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Abstract. We find all polynomials f, g, h over a field K such
that g and h are linear and f(g(x)) = h(f(x)). We also solve the
same problem for rational functions f, g, h, in case the field K is
algebraically closed.

1. Introduction

Around 1920, Fatou, Julia and Ritt made profound investigations of
functional equations. In particular, they wrote at length on commuting
rational functions: that is, f, g ∈ C(x) with f(g(x)) = g(f(x)). Fatou
and Julia [7, 8] found all solutions when the Julia set of f or g is
not the Riemann sphere. This includes the case of polynomials of
degree at least 2, where up to conjugacy by a linear polynomial, either
f = xn and g = xm are power polynomials, or f = Tn and g =
Tm are Chebychev polynomials, or f and g have a common iterate.
Using different methods which did not require the Julia set hypothesis,
Ritt [12] determined precisely when two polynomials have a common
iterate, and moreover [14] he found all commuting rational functions.
Years later, Eremenko [6] proved Ritt’s results using methods of modern
iteration theory.

Julia showed that commuting rational functions have the same Ju-
lia set. Conversely, much subsequent work has shown that rational
functions with the same Julia set are related to commuting rational
functions (cf. [9] and the references therein). In particular, for polyno-
mials this relationship involves composition with a rotational symmetry
of the Julia set.

Several authors have considered analogous questions over fields K
of positive characteristic, but there are few satisfactory results. There
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are new types of examples, for instance any two additive polynomials∑
i aix

pi over the prime field Fp commute.
In fact, challenges arise already in finding the commuting polynomi-

als f, g ∈ K[x] in the special case deg(g) = 1. Wells [15] and Mullen
[10] solved this problem over finite fields K, so long as deg(f) < #K.
Park [11] proved similar results. Eigenthaler and Nöbauer [5] solved
the problem in various special cases, for instance if deg(f) = char(K).
In this paper we solve the problem in general, and more generally we
find all f, g, h ∈ K[x] with deg(g) = deg(h) = 1 such that f ◦g = h◦f :

Theorem 1.1. Let K be a field. The entries in the following list with
f /∈ K comprise all values α, β, γ, δ ∈ K and f ∈ K[x] \K such that
α, γ 6= 0 and f(αx + β) = γf(x) + δ:

(0) α = γ = 1, β = δ = 0, and f ∈ K[x];
(1) α = γ = 1, β 6= 0, and f = (δ/β)x+ r with{

r ∈ K if char(K) = 0

r ∈ K[xp − βp−1x] if char(K) = p > 0;

(2) α 6= 1, γ = αe, and f = f0+f1(x−β/(1−α)), where e, s ∈ Z≥0,
f1 ∈ xeK[xs], αs = 1, and f0 ∈ K satisfies δ = (1− γ) · f0.

In case K = C, the polynomials in (2) are those for which the Julia
set has a rotational symmetry [3]. Moreover, Ritt showed [13] that the
decomposition of a complex polynomial into indecomposables is unique,
except for nonuniqueness coming from composing a linear with its in-
verse, or using the commutativity of Chebychev polynomials, or using
the identity xs ◦ xeψ(xs) = xeψ(x)s ◦ xs. Note that the polynomials
xeψ(xs) from this identity occur in (2). Ritt’s identity has a characteris-
tic p analogue [4], namely (xp−x)◦(x+ψ(xp−x)) = (x+ψp−ψ)◦(xp−x),
and it is interesting that the polynomials x+ ψ(xp − x) occur in (1).

We also prove an analogous result for rational functions:

Theorem 1.2. Let K be a field of characteristic p ≥ 0. The entries in
the following list with f /∈ K comprise all g, h ∈ K(x) and f ∈ K(x)\K
such that f ◦ g = h ◦ f and each of g and h has degree one and has a
fixed point in K ∪ {∞}; here u, v, ψ ∈ K(x) and deg(u) = deg(v) = 1:

(1) f = u−1 ◦ (δx + ψ(xp − x)) ◦ v−1, g = v(v−1(x) + 1), and
h = u−1(u(x) + δ), where δ ∈ K, and if p = 0 then ψ ∈ K;

(2) f = u−1 ◦ xeψ(xs) ◦ v−1, g = v(αv−1(x)), h = u−1(αeu(x)),
where e, s ∈ Z, α ∈ K∗, and αs = 1.

