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Abstract

We present a method for factoring polynomials of the shape f(X)−
f(Y ), where f is a univariate polynomial over a field k. We then apply
this method in the case when f is a member of the infinite family of
exceptional polynomials we discovered jointly with H. Lenstra in 1995;
factoring f(X)−f(Y ) in this case was posed as a problem by S. Cohen
shortly after the discovery of these polynomials.

1 Introduction

Factoring polynomials is one of the classical problems in algebra. There
is of course an algorithmic aspect to this problem, but our concern is a
more theoretical one: how can one factor each member of an infinite family
of polynomials? It seems that the literature contains rather little about
this problem in the case of polynomials in more than one variable, and in
fact contains few examples. In this paper we describe a general method for
factoring polynomials of the shape f(X) − f(Y ), where f is a univariate
polynomial over a field k, which is often successful even when f varies over
an infinite family of polynomials. More precisely, we expose a connection
with group theory which reduces the problem of factoring f(X) − f(Y ) to
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certain computations in the Galois group of f(X) − t over k(t), where t is
an indeterminate. Our results are related to work of Abhyankar (cf. [1]–
[3] among various other papers) in which he goes in the opposite direction,
deriving information about Galois groups of polynomials from the shapes of
factorizations such as the ones in the present paper.

To illustrate our method, we use it to factor f(X)−f(Y ) for a certain fam-
ily of polynomials for which these factorizations are particularly important,
namely certain exceptional polynomials f . Here a polynomial f(X) ∈ k[X] is
called exceptional if there are no irreducible factors of f(X)−f(Y ) in k[X, Y ],
other than (multiples of) X−Y , which remain irreducible over the algebraic
closure of k (i.e. which are absolutely irreducible). Exceptional polynomials
have a rich theory and possess several interesting properties. For instance, a
polynomial f over a finite field k is exceptional if and only if there is an infi-
nite algebraic extension ` of k for which the map f : `→ ` given by a 7→ f(a)
is bijective (i.e. f is a permutation polynomial over `). A primer on excep-
tional polynomials is included as an appendix to this paper. Over the years
numerous authors have contributed to the theory of exceptional polynomi-
als, with steady success, but a radical change in perspective came in 1993.
This was due to the work of Fried, Guralnick and Saxl [9], who used hard
group theory (including the classification of finite simple groups) in order to
severely restrict the possibilities for the Galois group Gal(f(X) − t, k(t)) of
an exceptional polynomial. Their work provided hope for a complete clas-
sification of exceptional polynomials, something which previously had not
been dreamt possible. The thrust of their result is that the Galois group
is typically an affine group (that is, a group of invertible affine transfor-
mations of a vector space), except for certain unexpected possibilities over
fields of characteristic two and three. Every exceptional polynomial known in
1993 had affine Galois group; but following [9] there was a flurry of activity
which saw the construction of new (non-affine) exceptional polynomials in
characteristics two and three. In fact, in recent work Guralnick and I have
completely classified the non-affine exceptional polynomials [13]. However,
for the non-affine exceptional polynomials in characteristic three (which were
discovered jointly with Lenstra [15]), the exceptionality property was proven
indirectly, without deriving the factorization of f(X)− f(Y ), and up to now
this factorization has not been known (although it is clearly important, since
it is the main ingredient in the definition of exceptionality; also it is used in
the above-mentioned paper [13]). In this paper we produce this factorization
by applying our general method for factoring bivariate polynomials of this
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shape.
Let us sketch the method. Consider a monic polynomial f(X) ∈ k[X],

where to ease the exposition we make the minor assumption that f ′(X) 6= 0.
Assume that we know the normal closure Ω of the field extension k(y)/k(t),
where t = f(y) and y is transcendental over k, and that we know the group
G = Gal(Ω/k(t)). First we compute the subdegrees of G, namely the indices
[Gy : Gxy] where x varies over the G-conjugates of y and Gy denotes the
subgroup of G fixing y. Next, for each x we produce a polynomial over k(y),
having x as a root, which has degree [Gy : Gxy]; this polynomial will be the
minimal polynomial of x over k(y), and as such is an irreducible factor of
f(X) − f(y) in k[X, y]. Then f(X) − f(y) is the product of the distinct
irreducibles gotten in this manner (since polynomials of this shape cannot
have multiple roots). The second step will provide the most difficulties in
general: it requires us to produce a polynomial of prescribed degree having
x as a root. In our example this arises in Section 6, where the shape of
the roots x in our case suggests the form of the desired polynomials; this is
certainly the prettiest part of the argument.

Since it is significant for the theory of exceptional polynomials, we now de-
scribe the explicit factorization we produce as an illustration of our method.
We work with the infinite family of (indecomposable) exceptional polynomi-
als over F3 from [15]; these are members of a more general family of polyno-
mials having fairly uniform properties, defined as follows: if q ≡ 3 (mod 4)
is a power of a prime p, and d divides (q + 1)/4, there is a corresponding
polynomial in Fp[X],

fq,d = X(X2d + 1)(q+1)/(4d)

(
(X2d + 1)(q−1)/2 − 1

X2d

)(q+1)/(2d)

.

We present the factorization of fq,d(X)− fq,d(Y ) over Fp[X, Y ] for arbitrary
d and q > 3; from these factorizations one immediately sees that fq,d is
exceptional over Fp precisely when p = 3, and one can also read off various
other properties of the fq,d.

