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Abstract

For f(X) ∈ Z[X], let Df (n) be the least positive integer k for which
f(1), . . . , f(n) are distinct modulo k. Several results have been proven
about the function Df in recent years, culminating in Moree’s charac-
terization of Df (n) whenever f lies in a certain (large) subset of Z[X]
and n is sufficiently large. We give several improvements of Moree’s
result, as well as further results on the function Df .

1 Introduction

Let f(X) ∈ Z[X] be a polynomial over the integers. For any positive inte-
ger n, let Df (n) denote the least positive integer k such that f(1), . . . , f(n)
are distinct modulo k. If no such k exists, we put Df (n) = ∞. The func-
tion Df has been called the ‘discriminator’, since it represents the least mod-
ulus which discriminates the consecutive values of the polynomial f . This
function was originally studied for cyclic polynomials f = Xd, in which case
the main result is due to Bremser, Schumer and Washington [2]. When d is
odd they showed that, for any sufficiently large n, Df (n) is the least integer
k ≥ n for which the induced mapping f : Z/kZ → Z/kZ is a permutation.
This result can be interpreted as saying that no polynomial f(X) = Xd,
with d odd, can ‘almost’ permute Z/kZ for large k; for, if the first several
values of f are distinct modulo k, the result shows that f must in fact per-
mute Z/kZ. Subsequent work showed that a similar conclusion can be drawn
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for other types of polynomials f . Moree and Mullen [11] extended the above
result to the case where f is a Dickson polynomial of degree coprime to 6. The
Dickson polynomial of degree d ≥ 1 and parameter a ∈ Z is defined to be the
unique polynomial gd(X, a) ∈ Z[X] for which gd(X+ a/X, a) = Xd+ (a/X)d;
explicitly,

gd(X, a) =

bd/2c∑
i=0

d

d− i

(
d− i
i

)
(−a)iXd−2i.

Since gd(X, 0) = Xd, the Dickson polynomials generalize the cyclic polyno-
mials.

Subsequently Moree [10] extended these results to a larger class of poly-
nomials f . We give some notation before stating his result. Let Vf (k) =
|{f(c) : c ∈ Z/kZ}| be the cardinality of the value set of f over Z/kZ. Define
S(f) = sup{Vf (p)/p : p prime, Vf (p) < p} and C(f) = max{2/3, S(f)}; if
Vf (p) = p for every prime p, or equivalently if f(X) = b±X, put S(f) = 0
and C(f) = 2/3. If every sufficiently large integer n has the property that
the interval [n, n/C(f)] contains an integer k for which f permutes Z/kZ,
then let n0(f) denote the least integer ≥ 4 such that every n ≥ n0(f) has
this property.

Theorem 1 (Moree) Suppose n0(f) exists. Then, for every n ≥ n0(f),

Df (n) = min{k ≥ n : f permutes Z/kZ}. (1)

From the above discussion it is apparent that the behavior of Df is related
to the set Q(f) = {q ≥ 1: f permutes Z/qZ}. For, if n ≤ q and q ∈ Q(f),
then certainly f(1), . . . , f(n) are distinct modulo q:

Df (n) ≤ min{q : q ≥ n, q ∈ Q(f)}.

In the other direction, it is clear that Df (n) ≥ n; so (1) simply asserts that
Df (n) ∈ Q(f). In general, if there are elements of Q(f) only slightly greater
than n, then the least such element is a good candidate for Df (n). This
leads us to consider the distribution of the elements of Q(f); a fundamental
quantity is

γ(f) = lim sup
i→∞

qi+1/qi,

where q1 < q2 < q3 < . . . denote the elements of Q written in increasing
order. If Q(f) is finite, we put γ(f) = ∞. We study γ(f) in the next
section.
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In this note we make several improvements to Moree’s result. Continuing
the theme of previous developments, we show that the conclusion of this
result remains valid for a larger class of polynomials f . Note that Theorem 1
applies only when γ(f) ≤ 1/C(f) ≤ 3/2; our first priority is to improve
the number 3/2 in this result. In Section 3 we find that, essentially, we
can replace the 3/2 by 2; and in Section 5 we show that there would be
counterexamples if we replaced 3/2 by any number greater than 2. Next,
the ‘sup’ in the definition of S(f) is somewhat unnatural, since it places
undeserved importance on special behavior modulo small primes; in Section 4
we show that the ‘sup’ can be replaced by ‘limsup’. In a different direction,
we study the values of Df (n) when n is small; we improve the constant n0(f),
give criteria for small values of Df (n) to lie in Q(f), and provide information
about the prime factorizations of values of Df (n) lying outside Q(f). We
carefully analyze several examples, which illustrate various phenomena. In
the final section we mention two generalizations of discriminators.

Finally we comment on notation. Throughout this note, the letter p is
reserved for prime numbers. Greek letters denote real numbers and calli-
graphic letters denote sets. The elements of Q(f), in increasing order, are
always denoted q1 < q2 < . . . .

2 Some results on γ(f )

In this section we give some preliminary information on γ(f). Before doing
this we recall some simple facts about Q(f).

Lemma 2 (i) If q ∈ Q(f) and k | q, then k ∈ Q(f).

