
PERMUTATION BINOMIALS OVER FINITE FIELDS

ARIANE M. MASUDA AND MICHAEL E. ZIEVE

Abstract. We prove that if xm + axn permutes the prime field Fp, where
m > n > 0 and a ∈ F∗p, then gcd(m − n, p − 1) >

√
p − 1. Conversely, we

prove that if q ≥ 4 and m > n > 0 are fixed and satisfy gcd(m − n, q − 1) >
2q(log log q)/ log q, then there exist permutation binomials over Fq of the form

xm + axn if and only if gcd(m,n, q − 1) = 1.

1. Introduction

A polynomial over a finite field is called a permutation polynomial if it permutes
the elements of the field. These polynomials first arose in work of Betti [1] and
Hermite [10] as a way to represent permutations. A general theory was developed
by Hermite [10] and Dickson [6], with many subsequent developments by Carlitz
and others. The simplest class of nonconstant polynomials are the monomials
xm with m > 0, and one easily checks that xm permutes Fq if and only if m is
coprime to q−1. However, already for binomials the situation becomes much more
mysterious. Some examples occurred in Hermite’s work [10], and Mathieu [17]
showed that xp

i −ax permutes Fq whenever a is not a (pi− 1)-th power in Fq; here
p denotes the characteristic of Fq.

A general nonexistence result was proved by Niederreiter and Robinson [20] and
improved by Turnwald [28]:
Theorem 1.1. If f(x) := xm + axn permutes Fq, where m > n > 0 and a ∈ F∗q ,
then either q ≤ (m− 2)4 + 4m− 4 or m = npi.

This result implies that, when q > m4, the only permutation binomials over Fq
are the compositions of Mathieu’s examples with permutation monomials. The key
ingredient in the proof of Theorem 1.1 is Weil’s lower bound [33] for the number of
Fq-rational points on the curve (f(x)− f(y))/(x− y).

We do not know whether Theorem 1.1 can be improved in general. However, for
prime fields it was improved by Wan [30] and Turnwald [28]; by using ingredients
from both of their proofs, one can show the following result, which improves both
of their results:
Theorem 1.2. If f(x) := xm+axn permutes the prime field Fp, where m > n > 0
and a ∈ F∗p, then p− 1 ≤ (m− 1) ·max(n, gcd(m− n, p− 1)).

The proofs of Wan and Turnwald rely on a trick due to Hermite [10], which can
be viewed as a character sum argument: they find an integer ` with 0 < ` < p− 1
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such that f(x)` mod (xp−x) has degree p− 1. This implies that
∑
α∈Fp f(α)` 6= 0,

so f does not permute Fp. We will prove the following stronger result by exhibiting
two integers `, of which at least one must have the above property:

Theorem 1.3. If f(x) := xm+axn permutes the prime field Fp, where m > n > 0
and a ∈ F∗p, then gcd(m− n, p− 1) ≥

√
p− (3/4)− (1/2) >

√
p− 1.

Writing g := gcd(m − n, p − 1), the conclusion of this result can be restated
as p − 1 ≤ (g + 1) · g, whereas the conclusion of Theorem 1.2 says that p − 1 ≤
(m−1)·max(n, g). Thus, Theorem 1.3 implies Theorem 1.2 whenever g+1 ≤ m−1,
which always holds except in the special case that n = 1 and (m − 1) | (p − 1).
We emphasize that Theorem 1.3 is qualitatively different from all previous results,
since it gives a bound on p which depends only on gcd(m − n, p − 1), and not on
the degree of f .

Both Theorem 1.2 and Theorem 1.3 yield improvements to Weil’s lower bound
for the number of rational points on the curve (f(x)−f(y))/(x−y) appearing in the
proof of Theorem 1.1. On a related note, for any polynomial f over Fp of degree
in a certain range, Voloch [29] has improved Weil’s upper bound for this same
curve. In a different direction, for hyperelliptic curves over Fp one can improve
both the upper and lower Weil bound when the genus is on the order of

√
p, by

using Stepanov’s method [12, 18, 24, 19, 26, 8, 34]. All of these improvements are
specific to prime fields. It would be interesting to understand what are the types
of curves for which one has such improvements to Weil’s bounds.

