies the
recursion

h(n + 1) = (b + aq1/2)h(n) + nc(1 + q)h(n− 1).

The exponential generating function defined as

Eh =
∑

h(n)
tn

n!
is given by the formula

Eh = exp

(
(b + aq1/2)t + c(1 + q)

t2

2

)
.

Proof. That hr(n) does not depend on r follows from the fact that the tableau be-
ing enumerated are in bijection with hyperoctahedral involutions. Furthermore, the
bijection preserves the appropriate weighting according to Proposition 14. Thus we
are in fact enumerating hyperoctahedral involutions.

The recursion for h(n) is immediate from the construction of a hyperoctahedral
involution from barred and non-barred fixed points and two-cycles.

For the exponential generating function, we can use the exponential formula (see
[24, Corollary 5.1.6]). Thus we think of a hyperoctahedral involution as a partition of
[n] into one and two element subsets. The one element subsets can be given a weight
of b or aq1/2 while the two element subsets can be given a weight of c or cq. �

We remark that the usual exponential generating function for the number of invo-
lutions in Sn is exp(t + t2/2). Setting a = b = q1/2 = c = 1 in Proposition 18, we
confirm that the generating function for the number of hyperoctahedral involutions
is its square.

4. Sign-Imbalance and Stanley’s Conjecture

Sign imbalance can be defined for posets in general, but we will only concern
ourselves with the posets arising from partitions.

Let T be a standard Young tableau. Its reading word reading(T ), for our purposes,
will be obtained by reading the first row from left to right, then the second row,
and so on. We set sign(T ) = sign(reading(T )) where reading(T ) is treated as a
permutation.

Let λ be a partition. Then we set

Iλ =
∑

T

sign(T )
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where the sum is over all standard Young tableaux T of shape λ. We say Iλ is the
sign-imbalance of λ.

It is not difficult to see that Iλ is related to domino tableaux. Suppose λ has no
2-core, then define an involution on standard Young tableaux of shape λ by swapping
2i − 1 with 2i for the smallest possible value of i where this is possible. If no such
swap is possible the tableau is fixed by the involution.

The fixed points correspond exactly to the standard domino tableau of shape λ.
We obtain a standard Young tableau T (D) from a standard domino tableau D, by
filling the domino with a 1 with the values 1 and 2, the domino with a 2, with the
values 3 and 4, and so on.

When λ has 2-core δ1 (a single box) then we use an involution which swaps 2i with
2i + 1 for the smallest value of i where it is possible. Again, the fixed points are the
standard domino tableau of shape λ.

It is easy to see that these involutions are sign-reversing on tableaux which are not
fixed points and thus we obtain the following proposition.

Proposition 19. Let r ∈ {0, 1}, n ≥ 1 and λ ∈ Pr(n). Then

Iλ =
∑

sh(D)=λ

sign(D)

where the sum is over standard domino tableaux of shape λ and the sign of a domino
tableau D is the sign of the corresponding standard Young tableau T (D). If

For other values of r, the same involutions (chosen based on he parity of |λ|) give
the following result.

Proposition 20. Let λ have 2-core δr for r > 1, then

Iλ = 0.

There is another natural involution on standard Young tableaux whose fixed points
can be identified with standard domino tableaux. This is Schützenberger’s involution
S, also known as evacuation. The fixed points of this involution are exactly in
correspondence with the domino tableau of shape λ satisfying λ̃ = δr for r ∈ {0, 1}
(see [15]). For a fixed shape λ, Stanley [25] has shown that S is either always parity-
reversing or parity-preserving.

By analysing the positions of horizontal and vertical dominoes in a standard domino
tableau, White [27] proves the following proposition. We give a short proof of this,
which was suggested by the referee.

Proposition 21. Let D be a domino tableau of shape λ which has 2-core ∅ or δ1.
Then

sign(D) = (−1)ev(D).