(ii) For a, b coprime positive integers, ab ∈ Q(f) if and only if a, b ∈ Q(f).

(iii) For p prime, the following are equivalent:

(1) p2 ∈ Q(f);

(2) p` ∈ Q(f) for every ` ≥ 1;

(3) p ∈ Q(f) and f ′(X) has no roots in Z/pZ.

Proof. (i) is trivial, (ii) follows from the Chinese Remainder Theorem, and
(iii) is [9, Cor. 4.3].
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It is convenient to partition the set Z[X] into three disjoint sets: Z[X] =
C1∪C2∪C3. The set C3 consists of the polynomials f for which Q(f) is finite;
by the above lemma, a polynomial f lies in C3 if and only if Q(f) contains
only finitely many primes and no squares of primes. The set C2 consists of
the polynomials f for which Q(f) contains only finitely many primes, and
precisely one square of a prime. The set C1 contains all remaining f ∈ Z[X].
We write C1 = A ∪ B, where f ∈ A whenever Q(f) contains infinitely many
primes, and f ∈ B wheneverQ(f) contains the squares of two or more primes.
Note that A and B are not disjoint, since for instance they both contain the
polynomial X (it can be shown that both sets contain gd(X, a) whenever
a 6= 0 and (d, 6) = 1). Note that our C1 and C2 differ from those in [10].

We now discuss the values of γ(f) for f in each of the subsets of Z[X]
defined above. We will see that γ(f) = 1 if and only if f ∈ C1. Note that the
set C3 is trivial here, since γ(f) is defined to be ∞ when f ∈ C3.

Lemma 3 γ(f) = 1 for every f ∈ A.

In our proof, we will need to know which rings Z/pZ are permuted by a
Dickson polynomial. It is well known that, for a ∈ Z and d an odd prime,
gd(X, a) permutes Z/pZ if and only if either d - p2 − 1, or both d - p− 1 and
p | a; see for instance [9, Thm. 4.5]. The following proof is an elaboration of
two sentences from Section 3.1 of [10], and clarifies certain details obscured
there.

Proof. This is an easy consequence of a theorem of M. Fried [6], known as
Schur’s Conjecture. For further discussion of this result see [9, Ch. 6]. Now,
suppose f ∈ A. By [9, Cor. 6.23], f is the composition of linear polynomials
in Q[X] and Dickson polynomials gd(X, a) with a ∈ Z and d an odd prime
(and a = 0 if d = 3). Let D be the product of all the distinct primes occurring
as some d in this decomposition; thus, D is the product of the distinct prime
divisors of the degree of f . Consider any prime p ≡ 2 (mod D). For any
such p, each gd(X, a) in the decomposition permutes Z/pZ: for, we have p ≡ 2
(mod d), so p2 − 1 ≡ 3 (mod d), whence d - p2 − 1 unless d = 3, in which
case a = 0 and d - p−1. And for all but finitely many of these primes p, each
of the linear polynomials in the decomposition permutes Z/pZ. Thus, for all
sufficiently large primes p ≡ 2 (mod D), f permutes Z/pZ. Since D is odd,
there are infinitely many primes p ≡ 2 (mod D), by Dirichlet’s Theorem on
arithmetic progressions; write these primes as p1 < p2 < . . . . By the Prime
Number Theorem for arithmetic progressions [5, Chaps. 20 and 22], we have
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limi→∞ pi+1/pi = 1; it follows that γ(f) = lim supi→∞ qi+1/qi = 1, and the
lemma is proved.

Lemma 4 γ(f) = 1 for every f ∈ B.

This is essentially Lemma 4 of [10]. The quick proof given there relies on
only elementary properties of continued fractions.

The case f ∈ C2 is more difficult. In [10], γ(f) is calculated in this case
by means of a certain graph. Our next lemma gives a simpler, more direct
approach. This requires some notation. Let q be the prime whose square is
in Q(f), and let p1, . . . , ps be the other primes in Q(f). Put P =

∏s
i=1 pi.

Note that Q = {kq` : ` ≥ 0, k | P}. Recall that we write the elements of Q
as q1 < q2 < . . . .

Lemma 5 For f ∈ C2, we have γ(f) > 1; in fact, if qb = qqa and P < qb,
then γ(f) = maxa≤i<b qi+1/qi.

Proof. Note that an integer m > P lies in Q(f) if and only if m/q ∈ Q(f).
Thus, qi+b−a = qqi whenever i ≥ a; hence, for i ≥ a, we have qi+1/qi =
qi+b−a+1/qi+b−a. From this the result follows.

One consequence of the above lemmas is the result stated before them.

Proposition 6 For f ∈ Z[X], γ(f) = 1 if and only if f ∈ C1.