In his talk at the Third International Conference on Finite Fields and Ap-
plications (Glasgow 1995), S. Cohen asked for the factorization of fq,d(X)−
fq,d(Y ); this motivated the present work. In that talk Cohen also presented
two polynomials of degree (q + 1)/4 which he conjectured should be factors
of fq,(q+1)/4 (based on evidence from a computer search); the validation of his
conjecture is one consequence of our work.
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The factorizations involve the Dickson polynomials, which are defined as
follows: for any positive integer n, any field k, and any a ∈ k, the Dick-
son polynomial of degree n having parameter a is the unique polynomial
Dn(X, a) ∈ k[X] for which Dn(Y + (a/Y ), a) = Y n + (a/Y )n. Now put
e = (q + 1)/(4d). The polynomial fq,d(X) − fq,d(Y ) ∈ Fp[X,Y ] is the prod-
uct of X − Y and several other distinct irreducibles R(X, Y ) ∈ Fp[X, Y ], of
which two have degree (q + 1)/4, and (q − 3)/2 have degree (q + 1)/2, and
(q− 3)/4 have degree q+ 1. The two factors R(X,Y ) of degree (q+ 1)/4 are
determined by the choice of

√
−1; these R satisfy

R(Xe, Y e) =
∏
ζe=1

(
Y (q+1)/4D(q+1)/4 (ζX/Y + 1/2, 1/16) +

√
−1
)
.

The factors R(X, Y ) of degree (q + 1)/2 are determined by the choices of φ
and µ, where φ is a nonsquare in Fq of the form θ2 + θ with θ ∈ Fq \ {−1/2},
and µ ∈ Fq2 satisfies µ2 = φ; these R satisfy

R(X2e, Y 2e) =
∏
ζ2e=1

(
Y (q+1)/2D(q+1)/2 (ζX/Y − 1− 2θ, φ) + 2µ

)
.

Here the choice of θ is irrelevant. The factors R(X, Y ) of degree q + 1 are
determined by the choice of a nonzero square φ ∈ Fq having the form θ2 + θ
for some θ ∈ Fq; here we have

R(X2e, Y 2e) =
∏
ζ2e=1

(
Y q+1Dq+1 (ζX/Y − 1− 2θ, φ)− φ(2Y q+1 + 4)

)
.

Again, the choice of θ is irrelevant.
We will also use our method to derive the factorization of f(X)− f(Y ),

where f(X) is one of the non-affine exceptional polynomials in characteristic
two which were discovered by Cohen and Matthews following examples of
Müller. This factorization appeared in [5], where it was verified by entirely
different methods after having been conjectured based on bits of evidence
coming from a number of different directions. Our approach, based on the
Galois-theoretic information from [12], provides new insight into this factor-
ization; for instance, we resolve a mystery from [5]. This mystery is that
the factors of f(X)− f(Y ) can be expressed in terms of Dickson polynomi-
als (just as is true for the odd characteristic polynomials above); in [5], the
Dickson polynomials entered only at the very last step, as a way of rewrit-
ing the factorization after all proofs had been completed. In our approach
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the Dickson polynomials arise naturally out of the dihedral groups which are
point-stabilizers of the Galois groups. Another advantage of our approach
is that the factorization is derived rather than verified; this differs from [5],
where the proofs will only work if the factorization has been conjectured at
the outset (our approach produces the factors themselves by pure reasoning,
with no need for guesswork).

We now describe the contents of this paper in more detail. In the next
section we explain the general factorization method. In Section 3 we recall
known facts about the specific polynomials fq,d, which we require in order to
factor fq,d(X)−fq,d(Y ). Then in the next three sections we apply our method
to produce this bivariate factorization, first computing the subdegrees of the
appropriate group, next computing the roots of fq,d(X) − t, and then pro-
ducing the factors themselves. Section 7 contains some consequences of the
factorization, and discusses the role of the factorization in the theory of the
fq,d. After giving a quick primer on exceptional polynomials in Appendix A,
we conclude in Appendix B by applying our method to derive the bivariate
factorizations associated to the Müller-Cohen-Matthews exceptional polyno-
mials.

It is a pleasure to thank Hendrik W. Lenstra, Jr. for several valuable
conversations, and Stephen D. Cohen for comments on an earlier version of
this manuscript.

Notation. In the various sections of this paper (but not in the appendices)
we keep certain notational conventions. As above, q ≡ 3 (mod 4) is a power
of a prime p. For E ∈ Fq2 , we let Ē := Eq denote the conjugate of E in the
extension Fq2/Fq. The algebraic closure of a field k is denoted k. Finally, we
reserve α for a fixed square root of −1 in Fq2 , and d for a divisor of (q+1)/4,
and put e = (q + 1)/(4d).

2 General method

In this section we explain our approach to factoring polynomials f(X)−f(Y ).
We start by reformulating the problem via some easy reductions. Let f(X) be
a polynomial in k[X]; without loss we assume f monic. We reserve the letters
X, Y for indeterminates, transcendental over every field under consideration;
to avoid confusion, we will write y for Y whenever we want to view it as
an element of a prescribed field (but always y is transcendental over k, so

5



the factorizations of f(X) − f(y) and f(X) − f(Y ) over k differ only by
the substitution of Y for y). When viewed as a member of k[y][X], the
polynomial f(X) − f(y) is monic (in X), so we may assume that each of
its irreducible factors in k[y][X] is also monic in X. Then each of these
factors is irreducible in k(y)[X] (by Gauss’ lemma), so it suffices to find the
factorization of f(X) − f(y) into monic irreducible polynomials R(X, y) ∈
k(y)[X] (each such R will necessarily lie in k[y][X]).

Next we reduce to the case where the factors R are distinct. Note that
f ′(X) = 0 if and only if f is a polynomial in Xp, where p = char(k); equiva-
lently, f(X) = h(X)p for some polynomial h(X) ∈ k[X] (where h(X) ∈ k[X]
if k perfect), i.e. f(X) − f(y) = (h(X) − h(y))p. It follows that, at least
in the case of perfect fields k, in order to factor f(X) − f(y) it is sufficient
to perform the factorization under the assumption that f ′(X) 6= 0 (and for
imperfect k we can first perform the factorization over the perfect field k
and then piece together the factorization over k). Henceforth, to simplify
the exposition, we assume f ′(X) 6= 0; this implies that f(X) − f(y) has no
multiple roots (as any such root x would satisfy f ′(x) = 0, so x ∈ k, whence
f(y) = f(x) ∈ k, contradicting the fact that y is transcendental over k).
Thus, f(X) − f(y) is the product of its distinct monic irreducible factors
R(X, y) ∈ k(y)[X], and we have only to find these factors.