Theorem 1.3 is not true for nonprime fields; one counterexample is x10 + 3x over
F343, and we have found several infinite families of counterexamples, which we will
describe in a forthcoming paper.

Returning to prime fields, we suspect that Theorem 1.3 can be improved. We
checked via computer that, for p < 105, the hypotheses of Theorem 1.3 imply
that gcd(m − n, p − 1) > p/(2 log p). It seems likely that this improved result
remains true for larger p, but we do not know a proof. The best we can do is
give a heuristic to the effect that ‘at random’ there would not be any permutation
binomials xm + axn over Fq with gcd(m − n, q − 1) < q/(2 log q). Of course, our
examples over nonprime fields show that this heuristic is not always correct, but
those examples exhibit nonrandom features dependent on the subfield structure of
Fq, which is in line with our ‘at random’ notion.

Conversely, following earlier investigations of Hermite [10] and Brioschi [2, 3],
Carlitz [4] studied permutation binomials of the form xn(x(q−1)/2 + a). He showed
that there are permutation binomials of this shape (with n = 1 and a ∈ F∗q)
whenever q ≥ 7. He proved a similar result for the form x(x(q−1)/3 + a), and more
generally in a paper with Wells [5] he proved

Theorem 1.4. If d > 0 and q ≡ 1 (mod d), where q is sufficiently large compared
to d, then for each n > 0 with gcd(n, q − 1) = 1 there exists a ∈ F∗q such that
xn(x(q−1)/d + a) permutes Fq.

The proof of this result is quite remarkable, as it uses the Weil lower bound on
an auxiliary curve to prove the existence of permutation binomials. This (and a
generalization in [32]) is the only known instance of the Weil bound being used
to prove existence of permutation polynomials. We give a new proof of a refined
version of Theorem 1.4, which allows us to estimate the number of such a’s:
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Theorem 1.5. Pick integers 0 < n < m such that gcd(m,n, q−1) = 1, and suppose
q ≥ 4. If gcd(m− n, q − 1) > 2q(log log q)/ log q, then there exists a ∈ F∗q such that
xm + axn permutes Fq. Further, letting T denote the number of values a ∈ Fq for
which xm + axn permutes Fq, and putting r := (q − 1)/ gcd(m− n, q − 1), we have

q − 2
√
q + 1

rr−1
− (r − 3)

√
q − 2 ≤ T

(r − 1)!
≤
q + 2

√
q + 1

rr−1
+ (r − 3)

√
q.

We note that the condition gcd(m,n, q − 1) = 1 is clearly necessary if xm + axn

is to permute Fq. In some special cases, a weaker estimate for T was derived in a
recent paper by Laigle-Chapuy [13], via methods quite different from ours.

We checked that, for each q < 106, and for every m > n > 0 satisfying
gcd(m,n, q−1) = 1 and gcd(m−n, q−1) > 2q/ log q, there exists a ∈ F∗q such that
xm + axn permutes Fq. Combined with our previously mentioned computer data,
this paints a rather clear picture of permutation binomials over prime fields.

As a final remark, we note that several papers prove results about the special
binomials xm + ax. In general, if a binomial has a term of degree coprime to q− 1,
then one can convert it to this special form by composing with suitable permutation
monomials and reducing mod (xq−x). However, there are binomials for which this
is impossible. For instance, f(x) := x26 + 17x3 permutes F139, but the degrees of
both terms of f have a common factor with 138.

Throughout this paper, Fq is the field of order q, and p is the characteristic of Fq.
In particular, p is always prime. We prove Theorem 1.3 in the next section. Then
in Section 3 we prove Theorem 1.5, and in the final section we give the heuristic
argument mentioned above. In an appendix we include a proof of Theorem 1.2.

2. Nonexistence results

In this section we prove Theorem 1.3 in the following form:
Theorem 2.1. Suppose xn(xk +a) permutes Fp, where n, k > 0 and a ∈ F∗p. Then
gcd(k, p− 1) ≥

√
p− (3/4)− (1/2) >

√
p− 1.