Next we show that, if γ(f) = 1, then Df (n) ∈ Q(f) for all sufficiently
large n. This follows from Theorem 1 once we know that S(f) < 1. In [10]
Moree proved S(f) < 1 by appealing to Wan’s value set bound from [14]. One
could also show S(f) < 1 by citing Cohen’s results from [4]; there he showed
that Vf (p) = αp + O(

√
p), where α depends on f and p but the implied

constant depends only on f . Further, Cohen showed that, for fixed f , there
are only finitely many possibilities for α, all between 0 and 1; and moreover,
if α = 1 then Vf (p) = p. From these results it follows that S(f) < 1, so,
for f ∈ C1, we have Df (n) ∈ Q(f) whenever n is sufficienly large. Thus the
interesting case, so far as the behavior of Df (n) for sufficiently large n is
concerned, is f ∈ C2. Theorem 1 applies to some of these f ; in the next two
sections we give results which apply to many more f .

Finally, we discuss the possible values of γ(f). The above results show
that γ(f) = q`a/b, where q is prime, ` ∈ Z, and a, b are squarefree positive
integers; but not every number of this form occurs as the value of γ(f) for
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some f , since we also know γ(f) ≥ 1 (one can also show, for instance, that
15/8 does not occur as γ(f) for any f). We now show that there are values
γ(f) arbitrarily close to any prescribed number α ≥

√
2.

Proposition 7 The set {γ(f) : f ∈ C2} contains a dense subset of the inter-
val [
√

2,∞).

Proof. Pick any α, β with
√

2 < α < β; it suffices to show that γ(f) ∈ (α, β)
for some f ∈ C2. Let q be a prime such that α < q < α2; the existence of q
is guaranteed by Bertrand’s Postulate when α ≥ 2, and clearly q = 2 suffices
when α < 2. Pick any δ with 1 < δ < min{β/α, q/α}. The Prime Number
Theorem implies that, whenever j is sufficiently large, the interval (αqj, δαqj)
contains a prime p. Fix some such j and p; note that qj < p < qj+1. Suppose
some polynomial f ∈ C2 has Q(f) = {q`, pq` : ` ≥ 0}. Then Lemma 5 would
imply that γ(f) = max{p/qj, qj+1/p}. Since

qj+1

p
<
q

α
< α <

p

qj
< δα < β,

we conclude that γ(f) ∈ (α, β).
To complete the proof, we must show that some f ∈ C2 has Q(f) =

{q`, pq` : ` ≥ 0}. Let d > 1 be coprime to p − 1, and let m be the product
of all primes less than d4 other than p and q. Put f(X) = m(qXd + pX);
it follows from [13] that f does not permute Z/rZ for any prime r other
than p and q. Clearly q ∈ Q(f), and since (d, p − 1) = 1 we see that also
p ∈ Q(f). Finally, Lemma 2 implies that p2 /∈ Q(f) and q2 ∈ Q(f), so
indeed Q(f) = {q`, pq` : ` ≥ 0}.

It seems likely that {γ(f) : f ∈ C2} is dense in [1,∞), but I do not know a
proof of this.

3 A ‘sup’ result

In this section we prove a result involving S(f) = sup{Vf (p)/p : Vf (p) < p}.
We set S(f) = 0 if Vf (p) = p for every prime p, which occurs precisely when
f(X) = b ± X; in this case Df (n) = n ∈ Q(f) for every n, so all of our
results are trivially true. For any polynomial f ∈ Z[X], the following result
gives information about Df (n) for some values n. In particular, this result
even applies when f ∈ C3.
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Theorem 8 Given real numbers 1 < µ < 2 and ν < 0 for which µ− µ2 ≤ ν
and µ+

√
µ2 − µ+ ν < 3, if the positive integer n satisfies

n = 1 or n even or n >
2 + ν

2− µ

then either Df (n) ∈ Q(f) or Df (n) ≥ n/S(f) or Df (n) > nµ+ ν.

This result basically says that, if n is any even number or any sufficiently
large odd number, then Df (n) lies in Q(f) if it is not too much greater
than n. In other words, if there is an element of Q(f) which is only slightly
greater than n, then Df (n) ∈ Q(f).

Corollary 9 If n, µ, and ν satisfy the hypotheses of the theorem, and the
intervals [n, 1+nµ+ν] and [n, 1+ n/S(f)) each contain an element of Q(f),
then Df (n) ∈ Q(f).

As a consequence of this corollary, we have an improvement on Theorem 1.

Corollary 10 Let t be any positive integer, and let θ = max{S(f), (2t+ 1)/
(4t+ 1)}. For any positive integer n such that both

(1) either n = 1 or n even or n > 2t; and

(2) some q ∈ Q(f) satisfies n ≤ q < n/θ,

we have Df (n) ∈ Q(f).

Proof. Let ε be a positive real number, and put µ = (4t+ 1)/(2t+ 1)− ε and
ν = −1. For any sufficiently small value of ε, the present corollary follows
from the previous one when we substitute these values of µ and ν.

Already for t = 1 we have Theorem 1 with 2/3 improved to 3/5 and 4
improved to 1.

Corollary 11 If γ(f) < 1/S(f) and γ(f) < 2, then Df (n) ∈ Q(f) for all
sufficiently large n.

With further applications in mind, we state one more result.

Corollary 12 Suppose S(f) ≤ 1/2. If there is some q ∈ Q(f) for which
n ≤ q ≤ 2n− 2, then Df (n) ∈ Q(f).
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Proof. The result is trivial for n ≤ 2, so we only consider n ≥ 3. Put ν = −1
and µ = 2− ε− 1/n, where ε > 0. When ε is sufficiently small, this corollary
follows from Corollary 9 upon substituting these values of µ and ν.