Proof. We begin with a standard Young tableau T of shape λ whose reading word is
the identity permutation. Keeping the other values in reading order, we now move
the two largest values (say i and i + 1) to the location of the domino γ with the
largest value in D. If γ is horizontal, then i and i + 1 will both pass the same set
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of smaller values, so the sign of T does not change. If γ is vertical, then one checks
that the sign changes if and only if γ is in an even column. Now we move the next
largest domino into position, and so on, the analysis being identical. �

White has also given an explicit formula (in terms of shifted tableaux) for the
sign-imbalance of partitions which have ‘near-rectangular’ shape.

Combining Proposition 21 with Corollary 15 we obtain the following theorem.

Theorem 22. Fix r ∈ {0, 1}. Let π be a hyperoctahedral involution. Then the sign
of its insertion tableau sign(P r

d (π)) is equal to the number of barred 2-cycles.

Proof. This follows immediately from Corollary 15 and Proposition 21. �

We can now prove the following conjecture of Stanley [25], known as the ‘2bn/2c’
conjecture.

Theorem 23. Let m ≥ 1 be an integer. Then
∑

λ`m

xv(λ)yv(λ′)qd(λ)td(λ′)Iλ = (x + y)bm/2c.

Note that d(λ) = d(λ′) so that one of q and t is not needed.

Proof. Since Iλ = 0 for λ with a 2-core larger than δ1, we may assume the sum is
over λ ∈ Pr(n), for the unique r ∈ {0, 1} and n satisfying 2n + r = m. Note that
o(δ1) = o(δ′1) = 1 and d(δ1) = 0.

The standard domino tableau of such shape correspond exactly to hyperoctahedral
involutions π ∈ Bn. We define an involution α on all such π by turning the two-cycle
(i, j) with the smallest value of i from barred to non-barred or vice versa, if such an
i exists. By Theorem 22, α is sign-reversing for domino tableaux which are not fixed
points. Furthermore, by Proposition 14, all of the statistics o(λ) − r, o(λ′) − r and
d(λ) remain fixed by α.

The fixed points of α are exactly the hyperoctahedral involutions without two-
cycles. Hence we obtain, using Proposition 14

∑
a(o(λ)−r)/2b(o(λ′)−r)/2cd(λ)Iλ = (a + b)n.

To change this into the form of Stanley’s conjecture, observe that 2v(λ) + o(λ) =
m = 2n + r implying that (o(λ)− r)/2 = n− v(λ) and similarly for v(λ′) and o(λ′).
Now substitute this and also x = 1/a and y = 1/b. Finally multiply both sides by
(xy)n. �

Theorem 23 is compatible with the involution on Bn which changes barred let-
ters to non-barred letters and vice-versa. This operation preserves hyperoctahedral
involutions, and transposes the corresponding insertion tableau.

Note that the fixed points of α in the proof are exactly the domino tableaux
which are hook shaped: each such tableau D with v(D) vertical dominoes and h(D)
horizontal dominoes contributes a term xv(D)yh(D). That these give the right hand
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side of the conjecture was shown by Stanley [25]. When we set x = y = q = 1 we
obtain the following signed analogue of (3):

∑

SY T T

sign(T ) = 2bn/2c

where the sum is over all standard Young tableaux T of size n.
As a corollary of Proposition 17 we also obtain Theorem 3.2(b) and the t = 1 case

of Conjecture 3.3(b) of [25].

Corollary 24. Let n ≥ 1 be a positive integer. Then
∑

λ`n

(−1)v(λ) (Iλ)
2 = 0.

Proof. Let D be a standard domino tableau of shape λ ` n. By Proposition 21,
sign(D) = (−1)ev(D). Now, sp(D) = (ev(D) + ov(D))/2 and by Lemma 13 ov(D)−
ev(D) = (o(λ)− o(λ̃))/2 giving

sp(D) = ev(D) +
o(λ)− o(λ̃)

4
.

Thus sign(D) = (−1)sp(D)(−1)(o(λ)−o(λ̃))/4. (This may involve −1 to the power of
a half integer, which we can consider to be some fixed square root of −1.) Thus
summing over all standard domino tableaux of shape λ we get

(4) fλ(−1) = (−1)(o(λ)−o(λ̃))/4Iλ.

