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Abstract
For a fixed prime p, we consider the set of maps Z/pZ → Z/pZ of

the form a 7→ Tn(a), where Tn(x) is the degree-n Chebyshev polynomial
of the first kind. We observe that these maps form a semigroup, and we
determine its size and structure.

1 Introduction

Some of the “world’s most interesting” polynomials [2] are the Chebyshev poly-
nomials [4], which are defined for any positive integer n to be

Tn(x) =

bn/2c∑
k=0

(−1)k
n

n− k

(
n− k
k

)
2n−2k−1xn−2k.

The first few Chebyshev polynomials are

n Tn(x)

1 x

2 2x2 − 1

3 4x3 − 3x

4 8x4 − 8x2 + 1

5 16x5 − 20x3 + 5x

6 32x6 − 48x4 + 18x2 − 1

7 64x7 − 112x5 + 56x3 − 7x

Chebyshev polynomials have integer coefficients and satisfy Tn(cos θ) = cosnθ
for any θ ∈ R. Of particular interest are the mappings a 7→ Tn(a), since (in view
of the functional equation) any two such mappings commute, and more gener-
ally, Tn ◦ Tm = Tnm. The Chebyshev polynomials induce especially remarkable
mappings on the rings Z/pZ for prime p: for instance, if f(x) ∈ (Z/pZ) [x] has
degree at most p1/4, and the map a 7→ f(a) describes a bijection Z/pZ→ Z/pZ,
then f is a composition of Chebyshev polynomials, cyclic polynomials xd, and
linear polynomials1 [1, 5]. The purpose of this note is to analyze the collection

1The coefficients of these linear polynomials are only required to lie in the algebraic closure
of Z/pZ.
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of maps Z/pZ → Z/pZ which are induced by Chebyshev polynomials. Since
there are only finitely many maps Z/pZ → Z/pZ of any sort, there must be
infinitely many pairs (n,m) of distinct positive integers such that Tn and Tm
induce the same map Z/pZ→ Z/pZ. This leads to the following questions:

(1) When do Tn and Tm induce the same map Z/pZ→ Z/pZ?

(2) For fixed p, how many distinct maps Z/pZ→ Z/pZ are induced by Cheby-
shev polynomials?

We can say more about the structure of the collection of maps Z/pZ→ Z/pZ
induced by Chebyshev polynomials, which we will call Chebyshev maps. For, the
identity Tn ◦ Tm = Tnm implies that (for a fixed prime p) the set of Chebyshev
maps Z/pZ→ Z/pZ is closed under composition, and hence forms a semigroup.
This fact already distinguishes Chebyshev polynomials from most other classes
of polynomials, and raises the question

(3) What is the structure of the semigroup of Chebyshev maps Z/pZ→ Z/pZ?

As often happens, the prime p = 2 behaves differently from other primes.
The answers to our questions for p = 2 are as follows.

Theorem 1. The polynomials Tn and Tm induce the same map Z/2Z→ Z/2Z if
and only if n ≡ m (mod 2). There are a total of two Chebyshev maps Z/2Z→
Z/2Z, namely the identity and the constant map 1. These form a semigroup
isomorphic to Z/2Z under the operation of multiplication.

For odd primes p, the answers to our questions are as follows.

Theorem 2. Let p be an odd prime. The polynomials Tn and Tm induce the
same map Z/pZ → Z/pZ if and only if n is congruent to either ±m or ±pm
modulo (p2 − 1)/2. The number of distinct Chebyshev maps Z/pZ → Z/pZ is
(p+1)(p+3)/8. The semigroup of Chebyshev maps Z/pZ→ Z/pZ is isomorphic
to the quotient of the multiplicative semigroup Z/((p2 − 1)/2)Z by the subgroup
{1,−1, p,−p}.

Before proving these results, we illustrate Theorem 2 by writing it out in the
two smallest cases.

• When p = 3, there are three Chebyshev maps on Z/pZ, induced by T1, T2,
and T4. Here T1 is the identity, T4 is the constant map 1, and T2◦T2 = T4.
These three maps comprise the quotient of the semigroup Z/4Z (under
multiplication) by the subgroup {1,−1}; the cosets of this subgroup are
{1,−1}, {0}, and {2}.

