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Abstract. Let G(q) be the group of permutations of F∗
q generated

by those permutations which can be represented as c 7→ acm + bcn

with a, b ∈ F∗
q and 0 < m < n < q. We show that there are

infinitely many q for which G(q) is the group of all permutations
of F∗

q . This resolves a conjecture of Vasilyev and Rybalkin.

1. Introduction

Let Fq be the finite field of cardinality q. We will be interested in the
group of permutations of Fq induced by certain special permutations,
especially by permutations of the form c 7→ f(c) where f(x) ∈ Fq[x]
is a polynomial having a particularly simple form. One result along
these lines is due to Carlitz [3] (see also [17]), who showed that if q > 2
then the symmetric group Sq is generated by the permutations of Fq

induced by xq−2 and by degree-one polynomials in Fq[x]. Recently
Vasilyev and Rybalkin [15] investigated the group of permutations of
Fq generated by those permutations which are induced by binomials. In
order to obtain a problem which is not solved by Carlitz’s result, they
required that the binomials be “honest” binomials, in the sense that
they are not monomials in disguise. One way to disguise a monomial
is to add to it some multiple of xq − x, since this does not affect the
function it induces on Fq. Another way to disguise a monomial is to
add a constant to it, which does not affect whether or not the function
induces a permutation of Fq. In light of these two operations, Vasilyev
and Rybalkin restrict to binomials of the form axm +bxn with a, b ∈ F∗q
and 0 < m < n < q. Note that any such binomial fixes 0, so if it
induces a permutation of Fq then it also induces a permutation of F∗q.
We write G(q) for the subgroup of Sq−1 generated by all such binomial
permutations:
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Definition 1.1. Let G(q) be the group of permutations of F∗q generated
by the permutations of F∗q which can be represented as axm + bxn with
a, b ∈ F∗q and 0 < m < n < q.

Vasilyev and Rybalkin conjectured [15, Conj. 2] that there are in-
finitely many prime powers q for which G(q) equals the group Sq−1 of
all permutations of F∗q. We remark that such prime powers q seem to
be rare: for instance, Vasilyev and Rybalkin checked that there are
precisely 18 such q with q < 5000. Our main result asserts that there
do indeed exist infinitely many such q:

Theorem 1.2. There are infinitely many primes p for which G(p2)
equals Sp2−1. In fact,

lim inf
N→∞

#{primes p ≤ N : G(p2) = Sp2−1}
#{primes p ≤ N}

≥ 1

96
.

We did not attempt to optimize the bound 1/96 in this result. This
bound can be improved by using further arguments of a similar nature
to the arguments in our proof. However, it is not clear to us whether
this bound can be improved to 1.

Our proof of Theorem 1.2 relies on the classification of primitive
subgroups of Sn which contain an n-cycle; here a subgroup H of Sn

is primitive if the only partitions of {1, 2, . . . , n} which are preserved
by H are the trivial partitions {{1, 2, . . . , n}} and {{1}, {2}, . . . , {n}}.
This classification is a consequence of the classification of finite simple
groups. An unusual feature of our situation is that it is easy to con-
struct a (p2 − 1)-cycle in G(p2), while the difficult part of our proof is
showing that G(p2) is primitive. Fortunately, not many partitions of
{1, 2, . . . , p2− 1} are preserved by the (p2− 1)-cycle, and we show that
any such partition besides the two trivial ones will not be preserved by
some member of one of three known families of permutation binomials
on Fp2 , at least if p is a sufficiently large prime which is congruent to
either 5 or 11 mod 24.

We do not know whether there are infinitely many primes p for which
G(p) equals Sp−1. In fact we do not even have a guess what the answer
should be. As we will explain, existing conjectures about permutation
binomials “almost” imply that there are only finitely many such p,
but only if we change a certain constant in those conjectures in a way
that makes them false. It would be interesting to analyze this question
further.

Related permutation groups have been considered in the literature,
for instance see [13]. Most notably, Wan and Lidl [16] determined
the group W (q, d) of permutations of Fq generated by all permutations
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induced by polynomials of the form xrh(xd) where d is a fixed divisor of
q−1, and r ∈ Z and h ∈ Fq[x] are allowed to vary. The Wan–Lidl group
lies “behind the scenes” for the work of the present paper, since if d
denotes the greatest common divisor of all the integers gcd(n−m, q−1)
where there is a permutation of Fq induced by a binomial having terms
of degrees m and n (with 0 < m < n < q), then G(q) is contained in
W (q, d). Thus, in order that G(q) should equal Sq−1, it is necessary
(but not always sufficient) that d = 1.

