
ON A THEOREM OF CARLITZ

MICHAEL E. ZIEVE

Abstract. Carlitz proved that, for any prime power q > 2, the
group of all permutations of Fq is generated by the permutations
induced by degree-one polynomials and xq−2. His proof relies on a
remarkable polynomial which appears to have been found by magic.
We show here that no magic is required: there is a straightforward
way to produce a simple polynomial which has the same remark-
able properties as the complicated polynomial in Carlitz’s proof.
We also identify the crucial subtlety which allows such simple poly-
nomials to exist, and discuss some consequences.

The theorem in the title is as follows:

Theorem. If q > 2 is a prime power then every permutation of Fq

is the composition of permutations induced by xq−2 and by degree-one
polynomials over Fq.

Betti proved this for q = 5 (as the final assertion in [2]), and Dickson
proved it for q = 7 [8, p. 119]. In response to a question posed by
Straus, Carlitz proved it in general [3], via the following argument.
It suffices to prove the result in case the permutation is a 2-cycle of
the form (0a) with a ∈ F∗

q, since every permutation is a product of
such 2-cycles. And Carlitz observed that (0a) is the permutation of Fq

induced by

fa(x) := −a2
((

(x− a)q−2 +
1

a

)q−2

− a
)q−2

.

Although it is straightforward to verify that fa induces the permuta-
tion (0a), it is not at all clear how one could have discovered the poly-
nomial fa in the first place. Indeed, several authors have presented
fa as a mysterious and complicated object: for instance, [14, p. 169]
and [12, p. 358] assert that this representation of (0a) demonstrates
that “simplicity as polynomials and simplicity as permutations are not
equivalent.”
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My purpose here is to remove the mystery from Carlitz’s proof, by
presenting a straightforward procedure for producing a simple poly-
nomial which has the same crucial property as fa, namely that of in-
ducing the permutation (0a). Note that µ(x) := 1 − 1/x induces an
order-3 permutation of Fq ∪ {∞}, and one cycle of µ is (∞10). Then
h(x) := 1 − xq−2 agrees with µ on F∗

q, and h interchanges 0 and 1, so
g(x) := h(h(h(x))) induces the permutation (01) on Fq. Thus ag(x/a)
induces the permutation (0a).

The surprising feature of this proof – and of Carlitz’s result, once we
identify xq−2 with 1/x – is that we have expressed each element of the
symmetric group Sq as a composition of degree-one rational functions,
which should not be possible since the set G of degree-one rational
functions is closed under composition and #G = q3 − q is typically
much smaller than q!. However, the two notions of composition are
incompatible in a subtle way, since we are not viewing an action of
G: although we begin with the action of G on Fq ∪ {∞}, we must
identify ∞ with 0 in order to view 1/x as a permutation of Fq, but we
cannot make a compatible identification for other degree-one rational
functions such as x+ 1.

Note that xq−2 permutes Fqk for infinitely many k: specifically, for all
k such that qk− 1 is coprime to q− 2, which amounts to requiring that
k is not divisible by any of the numbers r`, where ` is a prime factor
of q − 2 and r` is the order of q in F∗

` . Thus, as noted by Carlitz [4,
Thm. 1], any composition of degree-one polynomials and copies of xq−2

will also permute these infinitely many extensions of Fq, so any such
composition is an exceptional polynomial (cf. [11] and the references
therein). Hence Carlitz’s result implies that every permutation of Fq is
induced by an exceptional polynomial.

The condition q > 2 in the above theorem is needed only because
xq−2 does not permute Fq when q = 2. When q = 2, every permutation
of Fq is represented by a degree-one polynomial.

Further results related to the above theorem are given in [1, 5, 6, 7,
9, 10, 13, 14].
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[2] E. Betti, Sopra la risolubilitá per radicali delle equazioni algebriche irriduttibili
di grado primo, Annali Sci. Mat. Fis. 2 (1851), 5–19. [= Opere Matematiche di
Enrico Betti, t. 1, Accademia de Lincei, Milano (1903), 17–27.] 1

[3] L. Carlitz, Permutations in a finite field, Proc. Amer. Math. Soc. 4 (1953), 538.
1



ON A THEOREM OF CARLITZ 3

[4] , Permutations in finite fields, Acta Sci. Math. (Szeged) 24 (1963), 196–
203. 2

[5] , A note on permutations in an arbitrary field, Proc. Amer. Math. Soc.
14 (1963), 101. 2
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