For each prime \(p > 2 \), show that \(16 = c^8 \) for some \(c \in \mathbb{Q}_p \).

(2) Show that both \((x^2 - 2)(x^2 - 17)(x^2 - 34)\) and \((x^3 - 37)(x^2 + 3)\) have roots in \(\mathbb{Q}_p \) for every \(p \).

Massive extra credit: show the same thing for \(3x^4 + 4y^4 - 19z^4 = 0 \).

(3) Let \(K \) be a field which is complete with respect to a non-archimedean absolute value \(|\cdot|\), let \(a_0, a_1, \ldots \) be a sequence of elements of \(K \), and define

\[
R := \limsup_n a_n |1/n|
\]

which is an element of \([0, +\infty)\). Show that \(D := \{ x \in K : \sum_{n=0}^{\infty} a_n x^n \text{ converges} \} \) satisfies:

1. If \(R = 0 \) then \(D = \{ 0 \} \).
2. If \(R = \infty \) then \(D = K \).
3. If \(0 < R < \infty \) and \(\lim_n |a_n| R^n = 0 \) then \(D = \{ x \in K : |x| \leq R \} \).
4. If \(0 < R < \infty \) and \(|a_n| R^n \nrightarrow 0 \) then \(D = \{ x \in K : |x| < R \} \).

(4) If \(p \) is an odd prime, \(t \in \mathbb{Z}_p \), and \(x \in p\mathbb{Z}_p \), show that the binomial series

\[
G(t, x) := \sum_{n=0}^{\infty} \binom{t}{n} x^n
\]

converges. If \(t = u/v \) with \(u, v \in \mathbb{Z} \) and \(v > 0 \) and \(p \nmid v \), then show that \(G\left(\frac{u}{v}, x\right)^v = (1 + x)^u \). Show in particular that if \(p = 7 \), \(t = 1/2 \) and \(x = 7/9 \) then the series converges to \(4/3 \) in \(\mathbb{R} \) and to a 7-adic number \(\alpha \neq 4/3 \) in \(\mathbb{Q}_7 \).

(5) (a) Determine the set of elements in \(\mathbb{Q}_p \) for which the power series

\[
\log_p(x) := \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x - 1)^n}{n}
\]

converges.

(b) Determine the set of elements in \(\mathbb{Q}_p \) for which the power series

\[
\exp_p(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}
\]

converges.

(c) If \(a \in \mathbb{Q}_p \) is small enough, show that \(\exp_p(\log_p(a)) = a \). How close is “close enough”?