Our hypothesis on fixed points is always true if K is algebraically
closed. To apply this result to arbitrary fields K, one might need u, v, ψ
to have coefficients in an extension of K.
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In case K = C, these results were proved by af Hällström [1, 2]. His
method has some features in common with ours, but is somewhat more
complicated.

We give a quick inductive proof of Theorem 1.1 in the next section.
Then in Sections 3 and 4 we use ideas from dynamics and Galois the-
ory to prove Theorem 1.2, which yields another proof of Theorem 1.1.
Finally, in Section 5 we deduce the results of Wells [15], Mullen [10]
and Park [11] as consequences of Theorem 1.1.

2. Polynomial solutions

In this section we prove Theorem 1.1.
Pick α, β, γ, δ ∈ K with α, γ 6= 0, and let f ∈ K[x] have degree

n > 0. We will determine when f(αx + β) = γf(x) + δ. We assume
γ = αn, since otherwise f(αx+ β) and γf(x) + δ have distinct leading
coefficients. First suppose α = 1, so γ = 1. If β = 0 then our equation
becomes f(x) = f(x) + δ, so δ = 0; conversely, if β = δ = 0 then
trivially every f is a solution. So assume β 6= 0, and put r := f −
(δ/β)x; then f satisfies f(x + β) = f(x) + δ if and only if r satisfies
r(x+β) = r(x). Let p := char(K) and m := deg(r). If p - m then there
are no such r, since r(x+ β)− r(x) has degree m− 1. In particular, if
p = 0 then r ∈ K, so assume p > 0. Plainly every r̂ ∈ K[xp − βp−1x]
satisfies r̂(x + β) = r̂(x). For any r ∈ K[x] with r(x + β) = r(x), we
know that p | deg(r), so there is some r̂ ∈ K[xp−βp−1x] which has the
same leading term as r; but then r̃ := r − r̂ satisfies r̃(x) = r̃(x + β)
and deg(r̃) < deg(r), so it follows by induction on deg(r) that r ∈
K[xp − βp−1x].

Now suppose α 6= 1. Let s be the multiplicative order of α, if this
order is finite; otherwise put s = 0. Thus the integers m with αm = 1
are precisely the multiples of s. Let u be the leading coefficient of f ,
and put f̂ := u · (x− β/(1− α))n; then

f̂(αx+ β) = u · (αx− αβ/(1− α))n = uαn · (x− β/(1− α))n = γf̂(x).

Now put f̃ := f − f̂ , and note that ñ := deg(f̃) < n; moreover, f

satisfies f(αx + β) = γf(x) + δ if and only if f̃ satisfies f̃(αx + β) =

γf̃(x) + δ. If ñ > 0, then the leading coefficients of f̃(αx + β) and

γf̃(x) + δ are identical if and only if αñ = γ = αn, or equivalently
ñ ≡ n (mod s). By induction on deg(f), it follows that f satisfies
f(αx+ β) = γf(x) + δ if and only if f = f0 + f1(x− β/(1− α)) where
f0 ∈ K satisfies f0 = γf0 + δ and f1 ∈ xK[x] has only terms of degree
congruent to n (mod s). The result follows. �
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3. Solutions involving scalings or translations

In this section we solve the equation f ◦g = h◦f in rational functions
f, g, h ∈ K(x) where g, h ∈ xK∗ ∪ {x + 1}. Here K is a field of
characteristic p ≥ 0. Let L = K(xp − x) if p > 0, and put L = K if
p = 0.

Lemma 3.1. For f ∈ K(x), we have f(x + 1) = f(x) if and only if
f ∈ L.

Proof. Let σ be the K-automorphism of K(x) which maps x 7→ x+ 1.
Then L is the subfield of K(x) fixed by σ. Thus f ∈ L if and only if
σ(f) = f , or equivalently f(x+ 1) = f(x). �

Corollary 3.2. For f ∈ K(x), we have f(x + 1) = f(x) + 1 if and
only if f − x ∈ L.

Proof. Putting r(x) := f(x) − x, we have f(x + 1) = f(x) + 1 if and
only if r(x+ 1) = r(x), so the result follows from Lemma 3.1. �

Corollary 3.3. For any γ ∈ K and f ∈ K(x) with f 6= 0, we have
f(x+ 1) = γf(x) if and only if γ = 1 and f ∈ L.