Now we note that when λ̃ = δr for r ∈ {0, 1}, we have v(λ) ≡ o(λ)− o(λ̃)/2 mod 2
which can easily be estalbished by induction. Squaring (4), and summing over λ ` n
we obtain ∑

λ`n

(
fλ(−1)

)2
=
∑

λ`n

(−1)v(λ) (Iλ)
2 ,

using Proposition 20. Thus the Corollary follows from setting q = −1 in Proposition
17. �

Similar results were also obtained by Reifegerste [19] and Sjöstrand [23].

5. Domino Generating Functions

Let Λ denote the ring of symmetric functions in a set of variables X = (x1, x2, . . .)
taking coefficients in C[q1/2] (though the coefficient field will not affect the results).
Its completion, Λ̃ includes symmetric power series of unbounded degree (though the
coefficient of a monomial mλ will always be well defined).

Carré and Leclerc [2] have defined symmetric functions Hλ(X; q) via semistandard
domino tableaux, in the same way that Schur functions arise from semistandard
Young tableaux. Slightly more general functions Gλ(X; q) were used in [11] and the
two are connected via Hλ(X; q) = G2λ(X; q). In fact, [11] defines these functions
much more generally for p-ribbon tableaux.
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Let λ be a partition. Define

Gλ =
∑

D

qsp(D)xwt(D)

where the sum is over all semistandard domino tableaux of shape λ and xµ :=
xµ1

1 xµ2

2 . . . for a partition µ. There is a cospin version of this function which we
will not need. In the notation of [11], our Gλ would be denoted Gλ/λ̃.

That the Gλ are symmetric functions is a consequence of a combinatorial interpre-
tation of their expansion into Schur functions given by Carré and Leclerc. We will
call the Gλ domino functions. Theorem 3 leads immediately to the following domino
Cauchy identity.

Proposition 25. Fix r ≥ 0. Then
∑

λ∈Pr

Gλ(X; q)Gλ(Y ; q) =
1∏

i,j(1− xiyj)(1− qxiyj)
.

The dual domino-Schensted correspondence of Theorem 12 leads to the following
dual domino Cauchy identity.

Proposition 26. Fix r ≥ 0. Then
∑

λ∈Pr

q|λ/δr |/2Gλ(X; q)Gλ′(Y ; q−1) =
∏

i,j

(1 + xiyj)(1 + qxiyj).

Proof. This follows from the fact that column-semistandard domino tableaux D are
in bijection with semistandard domino tableaux D′ of the conjugate shape with spin
given by

sp(D′) =
m

2
− sp(D),

where m is the number of dominoes in the tableau. �

These results are generalised to p-ribbons for any p in [10], using algebraic methods.

In [9], Kirillov, Lascoux, Leclerc and Thibon give two product expansions for cer-
tain sums of the Gλ. These will be seen as specialisations of our Theorem 28. As the
paper [9] contains no proofs, our theorem can be considered both as a proof and as
a generalisation.

We will call a multiset of biletters m a colored involution if m = minv. We begin
by studying closely the effect of standardisation on a colored involution.

Every such colored involution is given by the number of fixed points
(

i
i

)
, barred

fixed points
(

i
i

)
, two-cycles

(
i
j

)
...
(

j
i

)
and barred two-cycles

(
i
j

)
...
(

j

i

)
. Let there be ai,

bi, cij and dij of these respectively. Thus cij = cji and dij = dji.

Lemma 27. Let m be a colored involution. Then its standardisation mst is a hy-
peroctahedral involution with θ fixed points, ϑ barred fixed points, ι two-cycles and κ
barred two-cycles, where:

θ =
∑

i

ai,
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ϑ =
∑

i

bi − 2
∑

i

⌊
bi

2

⌋

ι =
∑

i<j

cij

κ =
∑

i<j

dij +
∑

i

⌊
bi

2

⌋
.