This paper is organized as follows. In the next section we review
the group-theoretic results we will use. In section 3 we present the
permutation binomials which will be used in our proof. We prove
Theorem 1.2 in section 5, after showing that G(p2) is primitive for
certain classes of primes p in section 4. In section 6 we discuss whether
there are infinitely many primes p for which G(p) equals Sp−1. We
conclude in section 7 by mentioning some questions for further study.

2. Primitive subgroups of Sn containing an n-cycle

In this section we recall the group-theoretic result needed in our
proof.

Definition 2.1. If G is a subgroup of Sn, then a partition P of
{1, 2, . . . , n} is called G-invariant if, for every part S in P and every
g ∈ G, the set g(S) is also a part in P .

Definition 2.2. A subgroup G of Sn is called primitive if the only
G-invariant partitions of {1, 2, . . . , n} are the trivial coarse partition
{{1, 2, . . . , n}} and the trivial fine partition {{1}, {2}, . . . , {n}}.

We will use the following result (whose proof relies on the classifica-
tion of finite simple groups):

Theorem 2.3. A primitive subgroups G of Sn contains an n-cycle if
and only if one of the following holds:

(1) G = Sn for some n ≥ 1 or G = An for some odd n ≥ 3
(2) Cp ≤ G ≤ AGL1(p) where n = p is prime
(3) PGLd(`) ≤ G ≤ PΓLd(`) where ` is a prime power, d ≥ 2, and

n = (`d − 1)/(`− 1)
(4) G = PSL2(11) or M11, where in both cases n = 11
(5) G = M23 where n = 23.

In fact we will only need the following numerical consequence of
Theorem 2.3:
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Corollary 2.4. If n is even and n 6= (`d − 1)/(` − 1) for all integers
d ≥ 2 and prime powers `, then the only primitive subgroup of Sn which
contains an n-cycle is Sn itself.

Proofs of Theorem 2.3, assuming certain previous results, are given
in [7, Thm. 3] and [11]. The proof in [7] relies on [6, Thm. 4.1], for
which the only proof in the literature is given in [11]. The proof of
Theorem 2.3 given in [11] relies on the correctness of the list in [2,
p. 8] of the simple groups which occur as minimal normal subgroups of
a doubly transitive group, although the proof in [2] does not address
the sporadic groups except by saying they “can be handled by ad hoc
arguments”. A detailed treatment of the sporadic groups is given in [12]
(see especially Table 5.1), which verifies the claim in [2], and combined
with [11] yields a proof of Theorem 2.3. We remark that, besides the
classification of finite simple groups, the main work in this proof is
carried out in [4, 5, 8].

3. Some permutation binomials

In this section we exhibit the classes of permutation binomials which
will be used in this paper. The first class of permutation binomials
appeared in early work of Betti [1, p. 74] and Mathieu [10, p. 275].

Proposition 3.1. If r is a prime power and a ∈ F∗
rk

is an element

such that a(r
k−1)/(r−1) 6= 1, then f(x) := xr − ax permutes Frk .

Proof. The function c 7→ f(c) induces a homomorphism from the ad-
ditive group of Frk to itself, so it is bijective if and only if its kernel is
trivial. The kernel is trivial if and only if a is not an (r − 1)-th power

in F∗
rk

, or equivalently a(r
k−1)/(r−1) 6= 1. �

The second class of permutation binomials we will need arose in my
work with Tucker [14]. Since that paper has not been published, I
include the proof of the needed result for the reader’s convenience. I
gave a slightly different proof in the recent paper [22].

Proposition 3.2. If r is a prime power with r ≡ 2 (mod 3), and
a ∈ F∗r2 is such that ar−1 has order 6/ gcd(r, 2) in F∗r2, then f(x) :=
xr+2 + ax permutes Fr2.