Now put t = f(y), so that f(X) − f(y) = f(X) − t. As above, this
polynomial over k(t) is separable (since f ′(X) 6= 0) and irreducible (by Gauss’
lemma). Let G = Gal(f(X) − t, k(t)) be its Galois group. One root of
f(X)− t is y; the other roots are the k(t)-conjugates of y, namely the values
τ(y) for τ ∈ G. Thus, the monic irreducible factors of f(X) − t in k(y)[X]
are precisely the minimal polynomials over k(y) of the various τ(y).

Our first step in the construction of these minimal polynomials will be
the computation of their degrees. We translate this to a group theoretic
calculation. Let H be the subgroup of G consisting of elements fixing y. For
any τ ∈ G, the subgroup of G consisting of elements fixing τ(y) is Hτ :=
τHτ−1. By Galois theory, the degree of the minimal polynomial of τ(y) over
k(y), or [k(τ(y), y) : k(y)], equals the index [H : H ∩Hτ ] = #H/#(H ∩Hτ ).
(In group theoretic terms, these indices are the subdegrees of the transitive
permutation group G.) Thus, to compute the degrees, we must determine
the sizes of the various intersections H ∩Hτ .

In the example considered in this paper, we perform this computation
in Section 4. Then we explicitly compute the various τ(y), after which we
produce their minimal polynomials. But first, in the next section, we recall
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the details of this example.

3 Galois theory of the fq,d

In this section we review some known properties (from [15]) of the special
class of polynomials fq,d to be considered in this paper. We begin with the
polynomials f = fq,1. Recall that q ≡ 3 (mod 4) is a power of a prime p, and
that f(X) ∈ Fp[X] is given by

f(X) = X(X2 + 1)(q+1)/4

(
(X2 + 1)(q−1)/2 − 1

X2

)(q+1)/2

.

We take a ‘top-down’ approach to the Galois-theoretic setup of f , as done
in [15] and similar to Serre’s appendix to [1]; this means that we start with
the largest field to be considered, which will turn out to be the splitting
field of f(X) − t, and produce all smaller fields as fixed fields of groups of
automorphisms of the large field. In our case, we begin with the field Fp(v),
where v is transcendental over Fp (and Fp is an algebraic closure of Fp).
The group PGL2(Fp) acts as a group of automorphisms of Fp(v), with the
matrix

(
A B
C D

)
corresponding to the Fp-automorphism of Fp(v) sending v to

(Av + C)/(Bv + D); in fact, any Fp-automorphism of Fp(v) has this form.
The subfield of Fp(v) fixed (elementwise) by the group G′ = PSL2(Fq) is
Fp(t), where

t = (−1)(q+1)/4α
(vq

2 − v)(q+1)/2

(vq − v)(q2+1)/2
;

here α denotes a square root of −1. Let H ′ be the subgroup of G′ given by

H ′ =

{(
A B
−εB εA

)
: A,B ∈ Fq, ε ∈ {±1}, A2 +B2 = ε

}
/{±I},

where I =
(

1 0
0 1

)
is the identity; then H ′ is a dihedral group of order q + 1.

The subfield of Fp(v) fixed by H ′ is Fp(y), where

y = α
(v2 + 1)(q+1)/2

vq − v
.

Then Fp(v) is the Galois closure of the separable extension Fp(y)/Fp(t), and
moreover t = f(y). By Galois theory, G′ (respectively, H ′) is the subgroup
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of PGL2(Fp) ∼= Aut
Fp

(Fp(v)) consisting of elements fixing t (respectively, y);

also Fp(v) is the splitting field of f(X)− t over Fp(t).
For the purposes of the present paper, it is convenient to modify the above

expressions in order to simplify the form of H ′. We do this in the following
result; recall that, for E ∈ Fq2 , we put Ē := Eq. In particular, ᾱ = −α.

Theorem 1 For u = (−αv + 1)/(αv + 1), we have Fp(u) = Fp(v), and
y = −2/(u(q+1)/2 − u−(q+1)/2), and

f(y) = t = (−2)(p−1)/2 (uq
2 − u)(q+1)/2

(uq+1 − 1)(q2+1)/2
.

The extension Fp(u)/Fp(t) is Galois with group

G =

{(
E F̄
F Ē

)
: E,F ∈ Fq2 , EĒ − FF̄ = 1

}
/{±I},

where the matrix
(
AB
C D

)
corresponds to the Fp-automorphism of Fp(u) sending

u to (Au+ C)/(Bu+D). The extension Fp(u)/Fp(y) is Galois with group

H =

{(
ζ 0
0 ζ̄

)
,

(
0 β
β̄ 0

)
: ζq+1 = 1, βq+1 = −1

}
/{±I}.

Proof. We start with the first sentence. It is immediate that Fp(u) = Fp(v);
we now compute y and t. First, v = (αu−α)/(u+1), so v2 +1 = 4u/(u+1)2

and

vq − v =
(−αuq + α)(u+ 1)− (αu− α)(uq + 1)

(u+ 1)q+1
= −2α

uq+1 − 1

(u+ 1)q+1
.

Hence y = −2u(q+1)/2/(uq+1 − 1) = −2/(u(q+1)/2 − u−(q+1)/2). Likewise

vq
2 − v = α

(uq
2 − 1)(u+ 1)− (u− 1)(uq

2
+ 1)

(u+ 1)q2+1
= 2α

uq
2 − u

(u+ 1)q2+1
,

so

t =
(−1)(q+1)/4 α (2α)(q+1)/2(uq

2 − u)(q+1)/2

(−2α)(q2+1)/2(uq+1 − 1)(q2+1)/2
= (−2)(p−1)/2 (uq

2 − u)(q+1)/2

(uq+1 − 1)(q2+1)/2
.
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From the discussion preceding the Theorem, Fp(u)/Fp(t) is Galois, and
its Galois group, viewed as a subgroup of PGL2(Fp) ∼= Aut

Fp
(Fp(u)), is G :=( α/2 1/2

−α/2 1/2

)
G′
( −α α

1 1

)
. The product(

α/2 1/2
−α/2 1/2

)(
A B
C D

)(
−α α
1 1

)
equals

1

2

(
A+D + (B − C)α −A+D + (B + C)α
−A+D − (B + C)α A+D − (B − C)α

)
,

so

G =

{(
E F̄
F Ē

)
: E,F ∈ Fq2 , EĒ − FF̄ = 1

}
/{±I}.