In other words, the only change that occurs is that of barred fixed points becoming
barred two-cycles.

Proof. It is clear that mst is a hyperoctahedral involution.
Fix an integer i. Then in the multiset of biletters m, then there are exactly

A =
∑

j<i

(aj + bj + cjk + djk) + bi +
∑

k

dik +
∑

k<i

cki

biletters smaller than the fixed points of the form
(

i
i

)
. Exactly the same formula

holds for these fixed points in minv. So by the description of how to break ties when
standardising, we see that all these biletters become fixed points.

Now consider barred fixed points
(

i
i

)
. There are

A =
∑

j<i

(aj + bj + cjk + djk) +
∑

k>i

dik

smaller biletters. Again the same formula holds in minv. However, because of the
special way in which ties are broken in the presence of a bar, the numbers assigned
for the upper letters will be the reverse of the numbers assigned to the lower letters.
So all but at most one of these will change from fixed points into two-cycles.

Now consider what happens to the collection of biletters of the form
(

i
j

)
and i 6= j.

We need only show that these all become two-cycles when m is standardised. Since
mst is an involution we only need to check that these biletters do not become fixed
points. Such a biletter has between

A =
∑

l<i

(al + bl + clk + dlk) + bi +
∑

k

dik +
∑

k<j

cki

and
B =

∑

l<i

(al + bl + clk + dlk) + bi +
∑

k

dik +
∑

k<j

cki + cij − 1

smaller biletters. After taking the inverse, exactly the same formula holds with i
swapped with j. We see that the top and bottom letters will never get the same
number via standardisation (in fact if i < j then i will become a smaller number
than what j becomes).

Exactly the same analysis holds for a biletter of the form
(

i
j

)
and i 6= j. �

As an example, let m be the colored involution

m =

{(
1

3

)
,

(
1

3

)
,

(
2

2

)
,

(
2

2

)
,

(
2

2

)
,

(
3

1

)
,

(
3

1

)
,

(
4

5

)
,

(
5

4

)}
.
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with 3 barred fixed points, 2 two-cycles and 1 barred two-cycle. Then its standardi-
sation

mst = 675431298 =

(
1 2 3 4 5 6 7 8 9
6 7 5 4 3 1 2 9 8

)

has 1 barred fixed point, 2 two-cycle and 2 barred two-cycles.

Theorem 28. Let r ≥ 0 be fixed. Let S(X; a, b, c, q) ∈ Λ̃[[a, b, c]] be the symmetric
power series

S(X; a, b, c, q1/2) =
∑

λ∈Pr

a(o(λ)−o(δr))/2b(o(λ′)−o(δr))/2cd(λ)−d(δr)Gλ(X; q).

Then S(X; a, b, c, q1/2) does not depend on r and has a product formula given by
∏

i(1 + aq1/2xi)∏
i(1− bxi)

∏
i(1− cqx2

i )
∏

i<j(1− cxixj)
∏

i<j(1− cqxixj)
.

Proof. Semistandard domino tableaux are in one-to-one correspondence with colored
involutions by Theorem 3 and Corollary 11. If m is a colored involution then the
shape and spin of P r

d (m) is that of P r
d (mst) and thus we may use Proposition 14

and Lemma 27 to calculate the contributions each colored involution makes to the
weights o(λ), o(λ′), d(λ) and sp(P r

d (m)).
Such colored involutions consist of a number of fixed points

(
i
i

)
corresponding to the

product
∏

i 1/(1−bxi). The barred fixed points
(

i
i

)
correspond to the product

∏
i(1+

aq1/2xi)/(1 − cqx2
i ) since according to Lemma 27 all but at most one of the barred

fixed points of each weight will pair to become a two-cycle upon standardisation. The
two-cycles correspond to

∏
i<j 1/(1− cxixj) and the barred two-cycles correspond to∏

i<j 1/(1− cqxixj). �

There are a number of interesting specialisations. We will set r = 0 for the next
few examples.