Proof. If c ∈ F∗r2 satisfies cr+1 = 1, then f(cx) = c · f(x). Thus, f(Fr2)
consists of the set of (r+ 1)-th roots of the elements of f(Fr2)

r+1. The
Proposition asserts that f(Fr2)

r+1 equals Fr+1
r2 , or in other words equals

Fr. For c ∈ Fr2 we compute

f(c)r+1 = (cr+2 + ac)r+1 = cr+1(cr+1 + a)r+1.
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Writing b := cr+1, so that b ∈ Fr, we have

f(c)r+1 = b(b+ a)r+1

= b(b+ a)r(b+ a)

= b(b+ ar)(b+ a)

= b3 + b2(a+ ar) + bar+1.

Since 3 - r, it follows that

f(c)r+1 =
(
b+

a+ ar

3

)3
−
(a+ ar

3

)3
+ b ·

(
ar+1 − (a+ ar)2

3

)
.

Next we compute

ar+1 − (a+ ar)2

3
= −1

3
(a2 − ar+1 + a2r) = −a

2

3
(1− ar−1 + a2r−2),

which equals 0 because ar−1 is a primitive 6/ gcd(r, 2)-th root of unity
and hence is a root of the 6/ gcd(r, 2)-th cyclotomic polynomial. Thus,
for c ∈ Fr2 we have

f(c)r+1 =
(
cr+1 +

a+ ar

3

)3
−
(a+ ar

3

)3
.

Since r ≡ 2 (mod 3), we know that x3 permutes Fr (because it induces
a homomorphism from F∗r to itself with trivial kernel). It follows that
g(x) := (x+d)3−d3 permutes Fr, where d := (a+ar)/3. Finally, since
Fr+1
r2 = Fr, we see that cr+1 takes on all values in Fr when c varies over

Fr2 , so that f(c)r+1 = g(cr+1) also takes on all values in Fr, whence
f(Fr2)

r+1 = Fr, as desired. �

Many variants of the above permutation polynomials can be obtained
using related ideas; see [14, 18, 19, 20, 21, 22] for details.

The next result comes from my joint work with Masuda, and is a
part of [9, Thm. 1.5]:

Proposition 3.3. Let q ≥ 4 be a prime power, and let 0 < m < n
be integers such that gcd(m,n, q − 1) = 1. Let T denote the number
of values a ∈ Fq for which axm + xn permutes Fq, and write s :=
(q − 1)/ gcd(n−m, q − 1). Then

T

(s− 1)!
≥
q − 2

√
q + 1

ss−1
− (s− 3)

√
q − 2.

We will use the following consequence of this result.

Corollary 3.4. For any positive integer s and any prime power q with
q ≡ 1 (mod s), let N denote the number of values a ∈ F∗q for which
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x(a + x(q−1)/s) permutes Fq. If s = 2 and q ≥ 7 then N > 0. If s = 8
and q ≥ 109951213112009 then N ≥ 3.

Proof. If s = 2 then Proposition 3.3 gives T ≥ (q − 2
√
q + 1)/2 +√

q − 2 = (q − 3)/2, so that if q > 5 then N ≥ T − 1 > 0. If
s = 8 then Proposition 3.3 gives T/7! ≥ (

√
q − 1)2/87 − 5

√
q − 2,

and one can check that this implies T > 3 (and hence N ≥ 3) when
q ≥ 109951213112009. �

Remark 3.5. The value 109951213112009 in this result can be im-
proved by various methods, but we do not see how to improve it to a
reasonably small value.

4. Primitivity of G(q)

In this section we show that the group G(q) is a primitive subgroup
of Sq−1 for all q satisfying certain properties. We first show that if G(q)
is nontrivial then it contains a (q − 1)-cycle.

Lemma 4.1. Let q be a prime power for which there exist a, b ∈ F∗q
and 0 < m < n < q such that f(x) := axm + bxn permutes Fq. Then,
for any generator w of F∗q, the group G(q) contains the permutation of
F∗q induced by wx, which is a (q − 1)-cycle.

Proof. Let σ and ρ be the elements of G(q) induced by f(x) and wf(x),
respectively. Then ρσ−1 is induced by wx, which is a (q− 1)-cycle. �

Corollary 4.2. Let q > 5 be a prime power which cannot be written
as 2p with p prime. Then, for any generator w of F∗q, the group G(q)
contains the map induced by wx, which is a (q − 1)-cycle.

