(1) Let c be a real number such that $c^4 = 5$. Determine (with proof) which of these extensions are normal: $\mathbb{Q}(ic^2)/\mathbb{Q}$, $\mathbb{Q}(c+ic)/\mathbb{Q}(ic^2)$, $\mathbb{Q}(c+ic)/\mathbb{Q}$.

(2) Give a nice description of the splitting field of each of the following polynomials over \mathbb{Q}, and in particular determine the degree of the splitting field (as a field extension of \mathbb{Q}): $x^2 - 2$, $x^2 - 1$, $x^3 - 2$, $(x^3 - 2)(x^2 - 2)$, $x^2 + x + 1$, $x^6 + x^3 + 1$, $x^5 - 7$.

(3) Problem 4.1 in chapter 16 of Artin.

(4) A field K is called perfect if every finite extension L/K is separable. Show that K is perfect if and only if one of these holds:
 (1) K has characteristic 0, or
 (2) K has characteristic p with $p > 0$, and also every element of K has a p-th root in K.

(5) Let p be prime, let $L := \mathbb{F}_p(X, Y)$ be the field of rational functions in two variables, and put $K := \mathbb{F}_p(X^p, Y^p)$. Show that L/K is a finite-degree extension, but that $L \neq K(z)$ for any $z \in L$. Also exhibit infinitely many distinct fields F such that $K \subset F \subset L$ (don’t just cite problem 6 for this, instead you should name the fields F here).

(6) Let L/K be a finite-degree field extension, where K is infinite. Show that L can be written as $K(\alpha)$ for some $\alpha \in L$ if and only if there exist only finitely many fields F with $K \subset F \subset L$.
 (I will post hints for this on piazza.)