Our proof relies on Hermite’s criterion [10, 6]:
Lemma 2.2. A polynomial f ∈ Fq[x] is a permutation polynomial if and only if

(1) for each i with 0 < i < q − 1, the reduction of f i modulo xq − x has degree
less than q − 1; and

(2) f has precisely one root in Fq.

Proof of Theorem 2.1. Pick j > 0 such that jk ≡ gcd(k, p − 1) mod (p− 1) and
gcd(j, p − 1) = 1; then xn(xk + a) permutes Fp if and only if xnj(xgcd(k,p−1) + a)
permutes Fp, so we may assume that k divides p − 1. Suppose f := xn(xk + a)
permutes Fp, where k | (p−1) and k <

√
p− (3/4)−(1/2) (and n, k > 0 and a ∈ F∗p).

Then k2 + k+ 1 < p. Let r be the least integer such that r ≥ (p− 1− k)/k2. Then
r < (p− 1− k)/k2 + 1, so

kr < (p− 1)/k − 1 + k = (k − 1)(1− (p− 1)/k) + p− 1 ≤ p− 1.

Also the inequality k2 + k + 1 < p implies (p− 1− k)/k2 > 1, so r > 1.
We will apply Hermite’s criterion with exponent kr. To this end, we compute

fkr = xnkr(xk + a)kr = xnkr
kr∑
i=0

(
kr

i

)
akr−ixki.
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Write fkr =
∑kr
i=0 bix

nkr+ki, where bi =
(
kr
i

)
akr−i. Since 0 < kr < p and p is

prime, each bi is nonzero. Thus, the degrees of the terms of fkr are

nkr, nkr + k, nkr + 2k, . . . , nkr + k2r.

Since k2r ≥ p − 1 − k, the degrees include members of every residue class modulo
p− 1 containing multiples of k. In particular, there is a term of degree divisible by
p − 1; but, since 0 < kr < p − 1, Hermite’s criterion implies that fkr cannot have
a unique term of degree divisible by p − 1, so there must be more than one such
term. Thus, nkr ≡ −E mod (p− 1) for some E with 0 ≤ E ≤ k2r − (p− 1).

Likewise, the degrees of the terms of fk(r−1) are

nk(r − 1), nk(r − 1) + k, nk(r − 1) + 2k, . . . , nk(r − 1) + k2(r − 1).

Since k2(r − 1) < p− 1− k, these degrees are all in distinct classes modulo p− 1,
so by Hermite’s criterion none of the degrees can be divisible by p − 1. Thus,
nk(r − 1) ≡ F mod (p− 1) for some F with k ≤ F ≤ p− 1− k − k2(r − 1).

Now we have

E(r − 1) ≡ −nkr(r − 1) ≡ −Fr mod (p− 1),

so E(r − 1) + Fr is a multiple of p− 1. But

0 < kr ≤ E(r − 1) + Fr

≤ k2r(r − 1)− (p− 1)(r − 1) + (p− 1)r − kr − k2(r − 1)r
= p− 1− kr < p− 1,

so E(r − 1) + Fr lies between consecutive multiples of p− 1, a contradiction. �

Remark 2.3. The above proof shows that, if gcd(k, p − 1) <
√
p− (3/4) − (1/2),

then there exists i with 0 < i < p− 1 for which the polynomial (xn(xk + a))i has a
unique term of degree divisible by p−1, contradicting our hypothesis that xn(xk+a)
permutes Fp. As discussed in the introduction, we suspect that Theorem 2.1 can
be improved substantially. However, improving our bound by more than a constant
factor will require a new method: if gcd(k, p−1) ≥

√
2p− (7/4)−(1/2), then there

is no i > 0 for which (xn(xk + a))i has a unique term of degree divisible by p− 1.
We now list some consequences of Theorem 2.1.

Corollary 2.4. If xn(xk + a) permutes Fp, where n, k > 0 and a ∈ F∗p, then
gcd(k, p− 1) > 4.