Proof. In light of Lemma 4.1, it suffices to show that there is a permu-
tation binomial over Fq in which both terms have degrees between 1
and q − 1. If q = re with e > 1 and r > 2, this follows from Proposi-
tion 3.1. If q is odd and q > 5 then it follows from Corollary 3.4 with
s = 2. �

Remark 4.3. We note that G(q) is the trivial group if q = 2p where
2p − 1 is prime. For, in this case any 0 < m < n < q will satisfy
gcd(n−m, q−1) = 1, so that every element of F∗q has a unique (n−m)-th
root in F∗q. For any a, b ∈ F∗q it follows that axm+bxn does not permute
Fq, since it takes value 0 when x is either 0 or the (n −m)-th root of
−a/b in F∗q. Thus, if there are infinitely many Mersenne primes then
there are infinitely many prime powers q for which G(q) = 1.
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Remark 4.4. We know very little about G(q) when q = 2p where p
is prime but 2p − 1 is composite. Proposition 3.1 implies that G(q) is
nontrivial if q−1 has a nontrivial divisor which is very small compared
to q − 1 (for instance, such a divisor must be smaller than a constant
times log q). But we know nothing about G(q) when q− 1 has no such
divisor: it is conceivable that G(q) is always trivial in this case, and it
is also conceivable that G(q) always equals Sq−1 in this case.

In case G(q) contains a (q−1)-cycle, there are only a few possibilities
for a G(q)-invariant partition of F∗q:

Corollary 4.5. Let q > 5 be a prime power which is either odd or
a power of 4. Then every partition of F∗q which is preserved by G(q)
must consist of all the cosets of a subgroup of F∗q.

Proof. Let P be a partition of F∗q which is preserved by G(q), and let
S be the part in P which contains 1. For any u ∈ F∗q, Corollary 4.2
implies that ux is in G(q), so that P is preserved by ux, whence uS is a
part of P . In particular, if v ∈ S then vS is a part of P which contains
v, so vS ∩ S is nonempty, whence vS = S. Thus S is a nonempty
subset of F∗q which is closed under multiplication, so it is a subgroup.
Finally, P consists of the sets uS with u ∈ F∗q, namely the cosets of S
in F∗q. �

In what follows, if d is a divisor of q − 1 then we write µd for the
group of d-th roots of unity in F∗q. The next result is the key tool we
will use to show in certain cases that G(q) does not preserve any of the
nontrivial partitions of F∗q described in Corollary 4.5.

Proposition 4.6. Let q be a prime power, and let d and k be positive
divisors of q − 1 such that d - k. Then there are at most d elements
a ∈ F∗q for which xk+1 +ax maps all elements of µd into the same coset
of F∗q mod µd.

Proof. Fix an element c ∈ µd \ µk. Pick a ∈ F∗q for which f(x) :=

xk+1 + ax maps µd into a coset of F∗q/µd. Since 1 and c are in µd, there
exists b ∈ µd for which f(c) = b · f(1). Thus

ck+1 + ac = f(c) = b · f(1) = b ·
(
1 + a

)
,

so that

(c− b)a = b− ck+1.

It follows that c 6= b, since otherwise the left side would be zero so
also the right side would be zero, whence c = b = ck+1 so ck = 1,



8 MICHAEL E. ZIEVE

contradicting our hypothesis that c /∈ µk. Thus we obtain

a =
b− ck+1

c− b
,

so in particular the value of a is uniquely determined by the value of b
(since c is fixed). Since b ∈ µd, this means there are at most d choices
for a. �

Theorem 4.7. Let r ≥ 10485731 be a prime power with r ≡ 2 (mod 3)
and r ≡ ±3 (mod 8), and let q = r2. Then the group G(q) is a primi-
tive subgroup of Sq−1.

Proof. By Corollary 4.5, it suffices to prove that if d is a proper divisor
of q − 1 such that G(q) preserves the set of cosets of F∗q mod µd, then
d = 1. Let d be such a divisor of q − 1. By Proposition 3.1, there are
q − 1− (r + 1) elements a ∈ F∗q for which xr − ax permutes Fq. Since
each such polynomial xr − ax defines a function from F∗q/µd into itself,
by Proposition 4.6 with k = r − 1 we conclude that either d divides
r− 1 or d ≥ q− 1− (r+ 1). But q− 1− (r+ 1) > (q− 1)/2 ≥ d, so in
fact d | (r − 1).