(1) When a = b = c = q1/2 = 1, we obtain the square of a well known identity:
(
∑

λ∈P

sλ(X)

)2

=

(
1∏

i(1− xi)
∏

i<j(1− xixj)

)2

.

(2) Substituting q1/2 = 0 and using the fact that Gλ(X; 0) = sµ(X) for λ which
satisfy λ = 2µ (see [2]), while Gλ(X; 0) = 0 for other λ ∈ P0, we get

∑

λ∈P

bo(λ)cv(λ)sλ(X) =
1∏

i(1− bxi)
∏

i<j(1− cxixj)
.

This is another well known identity which can be proved using growth dia-
grams for normal RSK.

(3) The case b = c = 1 and a = 0 picks out the Gλ of the form G2µ = Hµ and we
obtain the first formula of [9]:

∑

λ

Hλ(X; q) =
1∏

i(1− xi)
∏

i<j(1− xixj)
∏

i≤j(1− qxixj)
.
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(4) The case a = b = 0 and c = 1 picks out the partitions of the form 2λ ∨ 2λ
giving us the second formula of [9]:

∑

λ

Hλ∨λ(X; q) =
1∏

i<j(1− xixj)
∏

i≤j(1− qxixj)
.

(5) The case a = c = 1 and b = 0 picks out the Gλ of the form Gµ∨µ and we
obtain:

∑

λ

Gλ∨λ(X; q) =

∏
i(1 + q1/2xi)∏

i(1− qx2
i )
∏

i<j(1− xixj)
∏

i<j(1− qxixj)
.

Note that while
∑

Gλ over λ ∈ Pr(n) does not depend on r, the individual Gλ

can differ greatly. In particular, two partitions λ and µ with the same 2-quotient but
with λ̃ 6= µ̃ may not have the same G function. For example, G(2,2) = qs2 + s1,1 while

G(3,1,1) = q1/2(s2 + s1,1). Both (2, 2) and (3, 1, 1) have 2-quotient {(1), (1)}.

6. Ribbon Tableaux

In this last section we make a few remarks concerning which results might be gen-
eralised to ribbon tableaux. We refer the reader to [11] for the important definitions.

Shimozono and White [22] also give a spin-preserving insertion algorithm for stan-
dard ribbon tableaux. Subsequently, van Leeuwen [16] has found a full spin-preserving
Knuth-correspondence for ribbon tableaux. Focusing on the standard correspondence
only, we get a spin-preserving bijection between pairs of standard ribbon tableaux
and permutations π of the wreath product Cp§Sn. Again the involutions are in bi-
jection with standard ribbon tableaux and thus we obtain a p-ribbon analogue of
Proposition 18 with an identical proof.

Proposition 29. Let h(n) be the polynomial in q defined as

h(n) =
∑

T

qsp(T )

where the sum is over all standard ribbon tableaux of size n (and fixed p-core). Then
h(n) satisfies the recurrence

h(n + 1) = (1 + q1/2 + . . . + q(p−1)/2)h(n) + n(1 + q + . . . + qp−1)h(n− 1)

and has exponential generating function

Eh(t) = exp

(
(1 + q1/2 + . . . + q(p−1)/2)t + (1 + q + . . . + qp−1)

t2

2

)
.

The statistics o(λ) and d(λ) are no longer suitable for longer ribbons. It seems
likely that the statistic

ok(λ) = # {i : λi ≡ k mod p}

may be interesting, but we have been unable to find any applications.
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Possibly more promising is the following potential generalisation. The sums over
standard Young tableaux of size n

∑

T

1 = t(n)

∑

T

sign(T ) = 2bn/2c

suggest that we might consider the sum
∑

T

χ(reading(T ))

for some other character χ of Sn. If this were to be related to p-ribbon tableaux
and the wreath product Cp§Sn then χ should take pth roots of unity as its values.
One possibility is the (virtual) character which on the conjugacy class of cycle type
λ takes the value

χ(Cλ) = ωλ−l(λ)

for some pth root of unity ω.
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