Proof. When p > 19, this is an immediate consequence of Theorem 2.1. Otherwise,
the result can be verified via computer. �

In case either (p−1)/2 or (p−1)/4 is prime, Corollary 2.4 was conjectured in [15].
We proved this conjecture in our previous paper [16], where moreover we proved
that the hypotheses of Corollary 2.4 imply gcd(k, p−1) /∈ {2, 4} (without assuming
primality of (p− 1)/2 or (p− 1)/4). Our proof in [16] did not rely on any computer
calculations; instead we used repeated applications of Hermite’s criterion in several
different cases (depending on the class of p mod 16). By using a computer to verify
small cases, we can go much further than Corollary 2.4. For instance:
Corollary 2.5. Suppose xn(xk + a) permutes Fp, where n, k > 0 and a ∈ F∗p. If
gcd(k, p − 1) = 5, then p = 11. If gcd(k, p − 1) = 6, then p ∈ {7, 13, 19, 31}. If
gcd(k, p− 1) = 7, then p = 29. If gcd(k, p− 1) = 8, then p = 17. Conversely, each
of these possibilities actually occurs for some n, k, a.
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There is no difficulty extending this to larger values of gcd(k, p− 1).

3. Existence results

In this section we estimate the number of permutation binomials of prescribed
shapes.
Theorem 3.1. Let n, k > 0 be integers with gcd(n, k, q−1) = 1, and suppose q ≥ 4.
If gcd(k, q − 1) > 2q(log log q)/ log q, then there exists a ∈ F∗q such that xn(xk + a)
permutes Fq. Further, letting T denote the number of a ∈ Fq for which xn(xk + a)
permutes Fq, and writing r := (q − 1)/ gcd(k, q − 1), we have

r!
rr
(
q + 1−√q(rr+1 − 2rr − rr−1 + 2)− (r + 1)rr−1

)
≤ T

≤ r!
rr
(
q + 1 +

√
q(rr+1 − 2rr − rr−1 + 2)

)
.

Corollary 3.2. For fixed r, as q →∞ we have T ∼ q(r!)/rr.
Note that Stirling’s approximation says that r!/rr is asymptotic to

√
2πr/er as

r →∞.
We will prove Theorem 3.1 as a consequence of several lemmas, which we suspect

will be useful in future work improving the bounds in Theorem 3.1. In these lemmas,
µr denotes the set of rth roots of unity in Fq, and Sym(µr) denotes the set of
permutations of µr.
Lemma 3.3. Let k, n > 0 be integers with k | (q − 1) and gcd(n, k) = 1, and put
r := (q − 1)/k. For a ∈ Fq, the polynomial f(x) := xn(xk + a) permutes Fq if and
only if there exists π ∈ Sym(µr) such that every ζ ∈ µr satisfies (ζ+a)k = π(ζ)/ζn.

Proof. For δ ∈ µk we have f(δx) = δnf(x); since gcd(n, k) = 1, it follows that the
values of f on Fq comprise all the kth roots of the values of f(x)k = xkn(xk + a)k.
Thus, f permutes Fq if and only if g(x) := xn(x + a)k permutes the set of kth

powers in Fq, or in other words g permutes µr. Writing π for the map µr → Fq

induced by g, the result follows. �

Next we restate Lemma 3.3 in terms of solutions to a system of nonlinear equa-
tions over Fq. In this statement, ν : µr → F

∗
q is a fixed map with the property that

ν(ζ)k = ζ for every ζ ∈ µr.
Lemma 3.4. Let k, n, r be as in Lemma 3.3. For a ∈ Fq, the polynomial f(x) :=
xn(xk + a) permutes Fq if and only if there exists π ∈ Sym(µr) such that, for each
ζ ∈ µr, there is a solution yζ ∈ F∗q to the equation ζ+a = yrζν(π(ζ)/ζn). Moreover,
for any fixed a ∈ Fq, there is at most one such permutation π.