Next, Proposition 3.2 implies that there are 2(r−1) elements a ∈ F∗q
for which xr+2 + ax permutes Fq. By Proposition 4.6 with k = r + 1,
we conclude that d divides r + 1, so d | gcd(r − 1, r + 1) = 2.

Finally, by Corollary 3.4, there are at least three elements a ∈ F∗q for

which x(x(q−1)/8 + a) permutes Fq. Our hypothesis r ≡ ±3 (mod 8)
implies that r − 1 and r + 1 are congruent to 2 and 4 mod 8 (in
some order), so that r2 − 1 ≡ 8 (mod 16). By Proposition 4.6 with
k = (q − 1)/8, we conclude that d divides (q − 1)/8; since (q − 1)/8 is
odd and d | 2, it follows that d = 1. As noted above, by Corollary 4.5
this implies that G(q) is primitive. �

5. Proof of the main result

We now prove Theorem 1.2. Let r be a prime power, and write
q = r2. By Corollary 4.2 and Theorem 4.7, if r is sufficiently large and
r ≡ 2 (mod 3) and r ≡ ±3 (mod 8), then G(q) is a primitive subgroup
of Sq−1 which contains a (q−1)-cycle. In light of Corollary 2.4, it follows
that G(q) = Sq−1 if q − 1 cannot be written as (`d − 1)/(` − 1) with
d ≥ 2 and ` a prime power. Let us add the requirements that r ≡ ±3
(mod 7) and r ≡ ±6 (mod 17). Then r2− 2 is divisible by both 7 and
17, and hence is not a prime power; thus r2 − 1 6= (`2 − 1)/(`− 1) for
any prime power `. Since r2 − 1 is even, if r2 − 1 = (`d − 1)/(` − 1)
then `d = 1 + (r2− 1)(`− 1) is odd and thus ` is odd, whence r2− 1 =
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`d−1 + `d−2 + · · · + 1 ≡ d (mod 2) implies that d is even. Since d > 2,
we must have d ≥ 4.

The Prime Number Theorem for arithmetic progressions implies
that, as N →∞ the number of primes r ≤

√
N such that

• r ≡ 2 (mod 3)
• r ≡ ±3 (mod 8)
• r ≡ ±3 (mod 7)
• r ≡ ±6 (mod 17)

is asymptotic to

23

φ(3 · 8 · 7 · 17)

√
N

log(
√
N)

=
1

48

√
N

log(N)
.

For any fixed d ≥ 4, the number

#
{

prime powers ` :
`d − 1

`− 1
≤ N

}
is at most the number of prime powers ` such that `d−1 ≤ N . In
particular, there only exist any such ` if d ≤ 1 + log2(N). Summing
over all d, we find that

#
{

(`, d) : ` is a prime power, d ≥ 4, and
`d − 1

`− 1
≤ N

}
is at most

1+blog2(N)c∑
d=4

∑
` is a prime power

`d−1≤N

1 ≤
1+blog2(N)c∑

d=4

∑
` is a prime power

`3≤N

1 ≤ log2(N) ·N1/3.

Since the ratio

log2(N) ·N1/3

√
N/(48 log(N))

approaches zero as N → ∞, it follows that the number of primes
r ≤
√
N such that

• r ≡ 2 (mod 3)
• r ≡ ±3 (mod 8)
• r ≡ ±3 (mod 7)
• r ≡ ±6 (mod 17)
• r2 − 1 cannot be written as (`d − 1)/(`− 1) with d ≥ 2 and ` a

prime power



10 MICHAEL E. ZIEVE

is asymptotic to
√
N/(48 log(N)). By Corollary 4.2 and Theorem 4.7,

for any such r the group G(r2) is primitive and contains an (r2 − 1)-
cycle, and hence (by Corollary 2.4) equals the symmetric group on F∗r2 .
This proves Theorem 1.2.

6. Prime fields

In this section we discuss whether there are infinitely many primes p
for whichG(p) equals Sp−1. We will focus on the question whether there
are infinitely many primes p for which G(p) is primitive. According to
the heuristic in [9, Section 4], for all sufficiently large primes p we expect
that every permutation binomial axm + bxn over Fp (with a, b ∈ F∗p and
0 < m < n < p) will satisfy gcd(n − m, p − 1) > p/(2 log p). In
[9] we noted that we had verified this conclusion for all primes p <
105; an independent verification for p < 15000 is announced in [15].
We now show that the factor ‘2’ in this bound plays a crucial role in
connection with G(p), in the sense that if this factor could be improved
to a constant less than 1 then there would only be finitely many primes
p for which G(p) is primitive.