This result is fairly general; thus it is somewhat surprising that, even in the
well-studied case f(X) = Xd with d odd, it implies the best result known,
namely [11, Thm. 3]. For this application one must check that S(Xd) ≤ 1/2,
but this follows at once from VXd(p) = (p− 1)/(d, p− 1) + 1.

We now prove Theorem 8. In our proof we make use of an idea from
the proof of [10, Thm. 3]. We will need some simple facts on value sets of
polynomials. Clearly Df (n) ≥ Vf (Df (n)) ≥ n. Also, if m divides k, then
Vf (m)/m ≥ Vf (k)/k.

Proof of Theorem 8. We prove the contrapositive; so, suppose the conclusion
did not hold. Let k = Df (n); since k /∈ Q(f), Vf (k) < k. Let m be the
largest squarefree divisor of k. Since k < n/S(f),

Vf (m)

m
≥ Vf (k)

k
≥ n

k
> S(f).

If Vf (m) < m then, since m is squarefree, there is a prime p | m for which
Vf (p) < p, so Vf (m)/m ≤ Vf (p)/p ≤ S(f), a contradiction. Thus Vf (m) =
m. Since k /∈ Q(f), Lemma 2 implies that some prime power p` dividing k
satisfies p` /∈ Q(f); but Vf (m) = m implies Vf (p) = p, so ` ≥ 2. By
Lemma 2 there is some x0, with 1 ≤ x0 ≤ p, for which f ′(x0) ≡ 0 (mod p).
Consequently

f(x0 +
k

p
) ≡ f(x0) +

k

p
f ′(x0) ≡ f(x0) (mod k),

so, by the definition of k = Df (n), we have x0+ k/p ≥ n+1. Our assumption
that the theorem’s conclusion fails implies that k ≤ nµ+ ν. Thus

n+ 1 ≤ x0 +
k

p
≤ p+

k

p
≤ p+

nµ+ ν

p
,

so, since µ < 2 ≤ p, we must have n ≤ (p2 − p+ ν)/(p− µ). It follows from
p2 ≤ k ≤ nµ+ ν that (p2 − ν)/µ ≤ n. Thus

p2 − ν
µ

≤ n ≤ p2 − p+ ν

p− µ
,
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so p3 − pν ≤ µ(2p2 − p), or equivalently p2 − ν ≤ µ(2p − 1). This last
inequality implies that p ≤ µ+

√
µ2 − µ+ ν < 3, so p = 2.

Specializing the facts shown above to the case p = 2, we have n + 1 ≤
2 + k/2 (so k ≥ 2n − 2) and 4 | k. If n = 2s is even, then k ≥ 4s − 2
and 4 | k imply k ≥ 4s; but 4s ≤ k ≤ 2sµ + ν < 4s + ν < 4s gives a
contradiction. Thus n = 2s + 1 is odd; clearly Df (1) = 1, so assume s > 0.
Here we have 4s ≤ k ≤ (2s + 1)µ + ν, or equivalently 2s(2− µ) ≤ µ + ν, so
indeed n = 2s+ 1 ≤ (2 + ν)/(2− µ) as desired.

The methods of this proof apply even when γ(f) > 2, in which case
they provide information about the prime factorization of the values Df (n)
lying outside Q(f). For instance, the proof shows that, if Df (n) /∈ Q(f)
and Df (n) < n/S(f), then Df (n) is divisible by the square of some prime p;
further hypotheses would enable us to give an upper bound on p.

4 A ‘limsup’ result

We now prove a result involving L(f) = lim sup{Vf (p)/p : Vf (p) < p}. If
Vf (p) = p for all but finitely many p, i.e. if f(X) = aX + b with a 6= 0, we
put L(f) = 0; our results become trivial in this case. We begin with two
simple lemmas.

Lemma 13 If s | Df (n), then Vf (s)/s ≥ n/Df (n).

Proof. We have Vf (s)/s ≥ Vf (Df (n))/Df (n) ≥ n/Df (n).

Lemma 14 If Df (n) = st, and there exist 0 < a < b ≤ s for which f(a) ≡
f(b) (mod s), then Df (n) > 2(n− b).

Proof. Consider the set W = {a + si, b + si : 0 ≤ i ≤ t/2}. The size of W
is 2(1 + bt/2c) > t. But, for each w ∈ W , f(w) ≡ f(a) (mod s); since there
are only t classes (mod st) which are congruent to f(a) (mod s), there must
be distinct x, y ∈ W for which f(x) ≡ f(y) (mod st). Since Df (n) = st, we
must have n < max{x, y} ≤ b+ st/2, so Df (n) = st > 2(n− b).