Proof. By Lemma 3.3, f permutes Fq if and only if there exists π ∈ Sym(µr) such
that (ζ + a)k = π(ζ)/ζn for all ζ ∈ µr. This equation shows that at most one
π corresponds to a given f . For fixed π and ζ, the equation is equivalent to the
existence of yζ ∈ F∗q such that ζ + a = yrζν(π(ζ)/ζn). �

Let A be transcendental over Fq, and for π ∈ Sym(µr) let Fπ = Fq({Yζ : ζ ∈ µr})
where Y rζ ν(π(ζ)/ζn) = ζ+A. We will translate Lemma 3.4 into a statement about
Fπ, which will enable us to apply Weil’s bound on the number of degree-one places
of a function field over a finite field. In order to make this translation, we need
to know some basic facts about Fπ, which we record in the next lemma. In the
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remainder of this section we use various standard facts about algebraic function
fields, for which a convenient reference is [25].
Lemma 3.5. Let k, n, r be as in Lemma 3.3. Then Fq is algebraically closed in Fπ,
and Fπ/Fq(A) is Galois with group (Z/rZ)r. Moreover, the extension Fπ/Fq(A)
has ramification index r over A = ∞ and A ∈ −µr, and is unramified over all
other places of Fq(A). The genus of Fπ is (rr+1 − 2rr − rr−1 + 2)/2.

Proof. Let Eζ be the field Fq(Yζ). Then Eζ/Fq(A) is a degree-r Kummer extension
which is totally ramified over A = ∞ and A = −ζ, and unramified over all other
places. Since each extension Eζ/Fq(A) is totally ramified over a place which does
not ramify in any other Eζ′/Fq(A), it follows that the compositum Fπ of the various
fields Eζ is a degree-rr extension of Fq(A) such that Fq is algebraically closed in
Fπ. Moreover, Fπ is a Galois extension of Fq(A) with Galois group (Z/rZ)r. By
Abhyankar’s lemma, Fπ/Fq(A) has ramification index r over A =∞ and A ∈ −µr,
and this extension is unramified over all other places of Fq(A). Now the Riemann-
Hurwitz formula yields the genus of Fπ. �

Now we can restate Lemma 3.4 in terms of places of Fπ:
Lemma 3.6. Let k, n, r be as in Lemma 3.3. For a ∈ Fq, the polynomial f(x) :=
xn(xk + a) permutes Fq if and only if there exists π ∈ Sym(µr) such that Fπ has
a degree-one place with A = a and every Yζ 6= 0. Moreover, for any fixed a ∈ Fq,
there is at most one such permutation π.

Proof of Theorem 3.1. Fix k, n, r. As in the proof of Theorem 2.1, we may assume
k | (q − 1). Pick a permutation π ∈ Sym(µr) and a map ν : µr → F

∗
q such that

ν(ζ)k = ζ for every ζ ∈ µr. Let Nπ denote the number of degree-one places of Fπ.
Then Weil’s bound gives

|Nπ − (q + 1)| ≤ (rr+1 − 2rr − rr−1 + 2)
√
q.

The ramified places in Fπ/Fq(A) are precisely the places of Fπ for which either
A = ∞ or some Yζ ∈ {0,∞}. The number of such places is at most (r + 1)rr−1.
All other rational places of Fπ occur in Gal(Fπ/Fq(A))-orbits of size rr, with each
orbit corresponding to a unique place of Fq(A). Let T denote the number of values
a ∈ Fq for which xn(xk + a) permutes Fq. By Lemma 3.6 we have

r!
q + 1− (rr+1 − 2rr − rr−1 + 2)

√
q − (r + 1)rr−1

rr
≤ T

≤ r!
q + 1 + (rr+1 − 2rr − rr−1 + 2)

√
q

rr
.

In particular, T > 1 whenever q > r2r+2 and q > 2. The former inequality is true
whenever q ≥ 7 and r < (log q)/(2 log log q), or equivalently q ≥ 7 and

k >
2(q − 1) log log q

log q
.