• When p = 5, there are six Chebyshev maps on Z/pZ. These maps corre-
spond to the cosets of the subgroup {1,−1, 5,−5} of the semigroup Z/12Z
(under multiplication), namely,

{0}, {1, 5, 7, 11}, {2, 10}, {3, 9}, {4, 8}, {6}.

2



Here a prescribed coset corresponds to the map a 7→ Tn(a), where n is
any positive integer whose image in Z/12Z lies in the prescribed coset.
The coset containing 1 is the identity element, and in this case it is the
only invertible element in the quotient semigroup. Note that the cosets
have sizes 1, 2, and 4. This also holds for larger primes, and will be made
explicit in the proof of Theorem 2.

2 Even characteristic

In this section we prove the following result, which implies Theorem 1.

Proposition 3. If n is even then Tn(x) ≡ 1 (mod 2); if n is odd then Tn(x) ≡ x
(mod 2).

We begin with an alternate development of Chebyshev polynomials. For
any positive integer n, the Fundamental Theorem of Symmetric Polynomials
[6, p. 99] implies that there is a unique f ∈ Z[x, y] such that f(u + v, uv) =
un + vn. Moreover, f(tx, t2y) is homogeneous in t of degree n, so f(x, y) =∑bn/2c
i=0 fix

n−2iyi for some integers fi. Now put g(x) := f(x, 1) =
∑bn/2c
i=0 fix

n−2i,
so that g(u+u−1) = un+u−n. Then h(x) := g(2x)/2 satisfies h((z+z−1)/2) =
(zn + z−n)/2, which for z = eiθ implies that h(cos θ) = cosnθ. Hence h − Tn
vanishes at cos θ, and since θ is arbitrary it follows that h = Tn.

We now determine the lowest-degree term of h, and use it to compute the
reduction of h mod 2. If n is even then substituting u = −v yields

2vn = (−v)n + vn = f(0,−v2) = fn/2 · (−v2)n/2,

so that fn/2 = 2 · (−1)n/2. Since h =
∑bn/2c
i=0 fix

n−2i2n−2i−1 and each fi is an
integer, it follows for even n that h ≡ 1 (mod 2). If n is odd then

un + vn

u+ v
=

(n−1)/2∑
i=0

fi(u+ v)n−1−2i(uv)i;

substituting u = −v on the right yields f(n−1)/2(−v2)(n−1)/2, and evaluating
the left side at u = −v (for instance, via l’Hôpital’s rule) yields nvn−1. Thus we
find that f(n−1)/2 = n · (−1)(n−1)/2 is odd, so that h ≡ x (mod 2). This proves
the Proposition (and more).

3 Odd characteristic

In this section we prove Theorem 2. Let p be an odd prime, and write Fp and
Fp for the field Z/pZ and its algebraic closure. As noted in the previous section,
Tn((z + z−1)/2) = (zn + z−n)/2.

Lemma 4. For any α ∈ Fp, the number of elements β ∈ F∗p such that β+β−1 =
α is either one or two, and if it is two then the elements are reciprocals of one
another.
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Proof. For β ∈ F∗p, the equality β + β−1 = α holds precisely when β is a root

of x2 − αx+ 1. But this polynomial has either one or two roots in F∗p, and if it
has two then they are reciprocals.

For any α ∈ Fp, write α = β + β−1 with β as in the lemma; then, since pth
powering is an automorphism of Fp which fixes Fp, we have

βp + β−p = αp = α = β + β−1,

so the lemma implies that βp ∈ {β, β−1}, whence βp±1 = 1. Conversely, if
β ∈ Fp satisfies βp±1 = 1, then β+ β−1 is fixed by pth powering, and hence lies
in Fp. Thus the elements of Fp are precisely the elements (β + β−1)/2 where
β ∈ Fp and βp±1 = 1.