These two lemmas give a good deal of information about Df . They give
particularly good information about ‘large’ values of Df , as our next theorem
indicates. We focus on the polynomials in C2. For any f ∈ C2, there is an
integer N0(f) such that, for any n ≥ N0(f), the interval [n, n/γ(f)) contains
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an element of Q(f). One can construct such an integer N0(f) as follows. For
f ∈ C2, Lemma 5 implies that

γ(f) = max
qi>N(f)

qi+1/qi,

where N(f) = P/q (here P is the product of the primes in Q(f) whose
squares are not in Q(f), and q is the prime whose square is in Q(f)). Thus,
if qi > N(f), then qi+1/qi ≤ γ(f). If I is the least index for which qI > N(f),
let N0(f) be the least integer greater than qI/γ(f). Then indeed, for any
n ≥ N0(f), the interval [n, nγ(f)) contains an element of Q(f).

Now we give two more lemmas, the first of which is an immediate conse-
quence of Lemma 13.

Lemma 15 If f ∈ C2 and n ≥ N0 then, for any divisor s of Df (n), we have
Vf (s)/s > 1/γ.

Lemma 16 If the prime p lies in Q but p2 /∈ Q, then there exist a, b such
that 0 < a < b ≤ 2p and f(a) ≡ f(b) (mod p2).

Proof. Lemma 2 implies that there exists x0, with 1 ≤ x0 ≤ p, such that
f ′(x0) ≡ 0 (mod p). Thus

f(x0 + p) ≡ f(x0) + pf ′(x0) ≡ f(x0) (mod p2);

since x0 + p ≤ 2p, this proves the lemma.

We are now ready for the main result of this section.

Theorem 17 Suppose that 1 < γ < 2 and n ≥ N0, but Df (n) /∈ Q. Then
Df (n) = st, where t < 2γ/(2 − γ) and s /∈ Q is either a prime p for which
Vf (p)/p > 1/γ, or the square of a prime p ∈ Q with p < 4γ/(2− γ).

Proof. We can certainly write Df (n) = st, where s /∈ Q, and by Lemma 2
we may assume that either s is prime, or s is the square of a prime p ∈ Q.
Since n ≥ N0, there is an element of Q in [n, nγ), so Df (n) < nγ. Let b be
the least positive integer for which the interval (0, b) contains an integer a
with f(a) ≡ f(b) (mod s); since s /∈ Q, we know b ≤ s. By Lemma 14,
2(n− b) < Df (n) < nγ, so b/n > 1− γ/2. Thus,

t =
Df (n)

s
=
Df (n)

n

n

b

b

s
< γ

2

2− γ
b

s
≤ 2γ

2− γ
.
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Lemma 15 implies Vf (s)/s > 1/γ, so we are done if s is prime. Now let
s = p2, where p ∈ Q. Lemma 16 implies b ≤ 2p, so 2(n − 2p) ≤ 2(n − b);
from above, 2(n− b) < nγ, so 2(n− 2p) < nγ. Thus n(2− γ) < 4p, so

p ≤ st

p
=
Df (n)

p
<
nγ

p
<

4γ

2− γ
,

and the proof is complete.

For f with γ(f) < 2, this result gives a great deal of information about the
large values of Df which lie outside Q(f). In particular, such values must be
small multiples of a large prime. This enables us to focus our attention on
large primes, rather than arbitrary primes, and hence allows us to improve
Corollary 11 by replacing S(f) by L(f).

Corollary 18 If L(f)γ(f) < 1 and γ(f) < 2, then Df (n) ∈ Q(f) for all
sufficiently large n.

Here, for f ∈ C2, we say n is ‘sufficiently large’ if n ≥ N0(f), Df (n) ≥
(1/2)(4γ/(2− γ))3, and

Df (n) ≥ 2γ

2− γ
·max{p /∈ Q : Vf (p)/p > 1/γ}.

We now give examples of polynomials f ∈ C2 which satisfy the hypotheses
of Corollary 18 but not the hypotheses of Theorem 1. It is actually rather
difficult to produce explicit examples, since it is usually quite difficult to
compute S(f) or L(f). We use a class of polynomials for which L(f) has
been computed.
Example. We show that many polynomials f(X) = m(qXd + pX) satisfy
the hypotheses of Corollary 18 but not the hypotheses of Theorem 1. First,
pick any α, β with 3/2 < α < β < e/(e − 1); the proof of Proposition 7
produces two primes p and q. That proof shows that, if d > 1 is coprime to
p − 1, and m is divisible by every prime less than d4 except p and q (and
moreover (m, pq) = 1), then f(X) = m(qXd + pX) has γ(f) ∈ (α, β). Since
γ(f) > 3/2, Theorem 1 does not apply. Next we show that Corollary 18 does
apply to some of these polynomials.

To this end, recall that
∑∞

i=1(−1)i−1/i! = (e−1)/e; since γ(f) < e/(e−1),

whenever d is sufficiently large we will have αd :=
∑d

i=1(−1)i−1/i! < 1/γ(f).
Pick any such d (we are still requiring that (d, p − 1) = 1 and d > 1). A
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result of Birch and Swinnerton-Dyer [1, Thm. 1, Ex. (i)] says that, for any
sufficiently large prime r, we have Vf (r) = rαd + O(r1/2); here the implied
constant depends only on d. It follows at once that L(f) = αd, so indeed
L(f) < 1/γ(f) (and γ(f) < e/(e − 1) < 2), and thus Corollary 18 applies
to f .