For q ∈ {4, 5} we have 2q(log log q)/ log q > (q − 1)/2, so it remains to show that
there are permutation binomials xn(xq−1 + a) (with a 6= 0) for every n coprime to
q − 1. By Lemma 3.3, this binomial permutes Fq whenever a ∈ F∗q \ {−1}. �

Remark 3.7. In this proof, we treated the various π’s independently. This is ineffi-
cient, especially since distinct π’s give disjoint sets of a’s. If one could combine the
information from distinct π’s more effectively, it might be possible to remove the
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log log q factor from Theorem 3.1. We now take a first step in this direction (based
on an idea in [5]), by effectively combining the information from r distinct π’s. To
start with, consider any of the (r− 1)! permutations π0 ∈ Sym(µr) with π0(1) = 1.
Now the ‘ζ = 1’ equation (1 + a)k = π(1) can be used as the definition of π(1)
(so long as a 6= −1), and we seek solutions for each of the (r − 1)! permutations
π = (1 + a)k · π0. Thus, for each such π, we pick ν as before and consider the
function field defined by Y rζ ν(π0(ζ)/ζn) = (ζ + A)/(1 + A). By the same method
as above, we find that

q − 2
√
q + 1

rr−1
− (r − 3)

√
q − 2 ≤ T

(r − 1)!
≤
q + 2

√
q + 1

rr−1
+ (r − 3)

√
q.

Here, as usual, one can obtain better bounds by applying the various improvements
to the Weil bound due to Manin [14], Ihara [11], Drinfel’d-Vlăduţ [7], Serre [22, 23],
Oesterlé [23], Stöhr-Voloch [26], etc.

The following variant was noted implicitly in [5] and explicitly in [32]: if q is
sufficiently large compared to r and q ≡ 1 (mod r), then there exists a ∈ F∗q such
that, for every n, k > 0 with gcd(n, q − 1) = 1 and gcd(k, q − 1) = (q − 1)/r, the
polynomial xn(xk +a) permutes Fq. The novel feature here is that a single a works
for every n and k; one unfortunate aspect is that we need gcd(n, q−1) = 1, whereas
in Theorem 3.1 we required only that gcd(n, (q − 1)/r) = 1. The modified proof
described in this remark gives a quantitative version of this result, so long as we
restrict to π0 being the identity. Let T̂ denote the number of values a ∈ Fq such
that, for every n, k > 0 with gcd(n, q − 1) = 1 and gcd(k, q − 1) = (q − 1)/r, the
polynomial xn(xk + a) permutes Fq. Our proof in this remark (with π0(x) = x)
shows that

T̂ ≥ (q − 2
√
q + 1)/rr−1 −√q(r − 3)− 2.

Remark 3.8. In case r = 2, the function field Fπ occurring in the proof of The-
orem 3.1 has genus zero, and hence can be parametrized. This leads to explicit
expressions for the allowable values of ‘a’ in this case [4, 20, 31]. For larger values
r, the field Fπ has larger genus, so one does not expect a simple exact formula for
its number of rational places. And indeed, already for r = 3 the data suggests there
is no simple formula for the number of a ∈ Fq such that x(x(q−1)/r + a) permutes
Fq, or more generally for the number of permutation binomials of degree less than
q for which (q − 1)/r is the gcd of q − 1 with the difference between the degrees
of the terms. A priori it is conceivable that there might be a nice formula for the
latter number but no nice formula for the former, since the latter corresponds to
the sum of the numbers of rational places on the various fields Fπ; however, the
data suggests there are no nice formulas when r > 2.

Remark 3.9. Theorem 3.1 is a refinement of a result of Carlitz and Wells [5]. Our
version differs from the original one in various ways: it is effective, it gives an esti-
mate on the number of permutation binomials of prescribed shapes, it applies when
gcd(n, k, q − 1) = 1 rather than gcd(n, q − 1) = 1, and the proof is geometric (in
contrast to the intricate manipulation of character sums in [5]). Still, we empha-
size that the key idea of using the Weil bound to prove existence of permutation
binomials is due to Carlitz [4].
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4. Heuristic

In this section we give a heuristic suggesting that ‘at random’ there would not
be any permutation binomials xm + axn over Fq (with m > n > 0) such that
gcd(m− n, q − 1) < q/(2 log q), at least for q sufficiently large.