Proposition 6.1. Fix a real number c > 1. For any prime power q
which is sufficiently large compared to c, if G(q) is primitive then there
exist a, b ∈ F∗q and 0 < m < n < q such that axm + bxn induces a
permutation of Fq and gcd(n−m, q − 1) < c(q − 1)/ log q.

Proof. Let q be a prime power such that G(q) is primitive but all
permutation binomials axm + bxn over Fq have gcd(n − m, q − 1) ≥
c(q−1)/ log q. Primitivity implies in particular that there is no divisor
k of q − 1 such that 1 < k < q − 1 and G(q) induces a permutation
on F∗q/µk, where µk denotes the group of k-th roots of unity in F∗q. It
follows that the gcd of all the numbers gcd(n − m, q − 1) for which
axm + bxn permutes Fq (with a, b ∈ F∗q and 0 < m < n < q) must be 1.
Writing gcd(n−m, q− 1) = (q− 1)/d where d | (q− 1), it follows that

1 = gcd({(q − 1)/d : d | (q − 1) and d ≤ (log q)/c}),

or equivalently

q − 1 = lcm({d : d | (q − 1) and d ≤ (log q)/c}),

which can be rewritten as

q − 1 = lcm({d : d | (q − 1), d is a prime power, and d ≤ (log q)/c}),
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or equivalently

q − 1 ≤
∏

d|(q−1)
d≤(log q)/c

d=pk with p prime and k ≥ 1

p.

Removing the condition d | (q − 1) can only increase the right side; if
we remove this condition and then take logs of both sides, we obtain

log(q − 1) ≤
∑

d≤(log q)/c
d=pk with p prime and k ≥ 1

log p.

By the Prime Number Theorem, the right side is asymptotic to (log q)/c
as q → ∞, so for sufficiently large q the right side is smaller than the
left side. This contradiction completes the proof. �

Remark 6.2. Correspondence with Igor Shparlinski and Kannan Sound-
ararajan yielded a heuristic argument suggesting a converse to the
above result. Namely, suppose there exists a number c < 1 such that, if
q is sufficiently large q and 0 < m < n < q satisfy gcd(m,n, q − 1) = 1
and gcd(n − m, q − 1) > cq/ log q, then there exist a, b ∈ F∗q such
that axm + bxn permutes Fq. We do not know whether such a num-
ber c should exist, but a result in this direction (with c replaced by
2 log log q) is proved in [9, Thm. 3.1]. Our heuristic suggests that, if
such a number c < 1 exists, then there should be infinitely many primes
q for which G(q) is primitive.

7. Concluding remarks

We have shown that G(q) equals Sq−1 for many q’s which are squares
of primes: in fact, for a density-1 subset of those q’s which are squares of
the primes in certain arithmetic progressions. We do not know whether
G(q) equals Sq−1 for a density-1 subset of the q’s which are squares of
primes. We also do not know how often G(q) equals Sq−1 for other
types of prime powers q. In particular, does this happen for infinitely
many primes q? We suspect that it happens whenever q is a sufficiently
large power of 4.

When G(q) does not equal Sq−1, it would be interesting to investigate
what the group G(q) turns out to be. Let r(q) be the greatest common
divisor of all numbers of the form gcd(n−m, q−1) where 0 < m < n < q
and there exist a, b ∈ F∗q such that axm + bxn permutes Fq. Proposi-
tion 4.6, and even moreso its proof, suggests that usually r(q) will be
the largest proper divisor d of q−1 for which G(q) permutes the cosets
of F∗q mod µd. When this happens, one might guess that G(q) usually
equals the full group of permutations of Fq induced by polynomials of
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the form xih(xr(q)) with i > 0. The latter group was determined by
Wan and Lidl [16]: it is the semidirect product of (Z/r(q)Z)∗ by the
wreath product (Z/r(q)Z) o S(q−1)/r(q). It seems that one can at least
show that G(q) contains a copy of S(q−1)/r(q) under some hypotheses,
since the action of G(q) on F∗q/µr(q) induces a map G(q) → S(q−1)/r(q)
whose image is primitive and contains a (q − 1)/r(q)-cycle. It would
be interesting to investigate this further.
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