Similarly, Fp(u)/Fp(y) is Galois, and its Galois group, viewed as a subgroup

of PGL2(Fp) ∼= Aut
Fp

(Fp(u)), is H :=
( α/2 1/2
−α/2 1/2

)
H ′
( −α α

1 1

)
, i.e.

H =

{(
ζ 0
0 ζ̄

)
,

(
0 β
β̄ 0

)
: ζq+1 = 1, βq+1 = −1

}
/{±I}.

This completes the proof.

Remark. This proof demonstrates an explicit conjugacy between two sub-
groups of SL2(q2), namely SL2(q) and G = SU(q, Ĥ), the subgroup preserv-
ing the Hermitian form Ĥ(θ, θ) = θq+1

1 − θq+1
2 . Both of these subgroups are

conjugate to SU2(q), which is the subgroup preserving the Hermitian form
θq+1

1 + θq+1
2 . The latter conjugacy was known to Dickson [8, §144] but seems

to have been forgotten over the years: it is not in [10] or [17] and is given
incorrectly in [14]. Specifically, Suzuki proves only that SU2(q) ∼= SL2(q), by
first computing all subgroups of SL2(q2), then noting that any such subgroup
of the same order as SL2(q) must be isomorphic to SL2(q) [17, (6.22)]. In
the proof of [14, Hilfssatz 8.8], Huppert exhibits a skew-Hermitian form [·, ·]
over Fq2 , then claims that [u1, u2] = −[u2, u1] /∈ Fq for some u1, u2, which is
false and invalidates the entire proof.

Next we recall from [15] the relationship between the Galois theory of
the polynomials g = fq,d and that of f = fq,1. Here f and g are monic
polynomials related by f(Xd) = g(X)d, and d is a divisor of (q+ 1)/4. Let r
satisfy rd = y, and put s = g(r). From [15] we know that the Galois closure of
Fp(r)/Fp(s) is the field Ω = Fp(u, s), and moreover the permutation groups
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Ĝ = Gal(Ω/Fp(s)) = Gal(g(X) − s,Fp(s)) and G = Gal(Fp(u)/Fp(t)) =
Gal(f(X) − t,Fp(t)) are isomorphic (via the restriction map); also Fp(r) =

Fp(y, s), so the subgroup Ĥ of Ĝ consisting of elements fixing r corresponds

to H. For σ ∈ Ĝ, the subgroup of Ĝ fixing σ(r) is Ĥσ = σĤσ−1; if τ ∈ G is
the projection of σ, then this group corresponds to Hτ . It follows that the
intersection Ĥ ∩ Ĥσ has the same size as H ∩Hτ , so the minimal polynomial
of σ(r) over Fp(r) has the same degree as the minimal polynomial of τ(y) over
Fp(y). In the next section we compute these degrees for the various roots
τ(y) of f(X)− t, thereby finding them for the roots σ(r) of g(X)− s; after
that we compute the minimal polynomials for the various σ(r) to produce
the desired bivariate factorization.

4 Subdegrees

In this section we compute the degrees of the irreducible factors of f(X)−f(y)
over Fp(y), where f = fq,1. The result is as follows, where, as in Theorem 1, G
consists of the Fp-automorphisms τ of Fp(u) mapping u to (Eu+F )/(F̄ u+Ē)
for some E,F ∈ Fq2 with EĒ − FF̄ = 1, and the choice of (E,F ) is unique

up to replacing (E,F ) by (−E,−F ); we write τ =
(
E F̄
F Ē

)
for short.

Proposition 2 The polynomial f(X) − f(y) has 3(q + 1)/4 distinct monic
irreducible factors in Fp(y)[X], of which

• one has degree 1, namely X − y;

• two have degree (q + 1)/4, with roots τ(y) where FF̄ = −1/2;

• (q−3)/2 have degree (q+1)/2, with roots τ(y) where (EĒF F̄ )(q−1)/2 =
−1 but FF̄ 6= −1/2; and

• (q − 3)/4 have degree q + 1, with roots τ(y) where (EĒF F̄ )(q−1)/2 = 1.

Proof. From Section 2, the degrees of the irreducible factors of f(X)− f(y)
over Fp(y) are precisely the values (q + 1)/#(H ∩Hτ ), where τ ∈ G. Theo-
rem 1 expresses H in coordinates especially suited to the calculation of these
values.

To start with, if τ ∈ H then τ(y) = y, so the minimal polynomial for

τ(y) over Fp(y) is just X − y. Henceforth we assume τ /∈ H. Let τ =
(
E F̄
F Ē

)
,
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where E,F ∈ Fq2 with EĒ − FF̄ = 1; then our assumption simply asserts
that EF 6= 0.

We now compute H∩Hτ for τ /∈ H. One easily checks that no nonidentity
diagonal matrices in H have diagonal conjugate by τ ; that no diagonal matrix
in H has antidiagonal conjugate by τ , unless FF̄ = −1/2 (in which case
there is one such diagonal matrix); and that no antidiagonal matrix in H has
antidiagonal conjugate, unless (EĒF F̄ )(q−1)/2 = −1, in which case there are
two such antidiagonal matrices. Hence, #H ∩Hτ is 4 if FF̄ = −1/2, is 2 if
(EĒF F̄ )(q−1)/2 = −1 and FF̄ 6= −1/2, and is 1 if (EĒF F̄ )(q−1)/2 = 1. Thus
the degree of the minimal polynomial for τ(y) over Fp(y) in these cases is
(q + 1)/4 or (q + 1)/2 or q + 1, respectively.