If we insist that mpq be divisible by each of the first k primes, where k is
sufficiently large, then we can force S(f) < 1/γ(f) in this example, in which
case the polynomials f satisfy the hypotheses of Corollary 11 but not those
of Theorem 1.

5 Examples with γ(f ) > 2

In this section we give an infinite family F of polynomials f ∈ C2 with the
following property: for each f ∈ F , there exist arbitrarily large integers n for
which Df (n) /∈ Q(f). Further, for any nonempty open interval I ⊆ (2,∞),
there are infinitely many f ∈ F for which γ(f) ∈ I.

Let F be the set of polynomials qX3 + 6rX ∈ Z[X] such that q > 3 is
prime, r is not divisible by 2 or by any prime ≡ 1 mod 3, and, for R =

∏
p|6r p,

we have R < q/2.

Lemma 19 For f ∈ F , we have Q(f) = {kq` : ` ≥ 0, k | R}, so f ∈ C2.

Proof. Dickson showed long ago that the polynomial x3 − cx does not per-
mute Z/pZ if p > 3 and p - c; see [12, Prop. 4.6] for a quick proof of this
fact. It follows that the only primes in Q(f) are the primes dividing qR. The
lemma follows easily.

Lemma 20 For f ∈ F and any ` ≥ 0, we have Df (1 +Rq`) /∈ Q(f).

Proof. Put n = 1 + Rq`. The least element of Q(f) which is ≥ n is q`+1.
We will show that Df (n) ≤ 2Rq`; since 2Rq` < q`+1, this implies that
Df (n) /∈ Q(f). Thus, we have only to show that f(1), . . . , f(n) are dis-
tinct modulo 2Rq`. Suppose 0 < a < b ≤ n satisfy f(a) ≡ f(b) (mod 2Rq`).
First, since 0 < b − a < n < 2Rq`, we have a 6≡ b (mod 2Rq`). Since
Rq` ∈ Q and f(a) ≡ f(b) (mod Rq`), we must have a ≡ b (mod Rq`), so
b ≥ Rq` + 1 and a 6≡ b (mod 4). This last fact, together with f(a) ≡ f(b)
(mod 4) and f(X) ≡ qX3 + 2X (mod 4), implies that a ≡ b ≡ 0 (mod 2).
Thus b 6= Rq` + 1, so b ≥ Rq` + 2 = n + 1, a contradiction which completes
the proof.
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These two lemmas imply the following result.

Proposition 21 For each of the (infinitely many) polynomials f ∈ F , the
set Q(f) is infinite and yet there exist arbitrarily large integers n for which Df (n) /∈
Q(f).

Define N to be the set of all numbers γ(f), where f ranges over the polyno-
mials in Z[X] for which Q(f) is infinite and yet Df (n) /∈ Q(f) for infinitely
many n. We shall examine the subset of N consisting of γ(f) for f ∈ F . We
will need a certain analogue of Bertrand’s Postulate, due to Breusch [3].

Theorem (Breusch) For every m ≥ 6, there is a prime p ≡ 2 (mod 3)
for which m < p < 2m.

Let p1 < p2 < . . . be the odd primes congruent to 2 (mod 3). When r is the
product of the first several pi, we can describe γ(f) precisely.

Lemma 22 If r = p1p2 . . . ps, then γ(f) = q/(6r).

Proof. Here R = 6r. Let 1 = d1 < d2 < · · · < dt = R be the divisors of R.
Since f ∈ C2, by Lemma 5 we have γ(f) = max{q/R, di+1/di : 1 ≤ i < t}.
Since q/R > 2, it suffices to show that each di+1/di ≤ 2. If 2 - di, then
2di | R, so di+1 ≤ 2di; so assume 2 | di. Write p−1 = 2 and p0 = 3. Let
j be the least index for which pj - di; thus j ≥ 0 and j ≤ s (since i < t).
Consider d = dipj/pj−1; the minimality of j implies that d ∈ Z and d | R, so
di+1 ≤ d. If j > 2, namely if pj−1 ≥ 11, then Breusch’s theorem implies that
pj < 2pj−1, so di+1 ≤ d < 2di. Likewise, if j = 0 or j = 1, since 3/2 < 2 and
5/3 < 2 we see that di+1 < 2di. Thus we may assume j = 2, so 6 | di but
11 - di. Then di+1 ≤ 11di/6 < 2di, and the proof is complete.

Proposition 23 N contains a dense subset of the interval (2,∞).

Proof. It suffices to show that N intersects each nonempty subinterval (α, β)
of (2,∞). Consider f ∈ F , with b as in the preceding lemma. Since β/α > 1,
the Prime Number Theorem implies that, for any sufficiently large m, there
is a prime in the interval (m,mβ/α). Thus, when s is sufficiently large, there
is a prime q ∈ (6rα, 6rβ), so γ(f) = q/(6r) ∈ (α, β).