Proof. The leading terms of both the numerator and denominator of
f(x) are identical to those of f(x + 1), so if f(x + 1) = γf(x) then
γ = 1; now the result follows from Lemma 3.1. �

Lemma 3.4. For any α, γ ∈ K∗ and any nonzero f ∈ K[x], we have
f(αx) = γf(x) if and only if f = xeψ(xs) for some ψ ∈ K[x] and
e, s ∈ Z≥0 with αe = γ and αs = 1.

Proof. Equate coefficients of terms of the same degrees in f(αx) and
γf(x). �

Corollary 3.5. For any α, γ ∈ K∗ and any nonzero f ∈ K(x), we
have f(αx) = γf(x) if and only if f = xeψ(xs) for some ψ ∈ K(x) and
e, s ∈ Z with αe = γ and αs = 1.

Proof. The ‘if’ direction is clear, so suppose f(αx) = γf(x). Write
f = f1/f2 with coprime f1, f2 ∈ K[x]. Then the denominators of
f(αx) and γf(x) are f2(αx) and f2(x), so f2(αx) = ηf2(x) for some
η ∈ K∗. Thus f1(αx) = γηf1(x). Now the result follows by applying
Lemma 3.4 to both f1 and f2. �

Lemma 3.6. For α ∈ K∗ and f ∈ K(x), we have f(αx) 6= f(x) + 1.

Proof. Suppose to the contrary that f(αx) = f(x) + 1. Plainly x = 0
must be a pole of f . Write f = f1/f2 with coprime f1, f2 ∈ K[x] (so
f1(0) 6= 0 and f2(0) = 0, whence deg(f2) > 0). Then the denominators
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of f(αx) and f(x)+1 are f2(αx) and f2(x), so we have f2(αx) = ηf2(x)
for some η ∈ K∗. Then

f1(αx)

f2(αx)
=
f1(x)

f2(x)
+ 1

implies that
f1(αx)

η
= f1(x) + f2(x).

Since f1(0) 6= 0 and f2(0) = 0, substituting x = 0 gives η = 1. Thus
f2(αx) = f2(x); since f2 is nonconstant, it follows that s := #〈α〉 <∞
and f2 ∈ K[xs]. But then f1(αx) − f1(x) = f2(x) ∈ K[xs], which is
impossible since f1(αx)−f1(x) has no terms of degree divisible by s. �

4. Solutions with arbitrary linears

In this section we solve the equation f ◦g = h◦f in rational functions
f, g, h ∈ K(x) with deg(g) = deg(h) = 1. Here K is a field of charac-
teristic p ≥ 0. We will reduce to the cases considered in the previous
section, by means of the following observation: if u, v ∈ K(x) satisfy
deg(u) = deg(v) = 1, then f ◦ g = h ◦ f if and only if F ◦G = H ◦ F ,
where F := u ◦ f ◦ v, G := v−1 ◦ g ◦ v, and H := u ◦ h ◦ u−1.

First consider the case of polynomials f, g, h ∈ K[x]. Then g =
αx+β for some α, β ∈ K with α 6= 0. If α 6= 1 then v := x+β/(1−α)
satisfies v−1 ◦ g ◦ v = αx. If α = 1 and β 6= 0 then v := βx satisfies
v−1◦g◦v = x+1. Thus, in any case there is a degree-one v ∈ K[x] such
that G := v−1 ◦g ◦v is either αx or x+1. Likewise, writing h = γx+δ,
there is a degree-one u ∈ K[x] such that H := u ◦ h ◦ u−1 is either γx
or x + 1. Now the above observation, in combination with the results
of the previous section, implies the following version of Theorem 1.1:

Theorem 4.1. The polynomials f, g, h ∈ K[x] such that f ◦ g = h ◦ f
and deg(g) = deg(h) = 1 ≤ deg(f) are as follows; here u, v, ψ ∈ K[x]
and deg(u) = deg(v) = 1:

(1) f = u−1 ◦ (x + ψ(xp − x)) ◦ v−1, g = v(v−1(x) + 1), and h =
u−1(u(x) + 1), where if p = 0 then ψ ∈ K;

(2) p > 0, f = ψ(xp−x)◦v−1, g = v(v−1(x)+1), and h = x, where
deg(ψ) > 0;

(3) f = u−1 ◦ xeψ(xs) ◦ v−1, g = v(αv−1(x)), h = u−1(αeu(x)),
where e, s ∈ Z≥0, α ∈ K∗, αs = 1, and deg(xeψ(xs)) > 0.