Now that we know the possible sizes of H ∩Hτ , we compute the number
of τ ’s for which each size occurs. Note that the preimage of any element
of F∗q under the (q + 1)-th power map F∗q2 → F

∗
q has size q + 1. Thus the

first case occurs for (q + 1)2/2 choices of τ (equivalently, choices of (E,F )
up to the equivalence (E,F ) ∼ (−E,−F )); dividing by #H = q + 1 gives
(q+ 1)/2 conjugates of t having minimal polynomial of degree (q+ 1)/4, and
since all the roots of any such minimal polynomial are conjugates of t, we
find that there are two polynomials in this case. To count the polynomials
in the other cases, note that θ := FF̄ = EĒ − 1 is an arbitrary element of
Fq\{0,−1,−1/2}, and EĒF F̄ = θ2+θ is a square in Fq for precisely half of all
such values θ (as can be proven by classical elementary arguments involving
the quadratic character). Thus, the second case occurs for (q − 3)(q + 1)2/4
choices of τ , hence for (q − 3)(q + 1)/4 conjugates of t and finally there
are (q − 3)/2 polynomials in this case. The third case occurs for the same
number of τ ’s as does the second, hence occurs for (q − 3)/4 polynomials.
This completes the proof.

5 Computation of roots

In this section we compute the values σ(r) where σ ∈ Ĝ. As before, e =

(q + 1)/(4d). Let σ correspond to
(
E F̄
F Ē

)
∈ G, where E,F ∈ Fq2 satisfy

EĒ − FF̄ = 1; the result is as follows.

Proposition 3 We have σ(r) = rw2e and σ(y) = yw(q+1)/2, where

w = EF̄u+ ĒFu−1 + EĒ + FF̄ .
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Proof. We start with σ(y). Theorem 1 implies y = −2/(u(q+1)/2− u−(q+1)/2);
it follows that

σ(y) =
−2
(
(Eu+ F )(F̄ u+ Ē)

)(q+1)/2

(Eu+ F )q+1 − (F̄ u+ Ē)q+1
.

We compute (Eu + F )q+1 = (Ēuq + F̄ )(Eu + F ) = EĒuq+1 + ĒFuq +
EF̄u+ FF̄ ; since (F̄ u+ Ē)q+1 is gotten by switching E and F̄ in the above
expression, we find that (Eu+ F )q+1 − (F̄ u+ Ē)q+1 = uq+1 − 1. Thus

σ(y) =
−2
(
EF̄u+ (EĒ + FF̄ ) + ĒFu−1

)(q+1)/2

u(q+1)/2 − u−(q+1)/2
= yw(q+1)/2.

Since σ(r)d = σ(y) = yw(q+1)/2 = rdw(q+1)/2, we have σ(r) = rw2eη where
ηd = 1; we must show that η = 1 (note that this is certainly true when
EF = 0; henceforth we assume EF 6= 0). Since s = g(r) is fixed by σ, we
have g(r) = g(σ(r)), so

r(r2d + 1)e
(

(r2d + 1)(q−1)/2 − 1

r2d

)2e

=

σ(r) · (σ(r)2d + 1)e
(

(σ(r)2d + 1)(q−1)/2 − 1

σ(r)2d

)2e

;

substituting σ(r)d = rdw(q+1)/2 and σ(r) = rw2eη (and rd = y) gives

(y2 + 1)e
(

(y2 + 1)(q−1)/2 − 1

y2

)2e

=

ηw2e(y2wq+1 + 1)e
(

(y2wq+1 + 1)(q−1)/2 − 1

y2wq+1

)2e

.

Thus for some ξ with ξe = η we have

(y2+1)

(
(y2 + 1)(q−1)/2 − 1

y2

)2

= ξw2(y2wq+1+1)

(
(y2wq+1 + 1)(q−1)/2 − 1

y2wq+1

)2

;

multiplying by y4w2q gives

(∗) w2q
(
(y2 + 1)q − 2(y2 + 1)(q+1)/2 + (y2 + 1)

)
= ξ

(
(y2wq+1 + 1)q − 2(y2wq+1 + 1)(q+1)/2 + (y2wq+1 + 1)

)
.
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Recall that w = (EF̄u2+(EĒ+FF̄ )u+ĒF )/u and y = −2u(q+1)/2/(uq+1−1);
when we make these substitutions in (∗), and multiply both sides by the
quantity u2q(uq+1−1)2q, we get an equality of elements of Fp[u]. To determine
ξ, it suffices to compare the leading coefficients of the resulting polynomials.
After a straightforward computation one finds that these leading coefficients
are 4(EF̄ )2 and 4ξ(EF̄ )2, so ξ = 1 and thus η = ξe = 1 as desired. Finally,
σ(r) = rw2e.

6 Minimal polynomials

For each σ ∈ Ĝ \ Ĥ, we can now determine a monic polynomial in Fp(r)[X],
of the appropriate degree, which has σ(r) as a root; this will be the minimal
polynomial for σ(r) over Fp(r). Once we have computed these minimal poly-
nomials, the factorization stated in the introduction will follow at once from
the discussion in Section 2.

As in the previous section, let σ correspond to
(
E F̄
F Ē

)
∈ G, where E,F ∈

Fq2 satisfy EĒ − FF̄ = 1, and let γ = EĒF F̄ . By Proposition 3, we have
rd = y = −2/(u(q+1)/2−u−(q+1)/2) and σ(r) = rw2e and w = EF̄u+ĒFu−1 +
(EĒ + FF̄ ). The shape of w is suggestive of the Dickson polynomials; we
clarify this in each of the cases of Proposition 2. For each choice of σ, that
result tells us the degree n of σ(r) over Fp(r); for each σ we produce three
polynomials over Fp(r), each of degree n. The first polynomial has w as a
root, the second has w2e as a root, and the third has σ(r) as a root (and the
third is monic). The first has the shape P (X) = bDn(X−(EĒ+FF̄ ), γ)+c,
where Dn(Z, γ) is a Dickson polynomial and b, c ∈ Fp(r). The second is
defined by Q(X2e) =

∏
ζ2e=1 P (ζX). The third is just R(X) = Q(X/r).