Analogous to N , one can define Y to be the set of all numbers γ(f),
where f ranges over the polynomials in Z[X] for which all but finitely many
values Df (n) lie in Q(f). The theorems of the previous sections suggest that
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Y contains many elements in the interval [1, 2); one can show that Y contains
2 and 5/2 and 3, by showing every Df (n) ∈ Q(f) for f(X) = 2X2 + X or
5X2 − 2X or 3X2 + X (the proofs are straightforward; also, for 3X2 + X
there is the single contrary value Df (4) = 7 /∈ Q(f)). The value 5/2 is
especially interesting, since in the next section we give an example showing
that 5/2 ∈ N ; thus, the value γ(f) does not by itself determine whether
Df (n) ∈ Q(f) for all large n. Moreover, our polynomial in the next section
has the same set Q(f) as does the polynomial 5X2 − 2X, so the set Q(f)
does not by itself determine whether Df (n) ∈ Q(f) for large n. It would be
interesting to find more information about N and Y . In particular, it is not
clear whether 2 ∈ N , or whether Y contains arbitrarily large values.

6 Computing Df when γ(f ) ≥ 2

In order to illustrate how to compute Df when γ(f) ≥ 2, we consider the
example f(X) = 5X3 − 2X. One can derive some preliminary properties
of Df using methods similar to those of the previous section. To this end,
we have Q = {5`, 2 · 5` : ` ≥ 0} and γ = 5/2; moreover, Df (n) /∈ Q(f) for
infinitely many n (since Df (1 + 2 · 5`) ≤ 4 · 5` < 5`+1). In this section we
derive much more information about the function Df . Our methods also
apply to many other polynomials with γ ≥ 2.

We need some notation to state our result. Call an integer m > 0 ex-
ceptional if there are consecutive elements qi, qi+1 of Q, with qi < m < qi+1,
such that f(1), ..., f(1+qi) are distinct (mod m). Thus, the set of exceptional
numbers contains all values of Df outside Q; and conversely, between any
two consecutive elements of Q, the least exceptional number will occur as
a value of Df . However, it is not clear whether every exceptional number
occurs as a value of Df .

Proposition 24 (1) Suppose an exceptional m is divisible by some prime
other than 2 and 5. Then m has the form ps, where p ≥ 97 is a prime
and s ∈ {1, 2, 4, 5, 7, 8, 10, 14}.

(2) Suppose m = 2k5`. Then m is exceptional if and only if the fractional
part of k log 2/ log 5 lies in the interval [log 4/ log 5, 1).

Note that, in(2), the condition does not depend on `, and is true for infinitely
many values of k (since log 2/ log 5 is irrational, so its (positive) integer mul-
tiples are dense mod 1).
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Proof. It is easy to show that, for any odd prime p /∈ {5, 7}, there exist
0 < a < b < c ≤ p such that f(a) ≡ f(b) ≡ f(c) (mod p). For instance (for
p > 7), otherwise one could infer that many polynomials (f(X)−f(j))/(X−
j) have no roots in Z/pZ, which contradicts an old result on sums of Legendre
symbols (see e.g. [8, Thm. 7.8.2]). For p > 5 we have Vf (p) = (2p +

(
p
3

)
)/3

(by [12, Prop. 4.6]), so S(f) = 5/7 and L(f) = 2/3; since γ(f) = 5/2, our
general results do not apply here. Also, for r = 49, we have 0 < 3 < 10 <
17 < r and f(3) ≡ f(10) ≡ f(17) (mod r).

Suppose that m is exceptional, and also that m is divisible by some integer
r ∈ {3, 49, p > 7}. Say m = rs. So there exist 0 < a < b < c ≤ r such that
f(a) ≡ f(b) ≡ f(c) (mod r). Consider

V = {a+ rj, b+ rj, c+ rj : 0 ≤ j ≤ bs/3c};

the size of V is 3(1 + bs/3c) > s. But, for any v ∈ V , f(v) ≡ f(a) (mod r);
since there are only s classes mod m which are ≡ f(a) (mod r), this implies
there are distinct x, y ∈ V with f(x) ≡ f(y) (mod m). Say x < y. Then
0 < x < y ≤ r + rbs/3c ≤ r + rs/3 = m/s + m/3. Since m is exceptional,
there are consecutive elements qi, qi+1 ∈ Q, with qi < m < qi+1, such that
f(1), ..., f(1+ qi) are distinct modulo m. Note that qi+1/qi is either 2 or 5/2.
Thus,

1 + qi < y ≤ m/s+m/3 < qi+1/s+ qi+1/3,

so qi/qi+1 < 1/s+ 1/3, i.e. 1/s > qi/qi+1 − 1/3 ≥ 1/15.
There remain only the following possibilities for exceptional m:

(i) m = 49s, where s ≤ 14; or

(ii) m = ps, where p = 3 or p > 7, and s ≤ 14 (we may assume that p is
the least prime dividing m, other than 2, 5, 7); or

(iii) m = 2k5`; or

(iv) m = 7 · 2k5`.