Note that we can combine the first two possibilities into the single
possibility f = u−1 ◦ (δx + ψ(xp − x)) ◦ v−1, g = v(v−1(x) + 1), and
h = u−1(u(x) + δ) with δ ∈ K.
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Next we consider rational functions. Any degree-one g ∈ K(x) has a
fixed point ρ, though this fixed point might lie in a quadratic extension
of K. If ρ = ∞ then g ∈ K[x]; if ρ 6= ∞ then for v = ρ + 1/x we see
that v−1 ◦ g ◦ v fixes ∞, and hence lies in K[x]. We can then proceed
as above, resulting in a proof of Theorem 1.2.

5. Derivation of prior results

In this section we explain how Theorem 1.1 relates to the results of
Wells [15], Mullen [10], and Park [11], all of which were formulated in
a quite different manner.

It follows from Theorem 1.1 that, if K is a field of characteristic
p > 0, and if we prescribe elements β, δ ∈ K with β 6= 0, then the
polynomials f ∈ K[x] such that f(x + β) = f(x) + δ are precisely
the elements of (δ/β)x + K[xp − βp−1x]. In particular, writing f =∑n

i=0 fix
i, we see that the coefficients f0, fp, f2p, . . . can be arbitrary

elements of K, and these coefficients uniquely determine all the other
fi’s. This generalizes the results of Wells and Park.

Wells [15] restricted to the case that K = Fq is finite, deg(f) < q,
and δ = β. Wells used a different method. Namely, by considering
terms of degree xi−1 in the functional equation f(x + β) = f(x) + β,
one can solve for ifi in terms of the coefficients fj with j > i; thus,
by successively computing fn, fn−1, . . . , f1, we see that the coefficients
fi with p - i are uniquely determined by the coefficients fpj. Hence
there are at most qq/p possibilities for f ; but this equals the number of
mappings Fq → Fq which commute with the map x 7→ x + β. Since
every mapping Fq → Fq is induced by a unique polynomial of degree
less than q, it follows that the fpj can be arbitrary elements of Fq.
On the other hand, as noted above, this fact follows at once from our
expression x+K[xp − βp−1x] for all such f ’s.

Park [11] considered the case that K is finite, deg(f) < p2, and β, δ ∈
K∗. He wrote out the conditions on the fj’s coming from equating
terms of like degrees in the functional equation f(x+β) = f(x)+δ, and
proved his result via several pages of calculations involving binomial
coefficients. In these calculations, the hypothesis deg(f) < p2 yielded
crucial simplifications.

Next suppose α ∈ K∗ is a primitive sth root of unity, and suppose
γ = αe with 0 < e < s. Fix β, δ ∈ K. By Theorem 1.1, the polynomials
f ∈ K[x] such that f(αx + β) = γf(x) + δ are precisely the elements
of

δ

1− γ
+

(
x− β

1− α

)e
K

[(
x− β

1− α

)s]
.
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In particular, writing f =
∑n

i=0 fix
i, the coefficients fe+sj can be arbi-

trary elements of K, and these coefficients uniquely determine all the
other fi’s. This generalizes the main result proved by Mullen.

Mullen [10] restricted to the case that K = Fq is finite, deg(f) < q,
γ = α and δ = β. He used the same method as Wells: equating
coefficients of xi in f(αx + β) = αf(x) + β enables one to express
(αi− α)fi in terms of fi+1, fi+2, . . . , fn. Since αi 6= α if i 6≡ 1 (mod s),
it follows that all the fi’s are uniquely determined by the coefficients
f1+sj. Hence there are at most q(q−1)/s possibilities for f ; but this equals
the number of mappings Fq → Fq which commute with x 7→ αx + β,
so the coefficients f1+sj can be arbitrary elements of Fq.

Remark. As stated, [10, Thm. 1] asserts that two polynomials are equal
if they have the same coefficients. The proof in [10] shows that the
result would remain true (and become nontrivial) if we require p - s
when b = 1, and #〈b〉 - (s − 1) if b 6= 1. Our comments above refer
to this corrected version of Mullen’s result. Also, the papers [15, 10]
comment on polynomials over Fq of degree ≥ q which commute with
linear polynomials, but in those papers commutation is only studied
modulo xq−x; in other words, they consider f(αx+β) = αf(x)+β as
an equality of functions on Fq, rather than an equality of polynomials.

To summarize, it seems that the complications Wells, Mullen and
Park encountered were caused by their desire to phrase the results in
terms of the coefficients of f as an element of K[x]; the key to our
simpler presentation is that we directly represent f in terms of an
additive subgroup of K[x].
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