Actually, for the two factors of degree (q + 1)/4, we will have to deviate
slightly from this plan, but we still follow the same general strategy. In the
next three paragraphs we implement this plan for each of the three nontrivial
cases in Proposition 2.

First assume FF̄ = −1/2 (so EĒ = 1/2). Then

D(q+1)/2(w,−1/4) = D(q+1)/2

(
EF̄u− (4EF̄u)−1,−1/4

)
= (EF̄u)(q+1)/2 + (4EF̄u)−(q+1)/2;

since (EF̄ )q+1 = −1/4, this last expression equals

(EF̄ )(q+1)/2(u(q+1)/2 − u−(q+1)/2) = −2(EF̄ )(q+1)/2/rd.

13



Thus w is a root of P̂ (X) = rdD(q+1)/2(X,−1/4) + 2(EF̄ )(q+1)/2 ∈ Fp(r)[X];

to get a polynomial of degree (q+1)/4 from this, we note that P̂ (X) = P (X2)
for some P (X) ∈ Fp(r)[X], where P (w2) = 0. Define Q(X) ∈ Fp(r)[X] by
Q(Xe) =

∏
ζe=1 P (ζX), so w2e is a root of Q; then R(X) = Q(X/r) ∈

Fp(r)[X] vanishes at rw2e = σ(r). Here R is monic of degree (q + 1)/4, so
indeed R is the minimal polynomial for σ(r) over Fp(r). The polynomials
P,Q,R are determined by the value of 2(EF̄ )(q+1)/2 = ±α, yielding at most
two polynomials R; since there are indeed two factors in this case, these
polynomials are distinct.

Next assume γ(q−1)/2 = −1 but FF̄ 6= −1/2. Then

D(q+1)/2

(
w − (EĒ + FF̄ ), γ

)
= (EF̄u)(q+1)/2 +

γ(q+1)/2

(EF̄u)(q+1)/2
;

this last is just (EF̄ )(q+1)/2(u(q+1)/2−u−(q+1)/2) = −2(EF̄ )(q+1)/2/rd. Thus w
is a root of P (X) = rdD(q+1)/2

(
X − (EĒ + FF̄ ), γ

)
+2(EF̄ )(q+1)/2, so w2e is

a root of the polynomial Q(X) defined by Q(X2e) =
∏

ζ2e=1 P (ζX). Finally,

σ(r) = rw2e is a root of R(X) = Q(X/r). Here R is a monic polynomial
in Fp(r)[X] of degree (q + 1)/2, so R is the minimal polynomial for σ(r)
over Fp(r). The polynomials P,Q,R are determined by the values of FF̄
and (EF̄ )(q+1)/2; here θ := FF̄ ∈ Fq \ {−1/2} satisfies (θ2 + θ)(q−1)/2 = −1,
and (EF̄ )(q+1)/2 is a square root of θ2 + θ. Thus there are (q − 3)/2 choices
for θ, each of which corresponds to two values of (EF̄ )(q+1)/2; however, the
polynomials Q corresponding to θ and −θ − 1 are identical, so there are at
most (q−3)/2 distinct polynomials R in this case. Again, we know there are
precisely this many factors in this case, so these polynomials are distinct.

Now assume γ(q−1)/2 = 1. Then

Dq+1

(
w − (EĒ + FF̄ ), γ

)
= γ

(
uq+1 + u−(q+1)

)
= γ(4r−2d + 2),

so w is a root of P (X) = r2dDq+1

(
X − (EĒ + FF̄ ), γ

)
− γ(2r2d + 4). Put

Q(X2e) =
∏

ζ2e=1 P (ζX), so Q(w2e) = 0, and thus σ(r) is a root of R(X) =

Q(X/r). Since R is a monic polynomial in Fp(r)[X] of degree q + 1, again
it is the minimal polynomial for σ(r) over Fp(r). The polynomials P,Q,R
are determined by the value of θ := FF̄ ; this is an element of Fq satisfying
(θ2 + θ)(q−1)/2 = 1. There are (q − 3)/2 such values θ; however, replacing θ
by −θ− 1 leaves Q and R unchanged, so there are at most (q− 3)/4 distinct
polynomials R in this case. As above, since this equals the number of factors
in this case, these polynomials are distinct.
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In summary, the polynomial g(X)−g(r) ∈ Fp(r)[X] is the product ofX−r
and several other distinct irreducibles, two of which have degree (q + 1)/4,
(q− 3)/2 of which have degree (q+ 1)/2, and (q− 3)/4 of which have degree
q+1. The two factors R(X) of degree (q+1)/4 are determined by the choice
of
√
−1; for ze = r these R satisfy

R(Xe) =
∏
ζe=1

(
z(q+1)/4D(q+1)/2

(√
ζX/z,−1/4

)
+
√
−1
)
.

Here the choice of
√
ζX/z is irrelevant, since D(q+1)/2 is an even function.

The factors R(X) of degree (q + 1)/2 are determined by the choices of a
nonsquare element φ ∈ Fq of the form θ2 + θ with θ ∈ Fq \ {−1/2}, and
µ ∈ Fq2 with µ2 = φ; here, for z2e = r,

R(X2e) =
∏
ζ2e=1

(
z(q+1)/2D(q+1)/2 (ζX/z − 1− 2θ, φ) + 2µ

)
.