As in the proof of Theorem 2.1, it suffices to consider f(x) := xn(xk + a) where
k | (q− 1) and n is coprime to k. By Lemma 3.3, for fixed k, we need only consider
a single such value n in each class modulo (q−1)/k which contains integers coprime
to k. Further, since composing f(x) on both sides with scalar multiples does not
affect whether f(x) permutes Fq, we need only consider a’s representing the distinct
cosets of the kth powers in F∗q (for fixed k and n). Thus, for fixed k, there are fewer
than q polynomials to consider. Since gcd(n, k) = 1, the values of f comprise all the
kth roots of the values of fk; but the latter are just 0 and the values of xn(x+a)k on
(F∗q)

k. Thus, f permutes Fq if and only if g(x) := xn(x+a)k permutes (F∗q)
k. Note

that (F∗q)
k equals the group µr of rth roots of unity in F∗q , where r := (q−1)/k. Here

g maps µr into µr if and only if (−a)r 6= 1, which we assume in what follows. Now,
the probability that a random mapping µr → µr is bijective is r!/rr. Assuming
that g behaves like a random map, the expected number of permutation binomials
of the form xn(xk + a) (for fixed q, after our various equivalences on n, k, a) is at
most q(r!)/rr. Restricting to k < q/(2 log q) and summing over all q, we get an
expected number

E :=
∑
q

∑
r|(q−1)
r>2 log q

q
r!
rr
.

We now show that E is finite. By reversing the order of summation, we find that
E =

∑∞
r=1(r!/rr)F (r), where

F (r) :=
∑

q<er/2

q≡1 (mod r)
q prime power

q.

The number of prime powers less than x which are not prime is at most

blog2 xc∑
n=2

x1/n <
√
x+ 3
√
x log2 x.

Thus, for fixed r, the number of nonprime q which contribute to F (r) is at most
er/4 + er/6r/(2 log 2). By the Brun–Titchmarsh theorem [9, Thm. 3.8], the number
of prime q which contribute to F (r) is at most

3er/2

φ(r) log er/2

r

.

Since
φ(r) >

r

eγ log log r + 3
log log r

for r ≥ 3 ([21, Thm. 15]), for r ≥ 3 we have

F (r)
er
≤

3(eγ log log r + 3
log log r )

r( r2 − log r)
+

1
er/4

+
r

2er/3 log 2
.
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Using Stirling’s inequality r! < (r/e)r
√

2πre1/12r, we get

E ≤
∞∑
r=3

√
2πre

1
12r

(
3eγ log log r + 9

log log r

r( r2 − log r)
+

1
er/4

+
r

2er/3 log 2

)
,

which is finite. By combining the above bounds on F (r) with explicit calculation
of the first few values of F (r), we find that E < 40.

Since E is finite (and small), we expect that ‘at random’ there would be few (or
no) permutation binomials xm+axn over Fq with m > n > 0 and gcd(m−n, q−1) <
q/(2 log q).

We used a computer to verify that, for p < 105, there are no permutation binomi-
als xm+axn over Fp with m > n > 0 and gcd(m−n, p−1) < p/(2 log p). Combined
with the above heuristic, this leads us to conjecture that the same conclusion holds
for all primes p.

On the other hand, the heuristic applies to nonprime fields as well, and for those
fields we know some infinite families of counterexamples. For instance, in [27],
Tom Tucker and the second author showed that xp+2 + ax permutes Fp2 whenever
#〈ap−1〉 = 6. Several additional examples can be found in [27], and we will present
further examples in a forthcoming paper. However, every known counterexample
over a nonprime field Fq has unusual properties related to the subfields of Fq; thus,
we view these examples as violating the randomness hypotheses of our heuristic,
rather than the heuristic itself.

Appendix

In this appendix we prove the following result:
Theorem 1.2. If xm + axn permutes the prime field Fp, where m > n > 0 and
a ∈ F∗p, then p− 1 ≤ (m− 1) ·max(n, gcd(m− n, p− 1)).

As noted in the introduction, this result follows from Theorem 1.3 in all cases
except when n = 1 and (m−1) | (p−1). However, the proof we present here is quite
different from the proof of Theorem 1.3, so the method might well be useful in other
investigations. Theorem 1.2 may be viewed as the ‘least common generalization’ of
a result of Wan and a result of Turnwald. Our proof uses ideas from both of their
proofs. Wan’s result [30, Thm. 1.3] is
Theorem. If xm + ax permutes the prime field Fp, where m > 1 and a ∈ F∗p, then
p− 1 ≤ (m− 1) · gcd(m− 1, p− 1).