First of all, one can check via computer that the only exceptional m less
than 1250 are 4 ·5` (` = 0, 1, 2, 3) and 512. This takes care of (i). In case (ii),
we must have p ≥ 1251/14 > 89, so p ≥ 97. Our assumption that p is the
least prime dividing m, other than 2, 5, and 7, implies that s is not divisible
by 3, 11, or 13, so s ∈ {1, 2, 4, 5, 7, 8, 10, 14}. Now we consider each of the
other possibilities.
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In (iii), any exceptional m will have k ≥ 2, since we must have m /∈ Q(f).
So we assume k ≥ 2. It is not difficult to show that f(a) ≡ f(b) (mod 2k)
if and only if either a ≡ b (mod 2k), or both a ≡ b (mod 2k−1) and a even.
Thus, f(1), f(2), ..., f(1+ m/2) are distinct (mod m), but f(2) ≡ f(2+ m/2)
(mod m). So m is exceptional if and only if 1 + qi ≤ m/2 + 1 ≤ m < qi+1,
i.e. qi ≤ m/2 < m < qi+1. Hence qi+1 > 2qi whenever m is exceptional, so we
must have qi = 2·5j and qi+1 = 5j+1. Thusm is exceptional if and only if there
exists j ≥ 0 such that 2 · 5j ≤ m/2 < m < 5j+1. Equivalently, 4 · 5j ≤ m <
5j+1; substituting m = 2k5` gives 4 ≤ 2k5`−j < 5, which can be rewritten as
log 4/ log 5 ≤ k log 2/ log 5 + (` − j) < 1. Since k log 2/ log 5 > 0, this last
inequality will never be satisfied with j < 0; thus, m is exceptional if and
only if the fractional part of k log 2/ log 5 lies in the interval [log 4/ log 5, 1).

Finally, we consider case (iv). Suppose k ≥ 2, and write m = 14z with
z = 2k−15`. In the following table, for z belonging to each nonzero class
mod 7, we give integers 0 < a < b < m for which f(a) ≡ f(b) (mod m). We
make use of the fact stated in the third sentence of the previous paragraph,
as well as the fact that f(4) ≡ f(6) (mod 7).

z mod 7 1 2 3 4 5 6
a 4 4 4 6 6 6
b 4 + 2z 4 + z 4 + 3z 6 + 3z 6 + z 6 + 2z

If m is exceptional, there are consecutive elements qi, qi+1 ∈ Q(f), with
qi < m < qi+1, such that f(1), . . . , f(qi + 1) are distinct modulo m. This
implies that qi < 5+3z < 14z = m < qi+1, so 2/5 ≤ qi/qi+1 < (5+3z)/(14z).
It follows that 28z < 25+15z, so z < 25/13 and thus z = 1. This contradicts
our assumption that k ≥ 2. Finally, the cases k = 0 and k = 1 can be treated
in a similar manner. This completes the proof.

We now give some examples of (2). For k ≤ 100, this criterion implies
that the number 2k5` is exceptional if and only if

k ∈ {2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 74, 81, 88, 95}.

We have done further work which explains the rather obvious patterns among
these k’s; moreover, we can show that every sufficiently large exceptional
value occurs as Df (n) for some n, and that there is an upper bound on p
in (1). These results will be explained in a subsequent paper; the latter two
results rely on estimates for the number of roots of a multivariate polynomial
in a product of intervals in (Fp)

j.
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7 Generalizations

Define Df (a, n) to be the least positive integer k such that the n integers
f(a+1), f(a+2), . . . , f(a+n) are distinct modulo k; thus, Df (0, n) = Df (n).
The results of this note apply to Df (a, n); in particular, in several instances
they show that Df (a, n) = Df (n) for all sufficiently large n. For, define
g(X) = f(a + X); then Df (a, n) = Dg(n). Since Vf (m) = Vg(m) for every
m > 0, f and g have the same Q, γ, S, and L. Thus, all the results of this
paper apply to Dg whenever they apply to Df . For instance, whenever one
of these results implies that Df (n) ∈ Q(f), it simultaneously implies that
Dg(n) ∈ Q(f); moreover, Df (n) = Dg(n) = Df (a, n).

One could also extend our results to rational functions. Here one must be
careful to give the correct definitions. Let f(X) = g(X)/h(X) be a rational
function, where g, h ∈ Z[X] are coprime. We define Df (n) to be the least
positive integer k such that both

(1) for any a ∈ Z, the value h(a) is coprime to k; and

(2) f(1), f(2), . . . , f(n) are distinct modulo k.

The first condition guarantees that f defines a function Z/kZ→ Z/kZ. We
must modify our defintions of S(f), L(f), and Q(f) by incorporating into
each the hypothesis (1). When this is done, all the proofs in this paper apply
at once to rational functions as well as polynomials, with one notable excep-
tion, namely the proof of Lemma 3. That proof relied on Schur’s Conjecture
(now Fried’s Theorem), which classifies the polynomials in A. No such clas-
sification is known for rational functions. However, one can give an alternate
proof of Lemma 3 which applies to rational functions as well as polynomials.
To this end, let f ∈ A be a rational function, and let Ω be the Galois closure
of the field extension Q(X)/Q(f(X)). Let K be the algebraic closure of Q
in Ω. The proof of [7, Prop. 2.1] shows that Q(f) contains all sufficiently
large primes whose Frobenius symbol (for the extension K/Q) lies in a cer-
tain conjugacy class of Gal(K/Q). Strong forms of the Chebotarev Density
Theorem then imply that γ(f) = 1. Thus, all the results of this paper remain
valid in the more general setting of rational functions.
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