Here the choice of θ is irrelevant. The factors R(X) of degree q + 1 are
determined by the choice of a nonzero square φ ∈ Fq having the form θ2 + θ
for some θ ∈ Fq; for z2e = r we have

R(X2e) =
∏
ζ2e=1

(
zq+1Dq+1 (ζX/z − 1− 2θ, φ)− φ(2zq+1 + 4)

)
.

Again, the choice of θ is irrelevant. Finally, one can make use of the well-
known trivial relation Dmn(X, a) = Dn(Dm(X, a), am) to rewrite the degree
(q + 1)/4 factors in the form given in the introduction.

7 Consequences of the factorization

In this section we note some consequences of the factorization proved above.
In particular, we show that certain known properties of the fq,d follow at
once from the bivariate factorization; this factorization provides new per-
spective on the known results, and we hope that this new perspective might
lead to new results in the future. We begin by determining when fq,d is
exceptional (over Fp). To this end, note that each of the factors R(X, Y )
we have presented is monic in X (that is, monic when viewed as a mem-
ber of Fp[Y ][X]); thus, if no R(X, Y ) lies in Fp[X, Y ], then also no scalar
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multiple of any R(X, Y ) lies in Fp[X,Y ]. So, when testing whether fq,d is ex-
ceptional, it suffices to check whether any R(X, Y ) lies in Fp[X,Y ]. Neither
of the factors R(X, Y ) of degree (q + 1)/4 lies in Fp[X,Y ], since the coef-
ficient of X(e−1)(q+1)/4 in R(Xe, Y e) is e

√
−1 /∈ Fp. The factors R(X, Y ) of

degree (q+1)/2 do not lie in Fp[X, Y ], since the coefficient of X(2e−1)(q+1)/2 in
R(X2e, Y 2e) is 4eµ /∈ Fp. But, for p > 3, there are factors of degree q+1 lying
in Fp[X, Y ]: namely, choose any θ ∈ Fp for which φ := θ2 + θ is a nonzero
square in Fp; then the corresponding factor R(X,Y ) has coefficients in Fp.
This shows that fq,d is not exceptional when p > 3. If p = 3 there is no θ ∈ Fp
for which θ2 + θ is a nonzero square in Fp. For any factor R(X,Y ) of degree
q+ 1, the coefficient of X(2e−1)(q+1) in R(X2e, Y 2e) is −8eφ; if this coefficient
lies in Fp, then φ and consequently θ lies in Fp as well, a contradiction when
p = 3. Thus, for p = 3 the polynomial fq,d is exceptional.

Another consequence of the factorization is that fq,d(X) is indecom-
posable (over Fp) for q 6= 7 (i.e. it is not the (functional) composition of
two lower-degree polynomials in Fp[X]). For, if fq,d(X) = g(h(X)) with
g, h ∈ Fp[X], then h(X) − h(Y ) divides ∆ := fq,d(X) − fq,d(Y ), hence is
the product of (a scalar and) X − Y and several of the irreducible factors
R(X,Y ) of ∆. In particular, the degree of h is simultaneously a divisor of the
degree of fq,d, namely n = q(q−1)/2, and a sum of 1 and several multiples of
(q+ 1)/4; but, for q 6= 7, one easily checks that 1 and q(q− 1)/2 are the only
divisors of n congruent to 1 modulo (q + 1)/4, whence f is indecomposable.
We remark that the polynomials f7,1 and f7,2 have the unusual property of
being indecomposable over F7 but decomposable over F7; in fact, any inde-
composable polynomial over a field which decomposes over a larger field, and
which has degree not a power of the characteristic, must be a twist of one of
f7,1 or f7,2 or either of two other polynomials (of degree 55 over F11), see [13].

There is more to be done along these lines. It would be very nice if one
could recover from the factorization that the Galois group of fq,d(X)−s over
Fp(s) is PSL2(q): the known approaches to these polynomials begin by con-
jecturing this Galois group and then produce the polynomials, but perhaps
one can proceed in a converse manner by beginning with the factorization
and deriving from it all known properties of the fq,d. Hopefully these two
approaches could somehow be combined to yield a direct approach which
produces the fq,d without any hints. As a first step, now that we know the
factorization, it should be possible to give a quick elementary verification of
it. It could also be hoped that a study of the factorization would lead to the
discovery of new properties of the polynomials fq,d.
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Appendix A: Exceptional polynomials

In this appendix we briefly review the theory of exceptional polynomials;
see [9] for more details. Following [6], we say a univariate polynomial f(X)
over a field k is an exceptional polynomial (over k) if the only absolutely
irreducible factors of f(X)−f(Y ) in k[X, Y ] are the scalar multiples of X−Y .
If f is exceptional, then the mapping k → k given by a 7→ f(a) is injective
outside a finite set; a major open problem is to determine whether in fact this
mapping is always injective. This is true, for instance, when k is finite, in
which case there is an equivalent description of exceptional polynomials: they
are precisely the polynomials inducing bijective mappings `→ ` for infinitely
many finite extensions ` of k (the proof relies on the Riemann hypothesis for
curves over finite fields (Weil’s theorem)). This property makes exceptional
polynomials over finite fields valuable for applications in coding theory and
cryptography. One consequence of the property is that, if f(X) ∈ Fq[X]
induces bijections on Fqn for infinitely many n, then these values n include
all numbers coprime to some fixed N > 0. It follows that, for g, h ∈ Fq[X],
the composition g(h) is exceptional if and only if both g and h are exceptional.
Hence, the study of exceptional polynomials over finite fields k reduces to
the case of indecomposable exceptional polynomials.

