(1) Let G be the group of rotational symmetries of a cube. Explicitly, the elements of G are rotations of \mathbb{R}^3 about a line such that the image of the cube under the rotation occupies the same position in \mathbb{R}^3 as the cube did originally; here the line we’re rotating around can be different for different elements of G. Show that G acts on the set of four main diagonals of the cube, and that this action has trivial kernel and induces an isomorphism $G \cong S_4$.

(2) For any finite group G, consider a chain of subgroups $G = N_0 > N_1 > N_2 > \cdots > N_k = 1$, where if $1 \leq i \leq k$ then N_i is a maximal proper normal subgroup of N_{i-1} (i.e., a normal subgroup of N_{i-1} which doesn’t equal N_{i-1}, and for which there is no normal subgroup of N_{i-1} lying strictly between N_i and N_{i-1}). Show that each quotient group N_{i-1}/N_i is simple. Further, if $G = M_0 > M_1 > M_2 > \cdots > M_\ell = 1$ is another chain of subgroups where M_j is a maximal proper normal subgroup of M_{j-1}, then show that $k = \ell$ and that the sequence of quotient groups $N_0/N_1, N_1/N_2, \ldots, N_{k-1}/N_k$ is a permutation of the sequence $M_0/M_1, M_1/M_2, \ldots, M_{\ell-1}/M_\ell$, in the sense that there is some $\sigma \in S_k$ for which $N_{i-1}/N_i \cong M_{\sigma(i)-1}/M_{\sigma(i)}$ for all i.

(3) For each k with $1 \leq k \leq 4$, and each $n \geq k$, how many orbits does S_n have on the set of ordered k-tuples of (not necessarily distinct) elements of $\{1, 2, \ldots, n\}$, via the action $g \star (a_1, \ldots, a_k) = (g(a_1), \ldots, g(a_k))$?

(4) Let \mathbb{Z}^2 act on \mathbb{R}^2 via $(a, b) \star (x, y) = (a + x, b + y)$. Give a geometric/topological description for the “shape” of the set of all orbits, in which each orbit is viewed as a point. (You don’t need to be rigorous in this problem.)

(5) For any prime p, describe all groups of order p^2 (up to isomorphism) (Hint: first show that every such group is abelian.)

(6) Let N be a normal subgroup of a group G with $[G : N] = n$. Show that $g^n \in N$ for each $g \in G$. Is the same conclusion true without requiring N to be normal?

(7) If N is a subgroup of a group G, then show that N is normal in G if and only if N is a union of conjugacy classes of G.

(8) Give a representative for each conjugacy class of A_5, and determine the size of the conjugacy class. Show that A_5 is simple (i.e., it has no nontrivial proper normal subgroups). Deduce that if H is a proper subgroup of A_5 then $[A_5 : H] \geq 5$.