Turnwald’s result [28, Thm. 2] is
Theorem. If xm + axn permutes Fp, where m > n > 0 and a ∈ F∗p, then p <
m ·max(n,m− n).

Proof of Theorem 1.2. Suppose f(x) := xm + axn permutes Fp, where m > n > 0
and a ∈ F∗p. If f(x) = f̂(xe), then the desired inequality for f would follow from
the corresponding inequality for f̂ ; thus, we may assume gcd(m,n) = 1. Moreover,
since f permutes Fp we have gcd(m − n, p − 1) > 1 (since otherwise f has more
than one root), so n ≤ m− 2 and m ≥ 3. Write p = mk+ r with 0 ≤ r < m. Since
gcd(n,m − n) = 1, there are integers u, v with nu − (m − n)v = r − 1; we may
assume 0 < u ≤ m− n. Thus

v = (nu− r + 1)/(m− n) ≤ n+ 1/(m− n) < n+ 1,
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so v ≤ n. Also v > (n−m+ 1)/(m− n) > −1, so v ≥ 0.
If v > k, then (since k = bp/mc) we have p < mv ≤ mn, so the result holds.

Henceforth we assume v ≤ k. Moreover, since gcd(m − n, p − 1) ≥ 2, the result is
clear when m > p/2; thus, we assume m ≤ p/2. Since 3 ≤ m, this implies p ≥ 7
and m < p− 3.

We will use Hermite’s criterion with exponent k + u. Before doing so, we show
that 0 < k+u < p−1. The first inequality is clear, since u > 0 and k = bp/mc ≥ 0.
Now,

k + u =
⌊ p
m

⌋
+ u ≤ p

m
+ u ≤ p

m
+m− n ≤ p

m
+m− 1.

Since p > m + 3 (and m ≥ 3), we have p > m2/(m − 1), so m < p(m − 1)/m and
thus p/m+m < p. Hence k + u < p− 1.

Since 0 < k+u < p−1, we have p -
(
k+u
t

)
for 0 ≤ t ≤ k+u; hence the degrees of

the terms of fk+u are precisely the numbers mt+ n(k + u− t) with 0 ≤ t ≤ k + u.
Since

p− 1 = mk + (r − 1) = mk + nu− (m− n)v = m(k − v) + n(u+ v),

there is a term of degree p − 1. Since f is a permutation polynomial, Hermite’s
criterion implies there must be another term of degree divisible by p−1. Thus, there
exists A 6= k− v with 0 ≤ A ≤ k+u such that mA+n(k+u−A) ≡ 0 mod (p− 1).
Since increasing t will increase the value of mt+ n(k+ u− t), and the value of this
quantity for t = A is larger than the corresponding value for t = k − v, it follows
that A > k−v. Subtracting, we get m(A− (k−v))+n(k−A−v) ≡ 0 mod (p− 1),
so p − 1 divides (m − n)(A − (k − v)). In other words, (p − 1)/ gcd(p − 1,m − n)
divides A− (k − v). Since A > k − v, this implies

p− 1
gcd(p− 1,m− n)

≤ A− (k − v) ≤ (k + u)− (k − v) = u+ v.

Since u ≤ m−n and v ≤ n, we have u+v ≤ m; however, equality cannot hold, since
it would imply that r−1 = nu− (m−n)v = 0 so r = 1, whence p−1 = p−r = mk,
which is a contradiction since m > 1 is the degree of a permutation polynomial.
Thus u+ v ≤ m− 1, so p− 1 ≤ (m− 1) · gcd(p− 1,m− n). �
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Gouvêa, Harvard University, 1985.
[24] H. M. Stark, On the Riemann hypothesis in hyperelliptic function fields, in: Analytic Num-

ber Theory, Proc. Sympos. Pure Math. 24, 285–302, Amer. Math. Soc., Providence, 1973.
MR0332793 (48:11119)

[25] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.

MR1251961 (94k:14016)
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