There are extremely few known examples of indecomposable exceptional
polynomials. The classical examples trace back to Dickson’s 1897 thesis [7];
these include certain cyclic polynomials Xn, certain additive polynomials∑
aiX

pi (with p = char(k)), and certain modifications of these two families
(where, for instance, the modified cyclic polynomials are the Dickson poly-
nomials). These classical families are surveyed in [4]. No essentially new
examples were found between 1897 and 1993. Then came the seminal work
of Fried, Guralnick, and Saxl [9], which showed that for any indecomposable
exceptional polynomial f over a finite field k, either Gal(f(X)− t, k(t)) is an
affine group (in which case f has prime power degree), or k has characteristic
2 or 3 in which case certain other possibilities could not be ruled out. All the
classical examples resided in the affine case, so it was not known whether non-
affine examples would occur. However, in a sense [9] showed where to look for
these, and in the ensuing two years examples were produced in characteristic
2 by Müller, Cohen and Matthews, and in characteristic 3 by Lenstra and
the author. Recently Guralnick and I have classified all non-affine indecom-
posable exceptional polynomials over any finite field; they are all ‘twists’ of
the previously known examples. But much work remains to be done in the
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affine case; new examples were exhibited by Guralnick and Müller [11], but
there will probably be many further examples and it is not clear whether it
is feasible to classify them all.

Appendix B: Factorizations in characteristic 2

In this appendix we sketch how our general method for factoring f(X) −
f(Y ) applies when f is one of the (non-affine) indecomposable exceptional
polynomials over fields of characteristic 2 discovered by Müller, Cohen, and
Matthews. As noted in the introduction, our derivation of this factorization
is very different from the verification found in [5]; in particular, we are able
to explain the previously mysterious occurrence of Dickson polynomials in
the factorization. The polynomials in question are defined as follows: for any
` ≥ 2 and any divisor d of 2` + 1, put q = 2` and

g`,d(X) = X

(
`−1∑
i=0

X(2i−1)d

)(q+1)/d

.

Then g`,d(X) ∈ F2[X] is indecomposable (even over F2) and, when ` is odd,
it is exceptional over F2. In [5] these properties of the g`,d are shown to
be immediate consequences of the factorization of g`,d(X) − g`,d(Y ) (over
F2[X, Y ]); alternately one can prove these properties group theoretically,
without mentioning the factorization [12].

We now state the factorization. Let T (X) =
∑`−1

i=0 X
2i ; the values of this

polynomial on Fq coincide with the values of the trace map Fq → F2 (so the
q/2 distinct roots of T all lie in Fq). Then, for e = (q + 1)/d,

g`,d(X)− g`,d(Y ) = (X − Y )
∏

T (δ)=0
δ 6=0

Rδ(X, Y ), (†)

where each Rδ(X, Y ) is an irreducible polynomial in F2[X, Y ] of degree q+1;
explicitly,

Rδ(X
e, Y e) =

∏
ζe=1

(
Y q+1Dq+1

(
ζX/Y + 1√

δ
, 1

)
+ 1

)
.

Henceforth we write g for g`,d and f for g`,1.
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We begin by computing the degrees of the irreducible factors of g(X) −
g(Y ) in F2[X,Y ]. As in Section 2, g(X) − g(Y ) is the product of several
distinct irreducible factors, whose degrees are the subdegrees of the permu-
tation group Gal(g(X) − s,F2(s)). This group is isomorphic to PGL2(q) in
its transitive permutation representation with one-point stabilizer a dihedral
group of order q + 1. One computes the subdegrees in a manner similar to
that of Section 4, and finds that they are all q + 1 except a single one which
is one (corresponding to the factor X − Y ).

Next we compute the roots of g(X)−s. From [12], for t = sd the splitting
field of f(X)− t over F2(t) is F2(u), and the splitting field of g(X)− s over
F2(s) is F2(u, s). The restriction map induces an isomorphism between G :=
Gal(F2(u, s)/F2(s)) and Gal(F2(u)/F2(t)), where the elements of the latter
group are the F2-isomorphisms of F2(u) sending u to (Eu + F )/(F̄ u + Ē),
for any choice of E,F ∈ Fq2 such that EĒ + FF̄ = 1 (here Ē := Eq). One
root r ∈ F2(u, s) of g(X) − s satisfies r−d = uq+1 + u−(q+1); the other roots
are the images of r under G, which we compute (as in Section 5) to be rwe

for e = (q + 1)/d and w = 1 + EF̄u+ ĒFu−1.
Finally we compute the minimal polynomials over F2(r) for these roots.

Assume rwe 6= r. Put γ = EĒF F̄ . Then w is a root of the polynomial
P (X) = Dq+1(X+1, γ)+γr−d. Next, we is a root of Q(X) ∈ F2(r)[X] defined

by Q(Xe) =
∏

ζe=1 P (ζX). Thus rwe is a root of R̂(X) = rq+1Q(X/r), which

is a monic polynomial in F2(r)[X] of degree q + 1, hence is the minimal
polynomial for rwe over F2(r). Note that R̂ is determined by the value of γ,
and γ = θ2 + θ for θ := FF̄ ∈ F∗q; hence T (γ) = 0. Now denoting R̂(X) by

R̂δ(X), it follows that

g(X)− g(r) = (X − r)
∏

T (δ)=0
δ 6=0

R̂δ(X).

It remains to recover Rδ(X, Y ) from R̂δ(X). For ze = r, note that g(Xe)−
g(ze) = g(Xe) − s is the product of Xe − Y e and the various R̂δ(X

e), each
of which is monic and irreducible in F2(r)[Xe]. But

R̂δ(X
e) = rq+1

∏
ζe=1

P (ζX/z) =
∏
ζe=1

(
zq+1Dq+1(ζX/z + 1, γ) + γ

)
lies in F2[re, Xe]; substituting Y for z and X for Xe, we see that g(X) −
g(Y ) = (X − Y )

∏
δ Řδ(X, Y ), where Řδ is the irreducible polynomial in
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F2[X, Y ] defined by

Řδ(X
e, Y e) =

∏
ζe=1

(
Y q+1Dq+1(ζX/Y + 1, γ) + γ

)
.

Standard trivial properties of Dickson polynomials imply that Rδ is a scalar
multiple of Řδ, which completes our derivation of the factorization (†).

Note that g`,d(X) = X−qT (Xd)(q+1)/d; such a simple expression for g`,d
seems to merit a better explanation than is presently known.
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