Now, if βp±1 = 1 then

Tn

(
β + β−1

2

)
= Tm

(
β + β−1

2

)
⇔ βn + β−n = βm + β−m

⇔ either βn = βm or βn = β−m

⇔ either βn−m = 1 or βn+m = 1.

Thus, Tn and Tm define the same maps σn and σm on Fp if and only if every
(p±1)th root of unity in Fp is either an (n−m)th root of unity or an (n+m)th
root of unity. Since Fp contains both primitive (p + 1)th roots of unity and
primitive (p−1)th roots of unity, it follows that σn = σm if and only if n ≡ ±m
(mod p + 1) and n ≡ ±m (mod p − 1), or equivalently, n ≡ ±m or ± pm
(mod (p2 − 1)/2).

We have shown that the number of maps Fp → Fp induced by Cheby-
shev polynomials equals the number of orbits of the action of multiplication by
{1,−1, p,−p} on residue classes mod (p2 − 1)/2. There are precisely two orbits
of size 1, namely {0} and {(p2−1)/4}. The orbits of size 2 are {±k(p−1)/2} for
k = 1, 2, . . . , (p−1)/2 and {±`(p+1)/2} for ` = 1, 2, . . . , (p−3)/2. The remain-
ing (p2−4p+3)/2 residue classes split into orbits of size 4. Hence the number of
distinct orbits, which equals the number of distinct maps σn, is (p2 + 4p+ 3)/8.

Finally, since Tn◦Tm = Tnm, the map n 7→ σn is a semigroup homomorphism
from the multiplicative semigroup of positive integers to the semigroup of maps
Fp → Fp induced by Chebyshev polynomials. Since we showed above that
σn = σm precisely when n ≡ ±m or ± pm (mod (p2 − 1)/2), it follows that
the semigroup of Chebyshev maps Fp → Fp is isomorphic to the quotient of the
multiplicative semigroup Z/((p2 − 1)/2)Z by the subgroup {±1,±p}.

4 Final remarks

It would be interesting to consider similar questions over more general fields or
rings. Proposition 3 shows that if K is any commutative ring of characteristic
2 then the identity map and the constant map 1 are the only maps K → K
induced by Chebyhsev polynomials. If K is a finite field whose order q is odd,
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then the proof of Theorem 2 shows that the number of Chebyshev maps K → K
is (q+ 1)(q+ 3)/8, and the semigroup of Chebyshev maps is the quotient of the
multiplicative semigroup Z/((q2 − 1)/2)Z by the subgroup {1,−1, q,−q}.

Theorem 2 implies that, for any odd prime p, the group of permutations of
Z/pZ induced by Chebyshev polynomials, or equivalently the group of invertible
elements in our semigroup, is the quotient group (Z/((p2 − 1)/2)Z)∗/〈−1, p〉.
This recovers the main result of [3].

Finally, we note that when examining Chebyshev-like mappings of arbitrary
fields K, it is often convenient to treat the related class of Dickson polynomials.
These are defined for any positive integer n and any α ∈ K by

Dn(x, α) =

bn/2c∑
k=0

n

n− k

(
n− k
k

)
(−α)kxn−2k

(it turns out that n
n−k

(
n−k
k

)
is an integer). If 2α 6= 0 then the Dickson poly-

nomial is related to the Chebyshev polynomial over K(
√
α), via the change of

variables

Dn(x, α) = 2
√
α
n · Tn

(
x

2
√
α

)
.
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[3] W. Nöbauer, Über eine Klasse von Permutationspolynomen und die dadurch
dargestellten Gruppen, J. Reine Angew. Math. 231 (1968) 216–219.

[4] T. J. Rivlin, Chebyshev Polynomials: from Approximation Theory to Alge-
bra and Number Theory, 2nd ed., John Wiley, New York, 1990.

[5] G. Turnwald, On Schur’s conjecture, J. Austral. Math. Soc. Ser. A 58 (1995)
312–357.

[6] B. L. van der Waerden, Algebra (trans. F. Blum and J. R. Schulenberger),
vol. I, Springer-Verlag, New York, 1991.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
{rosenjh, zscherr, blweiss, zieve}@umich.edu

5


